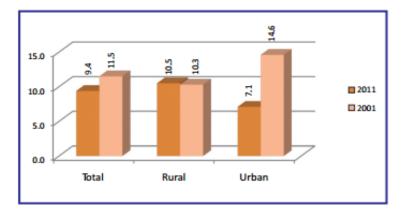
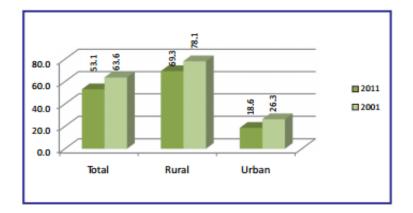

### Septage and Fecal Sludge Management: Work carried out at IIT Madras


Dr. Ligy Philip Professor Department of Civil Engineering IIT Madras Email: ligy@iitm.ac.in

### **Sanitation in India**

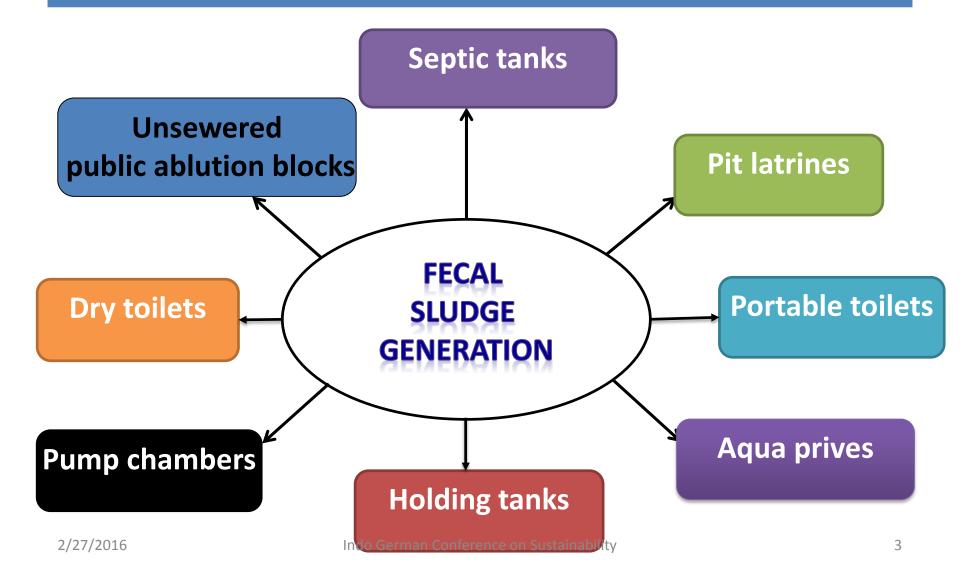
PERCENTAGE OF HOUSEHOLDS HAVING WATER CLOSET INDIA, 2001-2011




#### PERCENTAGE OF HOUSEHOLDS HAVING PIT LATRINE INDIA, 2001-2011






#### PERCENTAGE OF HOUSEHOLDS HAVING OTHER LATRINE INDIA, 2001-2011

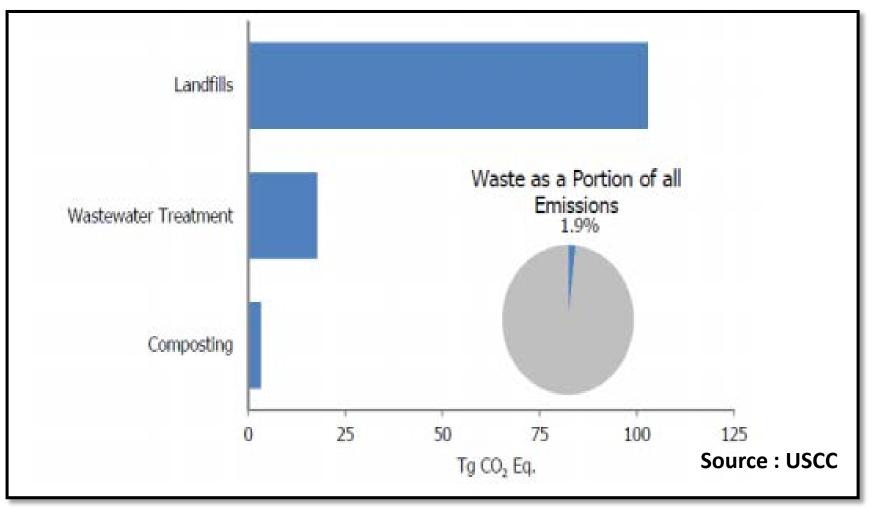
#### PERCENTAGE OF HOUSEHOLDS HAVING NO LATRINE INDIA, 2001-2011



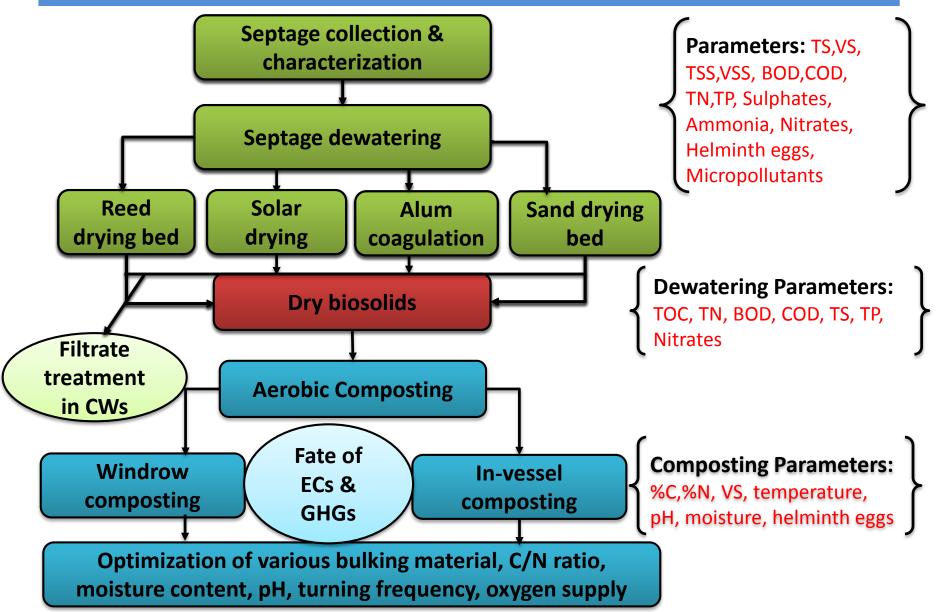
#### Source: Census of India 2011

## Sources of fecal sludge ??

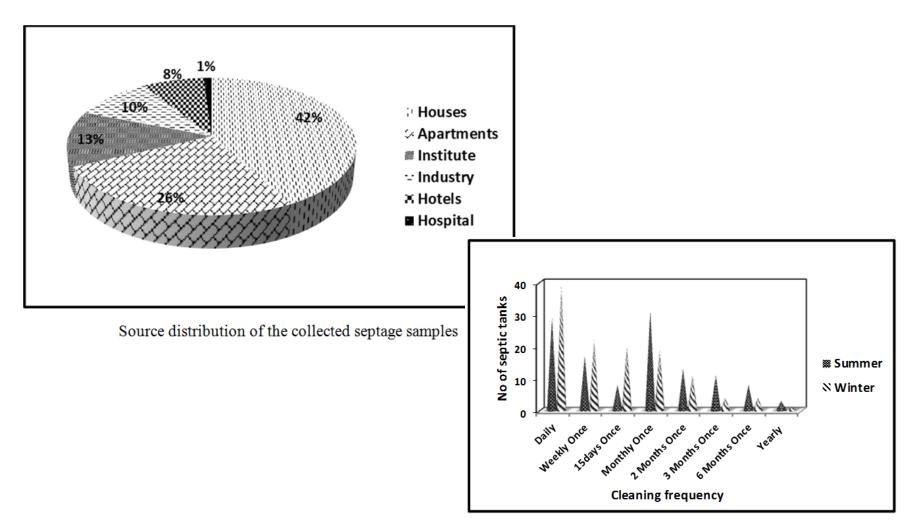



# Composting : Sustainable option ???




- Controlled aerobic decomposition of organic matter by microorganisms into stable, humus like soil amendment
- Natural process
- Can control the system to enhance & accelerate process
- Produce fresh, stable , odour-free COMPOST
- Used as soil conditioner and can store easily source : Used

# Composting : Sustainable option ???






### Methodology



### Sources of Chennai septage samples



Frequency of cleaning during summer and winter seasons

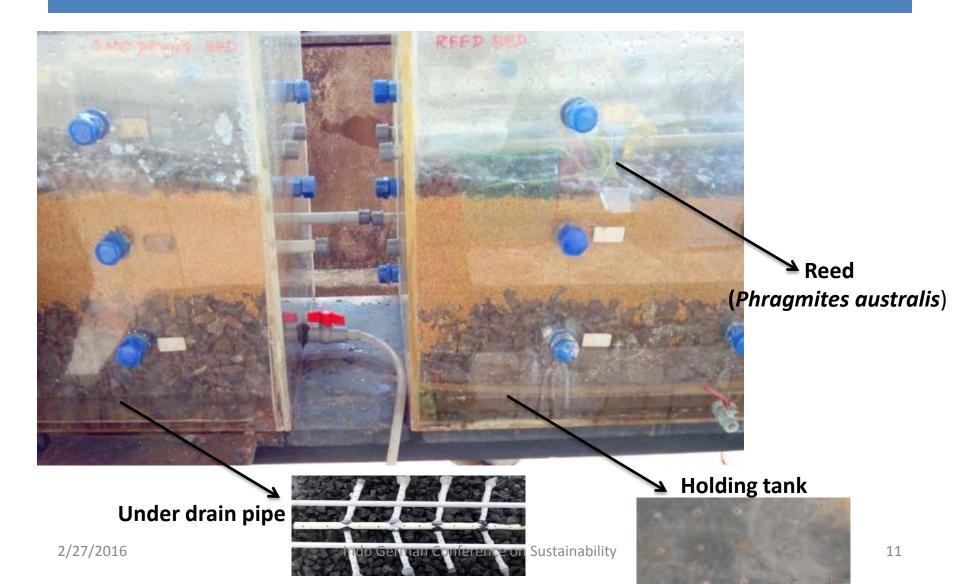
### **Composition of Chennai septage samples**

| Parameters         | No: of | Concentration (mg/L) |         |         |      |              |         |         |      |
|--------------------|--------|----------------------|---------|---------|------|--------------|---------|---------|------|
|                    | Sampl  | Pre Monsoon          |         |         |      | Post Monsoon |         |         |      |
|                    | es     | Maximum              | Minimum | Average | SD   | Maximum      | Minimum | Average | SD   |
| Total Solids       | 120    | 6940                 | 1000    | 2185    | 1070 | 17467        | 1010    | 3555    | 2935 |
| Volatile<br>Solids |        | 4753                 | 307     | 1414    | 657  | 14400        | 10      | 1541    | 2157 |
| TSS                | 120    | 4010                 | 105     | 712     | 602  | 11200        | 27      | 1103    | 1908 |
| VSS                | 120    | 2337                 | 57      | 463     | 382  | 9760         | 10      | 842     | 1566 |
| SS                 | 120    | 850                  | 50      | 288     | 170  | 850          | 0       | 94      | 116  |
| sBOD               | 120    | 240                  | 30      | 117     | 54   | 1896         | 40      | 211     | 220  |
| COD                | 120    | 2400                 | 80      | 905     | 603  | 6656         | 160     | 1460    | 1295 |
| sCOD               | 120    | 1064                 | 16      | 336     | 272  | 4296         | 64      | 427     | 485  |
| Ammonia            | 120    | 84                   | 3       | 16      | 13   | 129          | 2       | 32      | 24   |
| TN                 | 120    | 313                  | 19      | 94      | 65   | 500          | 4       | 58      | 65   |
| ТР                 | 120    | 236                  | 7       | 77      | 43   | 182          | 5       | 54      | 36   |
| Sulphate           | 120    | 209                  | 16      | 76      | 41   | 612          | 2       | 99      | 118  |
| Sulphide           | 120    | 28                   | 0       | 10      | 6    | 61           | 0       | 10      | 12   |

# **Solid Liquid Separation in Septage**

• Septage has both liquid and solid fraction




resembles sewage

- SS concentration in FS is 10-100 times higher than sewage
- Segregate and treating : a good option
- Volume reduction
- Easiness in handling
- Cost effective

### **Septage Dewatering options**

- Sustainable methods include
- □ Solar drying
- Planted drying bed (Reed bed)
- Unplanted drying bed (Sand bed)
- Coagulation using Alum
- Well mixed septage samples were dewatered
- Alum coagulation : dosage 20-120mg/L (USEPA 1986)

### **Dewatering setup**



### **Dewatering setup**



### **Filtrate Quality**

|                    | Concentration in mg/L |                   |                   |  |  |  |
|--------------------|-----------------------|-------------------|-------------------|--|--|--|
| Parameters         | Raw septage           | Reed bed          | Sand bed          |  |  |  |
|                    | quality               | percolate quality | percolate         |  |  |  |
|                    |                       |                   | quality           |  |  |  |
| Total solids       | 12733                 | 1716              | 2003              |  |  |  |
| Volatile solids    | 7013                  | 1770              | 1397              |  |  |  |
| Total Suspended    | 10787                 | 133               | 267               |  |  |  |
| Solids             |                       |                   |                   |  |  |  |
| Volatile Suspended | 5313                  | 123               | 213               |  |  |  |
| Solids             |                       |                   |                   |  |  |  |
| BOD                | 1150                  | 510               | 540               |  |  |  |
| Soluble BOD        | 990                   | 300               | 330               |  |  |  |
| COD                | 9920                  | 3520              | 4800              |  |  |  |
| Soluble COD        | 5440                  | 2280              | 960 <sup>13</sup> |  |  |  |

### **Biosolids Quality**

#### **Reed Drying Bed**

| <b>Biosolids quality</b> | Concentration       |  |  |
|--------------------------|---------------------|--|--|
| Total Carbon             | 72.23 g /kg septage |  |  |
| Total Organic Carbon     | 67.92 g /kg septage |  |  |
| Inorganic Carbon         | 4.31 g/kg septage   |  |  |
| Average Moisture content | 35%                 |  |  |
| C/N ratio                | 8.81                |  |  |
| Sand Drying Bed          |                     |  |  |
| Biosolids quality        | Concentration       |  |  |
| Total Carbon             | 93.33 g/kg septage  |  |  |
| Total Organic Carbon     | 84.38 g/kg septage  |  |  |
| Inorganic Carbon         | 8.95 g/kg septage   |  |  |
| Average Moisture content | 40%                 |  |  |
| C/N ratio                | 10.61               |  |  |

14

### Inferences

- Four sustainable dewatering methods are studied
- Since the septage is highly variable, the optimum alum dosage always varies depending on the TS concentration
- Solar drying can be an option where there is enough land space and sunlight
- In case of filter beds, irrespective of TS concentration, it separates the solid and liquid fractions
- Also the filter beds showed better efficiency in removing organic pollutants and nutrients
- Filter beds will be a good option for highly variable septage treatment

### Available bulking agents in Tamil Nadu



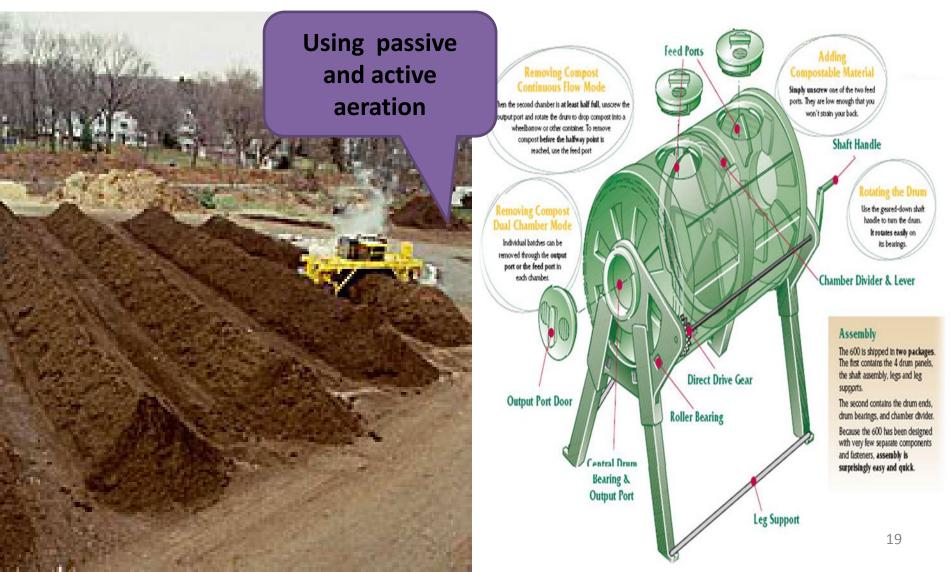
Source: Thomas et al, "Optimization of bulking material for co-composting of septage", Proceedings of Indo-German Conference on Sustainability, 2016, pp. 25-27.

### **Estimation of Physical properties**

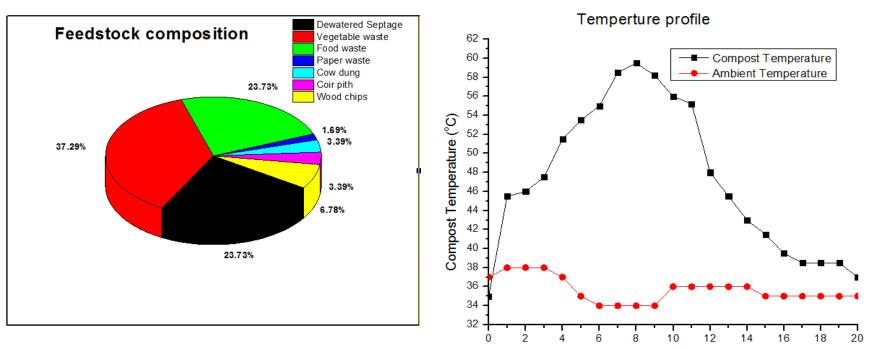
| Composting               | Moisture | Organic          | C/N     | Water holding     | Bulk                 | Air filled |
|--------------------------|----------|------------------|---------|-------------------|----------------------|------------|
| materials                | content  | matter (%)       | ratio   | capacity          | density              | Porosity   |
|                          | (%)      |                  |         | (g of water/ g of |                      | (%)        |
|                          |          |                  |         | material)         | (kg/m <sup>3</sup> ) |            |
|                          |          | Bulking agent fo | or comp | osting            | -                    | -          |
| Bagasse                  | 5.14     | 81.18            | 62      | 6.79              | 200                  | 85.03      |
| Straw                    | 6.83     | 65.50            | 54      | 4.30              | 220                  | 82.37      |
| Wood chips               | 7.17     | 70.20            | 500     | 2.03              | 120                  | 89.41      |
| Saw dust                 | 11.04    | 75.20            | 779     | 4.35              | 95                   | 90.95      |
| Dry leaves               | 5.29     | 62.96            | 60      | 2.15              | 70                   | 93.96      |
| Coir fibre               | 8.06     | 64.29            | 26      | 3.38              | 84                   | 92.88      |
| Coir pith                | 19.66    | 64.08            | 53      | 5.07              | 70                   | 93.78      |
| Rice husk                | 8.02     | 48.20            | 47      | 1.82              | 75                   | 93.11      |
| Groundnut shells         | 8.88     | 49.37            | 24      | 1.97              | 130                  | 88.17      |
| Palm dry leaves          | 7.34     | 45.12            | 20      | 1.42              | 92.8                 | 91.48      |
| Substrate for composting |          |                  |         |                   |                      |            |
| Dewatered                |          |                  |         |                   |                      |            |
| septage solids           | 5.14     | 81.18            | 10      | 0.72              | 300                  | 85.03      |

Source: Thomas et al, "Optimization of bulking material for co-composting of septage", Proceedings of Indo-German Conference on Sustainability, 2016, pp. 25-27.

## **Factors effecting compostin**




| Factor         | Range        |                             |  |  |  |
|----------------|--------------|-----------------------------|--|--|--|
|                | Acceptable   | Preferred                   |  |  |  |
| C:N            | 15:1 – 40:1  | 25:1 – 30:1                 |  |  |  |
| Moisture       | 40 – 65 %    | 50 – 60 %                   |  |  |  |
| Oxygen         | > 5 %        | >> 5 %                      |  |  |  |
| Free air space | >30%         | >30%                        |  |  |  |
| Particle size  | 1/8 – 1/2 in | Variable                    |  |  |  |
| рН             | 5.5 – 9.0    | 6.5 - 8.0                   |  |  |  |
| Temperature    | 43-66°C      | 55-60°C                     |  |  |  |
|                |              | Source: Rynk et al, 1992 18 |  |  |  |


### **Types of Aerobic composting**

#### Windrow composting

#### **Rotary drum composting**



### In-vessel co-composting of septage

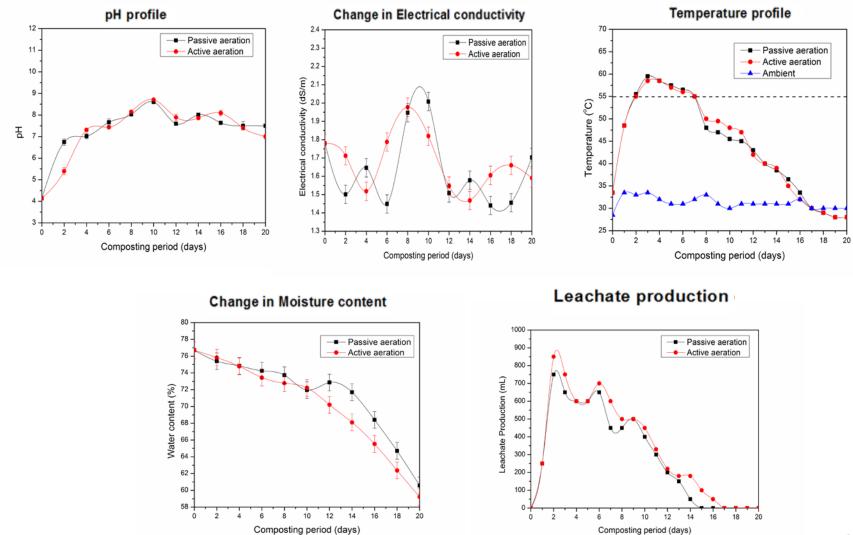


- Mixed organic waste : septage ratio is 3:1 (at initial C/N ratio of 23.4)
- Bulking material: Coir pith (Water holding capacity=5.07g water/g coir pith)
- Temperature profile has 3 phases : mesophilic, thermophilic and curing stage
- Major organic matter transformation occur at thermophilic phase
- Retention at >55°C for more than 3 days ensured significant pathogen inactivation

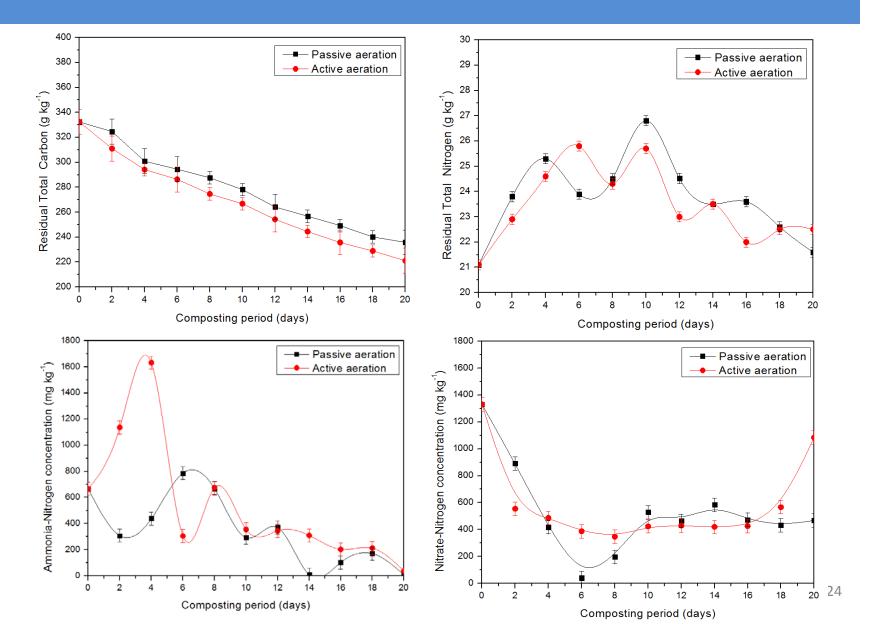
### Conclusion

- The selected feedstock composition is suitable for the effective co-composting of septage.
- Close monitoring of in-vessel system helped in the detailed understanding of compost dynamics during septage cocomposting.
- Proper mixing of feedstock materials resulted in obtaining the final ripened compost within 20 days of composting operation
- Final compost have a TOC content of 30.2±0.5%, TN value of 2.92±0.3% and a TP value of 0.31±0.01%.
- The low temperature (37°C) and low C/N ratio (11.4±0.5) confirms the stability of final compost.
- The final product is suitable for the application as a soil conditioner.

### In-vessel co-composting of Septage in passive & active aeration systems

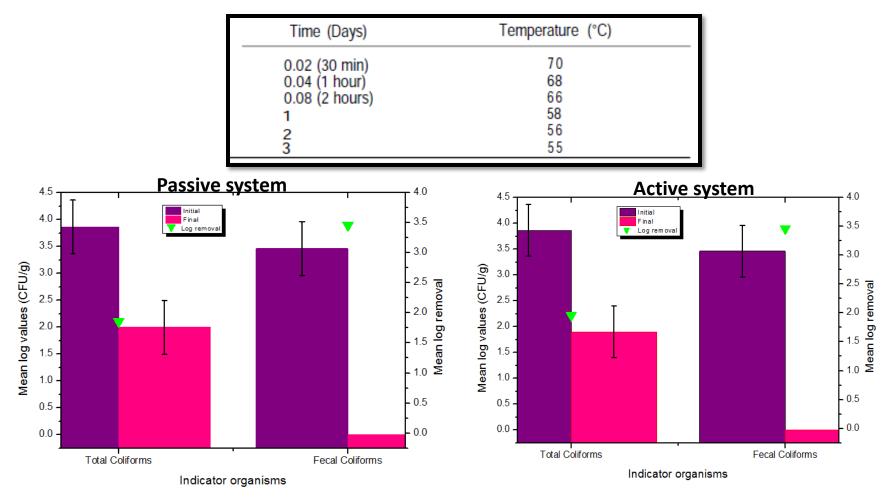

| Substrate             | Moisture Content (%) | C/N ratio | Mass used (kg) |  |  |
|-----------------------|----------------------|-----------|----------------|--|--|
| Vegetable waste       | 92.6 ± 1.8           | 15.6±1.5  | 11.0           |  |  |
| Food waste            | 81.4±2.5             | 20.4±0.7  | 2.0            |  |  |
| Dewatered             | 60.2±2.7             | 8.2±0.8   | 6.5            |  |  |
| septage               |                      |           |                |  |  |
| Coir pith             | 33.3±1.2             | 34.5±2.7  | 1.0            |  |  |
| Wood chips            | 55±0.9               | 40.9±1.8  | 2.5            |  |  |
| Cow dung              | 94.3±2.2             | 9.4±0.9   | 1.0            |  |  |
| Overall Moisture C    | 76.8                 |           |                |  |  |
| Overall C/N ratio 15. |                      |           |                |  |  |

#### Characteristics of initial mix (feedstock composition)

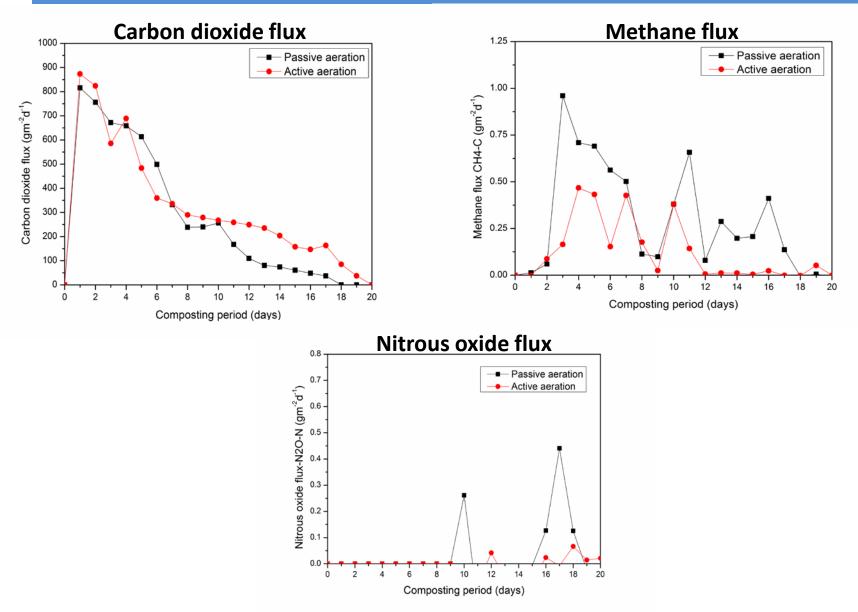

C-mole formulae of initial compost [CH  $_{1.70}O_{1\cdot34}N_{0.05}$ ] matrix revealed that the main component in organic matter (OM) is carbohydrates [CH  $_{1.8}O_{0.9}$ ] rather than fats [CH  $_{0.75}O_{0.25}$ ] and proteins [CH  $_{0.86}O_{0.5}N_{0.14}$ ] hence results faster degradation

The C/N ratio was made at 15.7 which is at lower optimum range in order to treat more septage (having low C/N ratio 8.8) and reduce the net bulking material consumption

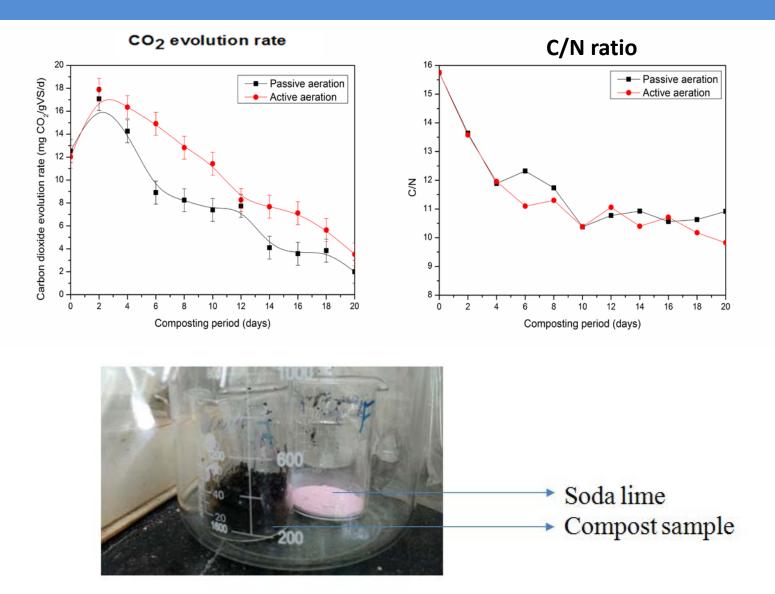
### **Compost dynamics**



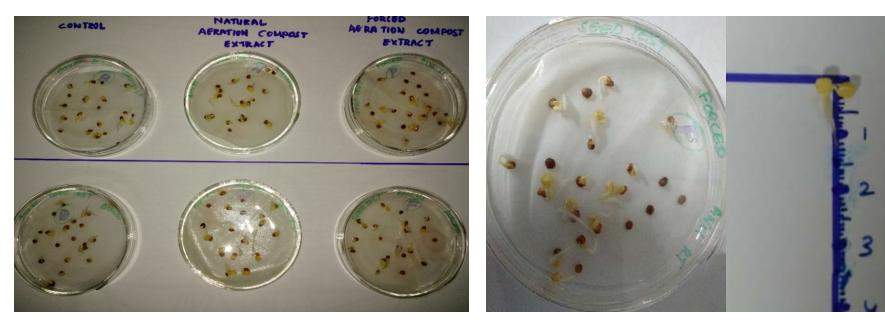

### **Carbon & Nitrogen decomposition**




### **Pathogen reduction**


Time-Temperature relation for pathogen killing in composting (Source: EPA 1992)




# Greenhouse gas emission from septage co-composting



### **Compost maturity**



### **Seed germination test**



#### **Outcomes of Seed germination test**

| Item/Parameter           | Control<br>Test | Compost extract<br>from passive<br>aeration system | Compost extract<br>from active<br>aeration system |
|--------------------------|-----------------|----------------------------------------------------|---------------------------------------------------|
| Total seeds              | 40              | 40                                                 | 40                                                |
| Germinated seeds         | 29              | 32                                                 | 30                                                |
| Mean root length (cm)    | 0.79            | 1.09                                               | 1.22                                              |
| Relative seed            | -               | 110                                                | 103                                               |
| germination (%)          |                 |                                                    |                                                   |
| Relative root growth (%) | -               | 123                                                | 137                                               |
| Germination index (%)    | -               | 135                                                | 141                                               |

# Ripened compost product quality

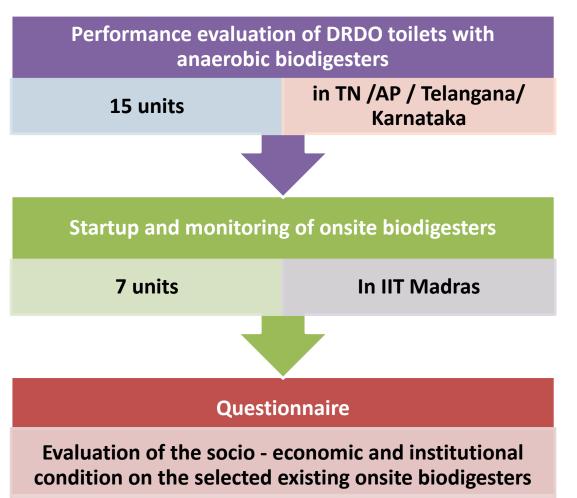


|                                                   | Standa                    | rd values                                 | Passive            | Active<br>aeration<br>system |  |
|---------------------------------------------------|---------------------------|-------------------------------------------|--------------------|------------------------------|--|
| Parameters                                        | <b>HKORC</b> <sup>a</sup> | TMECC <sup>b</sup> /<br>CCME <sup>c</sup> | aeration<br>system |                              |  |
| Ammoniacal-N (mg/kg dw)                           | < = 700                   | 75-500                                    | 10.3 ±5.3          | 37.2± 4.8                    |  |
| CO <sub>2</sub> evolution rate<br>(g C/kg VS/day) | < = 2                     | 2-4                                       | 2.0 ± 0.18         | 3.5 ± 0.20                   |  |
| C:N ratio                                         | ≤ 25                      | ≤ 25                                      | $10.9 \pm 0.8$     | 9.8 ± 0.5                    |  |
| pH Value                                          | 5.5 - 8.5                 |                                           | 8.2 ± 0.02         | 7.4 ± 0.10                   |  |
| Organic matter (% dw)                             | > 20                      | >40                                       | 61 ± 0.5           | 58 ± 0.5                     |  |
| Seed germination index (%)                        | ≥ 80                      | 80–90                                     | 135                | 144                          |  |
| Total N, P, K                                     | ≥ 4% dw                   |                                           | 4.37±0.5           | 4.5±0.5                      |  |

<sup>a</sup>HKORC (2005): Compost and Soil Conditioner Quality Standards for General Agricultural Use. <sup>b</sup>TMECC (2002): Test Methods for the Examination of Composts and Composting. <sup>c</sup>CCME (2005): Guidelines for Grade A Compost Quality.

### Conclusion

- The retention at higher temperature (>55°C) for more than 5 days ensured three log pathogen reduction in both systems.
- The selected feedstock composition is suitable for septage cocomposting even at low C/N ratio with relatively lower GHG emissions when compared with various treatment options.
- The active system was found to be better than passive system especially in terms of GHG emissions.
- Maturity wise, both systems produced stable ripened compost meeting the necessary standards for agricultural purposes.
- The ripened compost can also serve the purpose of carbon sequestration as the initial carbon content in both systems was higher than the total GHG emissions in terms of CO<sub>2</sub>-C equivalent.


### **Evaluation of DRDO Onsite Wastewater Treatment System**

### **Objective & Scope of the project**

➤To test and evaluate existing sanitation technologies

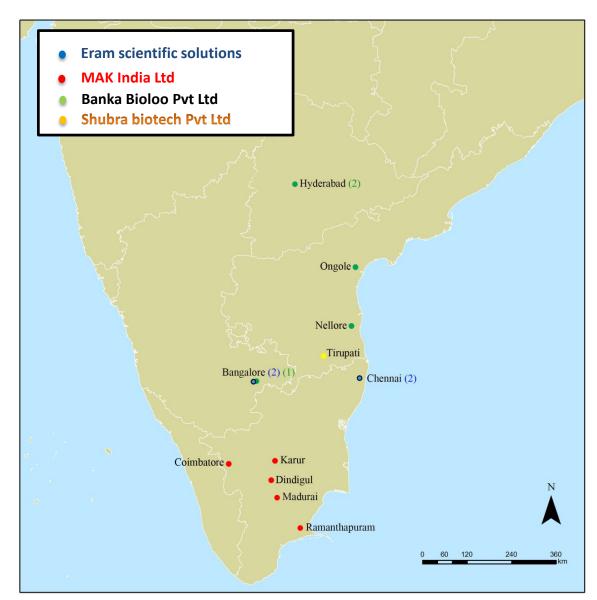
> Testing the DRDO wastewater treatment system: Assessing system performance, usability and acceptability/demand in urban settings in India

TEAM: IIT Madras, Sanitary Technology Platform (STeP) managed by RTI International



Main assessment approach adopted -Carry out the appraisal of different onsite biodigester treatment technologies -Means and ways of attaining it -Timely sampling and investigation

### Distribution of 15 DRDO toilets selected for this study


- Eram scientific solutions 4
  - Chennai (2)
  - Bangalore (2)
- MAK India Ltd 5
  - Dindigul (1)
  - Karur (1)
  - Coimbatore (1)
  - Madurai (1)
  - Ramanathapuram (1)

### • Banka Bioloo Pvt Ltd - 5

- Bangalore (1)
- Hyderabad (2)
- Nellore Gudur (1)
- Ongole (1)

### • Shubra biotech - 1

Seva Tirupati (1)



#### **Details of the sampling points, frequency, type and location**

| Type of          | SamplingL   | No of        | Sampling     | Sample    | Sample points      | Licensee /      |
|------------------|-------------|--------------|--------------|-----------|--------------------|-----------------|
| biodigesters     | ocation     | biodigesters | frequency    | type      |                    | Vendor          |
| DRDO based       | TN / AP /   | 15           | Once in a    | Grab      | Raw wastewater     | Banka BioLoo,   |
| biodigester      | Telangana/  |              | month        | sampling  | and Treated        | MAK & Eram      |
| installations in | Karnataka   |              | Once during  | Composite | water, tap water   |                 |
| Field            |             |              | the 6 months | sampling  |                    |                 |
| Onsite           | Krishna     | 1            | Once in a    | Grab      | Raw wastewater,    | Eram scientific |
| Biodigester      | hostel, IIT |              | week (till   | sampling  | Digester effluent, | & Duke          |
| treatment        | Madras      |              | week 13)     |           | Treated water      | University      |
| technology;      |             |              | Once in a    | Composite |                    |                 |
| Duke             |             |              | week (from   | sampling  |                    |                 |
| University       |             |              | week 14)     |           |                    |                 |
| DRDO based       | IIT Madras  | 4            | Once in a    | Grab      | Raw wastewater     | Banka Bioloo    |
| Biodigester      |             |              | week (till   | sampling  | and Treated        |                 |
| monitoring       |             |              | week 12)     |           | water              |                 |
| under varying    |             |              | Once in a    | Composite |                    |                 |
| operating        |             |              | week (from   | sampling  |                    |                 |
| conditions       |             |              | week 13)     |           |                    |                 |
| DRDO based       | IIT Madras  | 2            | Once in a    | Grab      | Raw wastewater     | MAK             |
| Biodigester      |             |              | week (till   | sampling  | and Treated        |                 |
| monitoring       |             |              | week 9)      |           | water              |                 |
|                  |             |              | Once in a    | Composite |                    |                 |
|                  |             |              | week (from   | Sampling  |                    |                 |
|                  |             |              | week 10)     |           |                    | 34              |



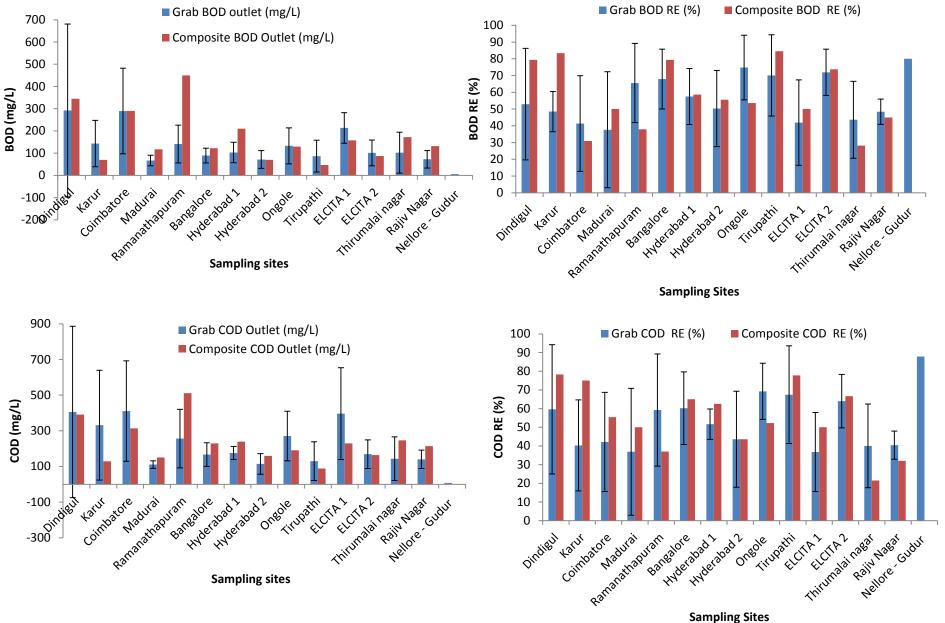
Pipe at the inlet of the digester to be modified for ease during sampling

### **Banka BioLoo Sites**

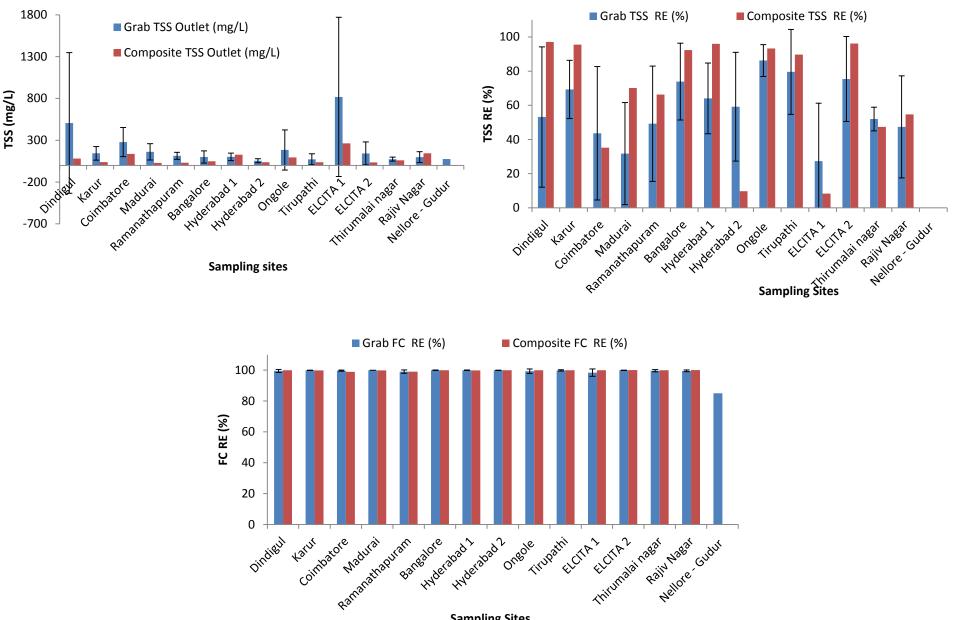


Link\_photographs of all site\Photographs of Banka Bialoo.pptx

### Eram Scientific & Shubra Biotech sites




Link\_photographs of all site\Photographs of Eram Scientific.pptx


# **SAMPLING AND ANALYSES METHODS**

| Parameters                                                                             | Method                               | Instrument used                                                  | Reference (APHA 2005)                  |  |
|----------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|----------------------------------------|--|
| рН                                                                                     |                                      | Cultures an carias 600 PCD 650                                   | 4500 H                                 |  |
| Temperature ( <sup>o</sup> C)                                                          | Potentiometry                        | Cyberscan series 600 PCD 650<br>Waterproof portable meter(Eutech | 2550 B                                 |  |
| Dissolved oxygen (mg/L)                                                                | rotentionetry                        | instruments)                                                     | 4500 – O G                             |  |
| Turbidity (NTU)                                                                        | Nephelometry                         | Turbidimeter TN – 100 (Eutech<br>instruments)                    | 2130 B                                 |  |
| Total Chemical Oxygen<br>Demand (tCOD)<br>Soluble Chemical Oxygen<br>Demand (sCOD)     | Dichromate digestion                 | COD digester (HACH)                                              | 5220 C                                 |  |
| Total biological Oxygen<br>Demand (tBOD)<br>Soluble biological Oxygen<br>Demand (sBOD) | Azide addition                       | BOD Incubator (Rands<br>Instruments)                             | 5210 – B                               |  |
| Total Suspended Solids (TSS)                                                           |                                      | Oven (Remi Instruments), balance                                 | 2540 D                                 |  |
| Volatile suspended solids<br>(VSS)                                                     | Gravimetry                           | (A&D GR 202) and muffle furnace<br>(Inlab equipments)            | 2540 E                                 |  |
| Ammoniacal nitrogen                                                                    |                                      |                                                                  | 4500 NH <sub>4</sub> +-N F             |  |
| Nitrite nitrogen                                                                       | Calarinaatuu                         | Creative shate restory (Chine day)                               | 4500 NO <sub>2</sub> <sup>-</sup> -N B |  |
| NitrateNitrogen                                                                        | Colorimetry                          | Spectrophotometer (Shimadzu)                                     | 4500 NO <sub>3</sub> <sup>-</sup> -N B |  |
| Total Phosphate                                                                        |                                      |                                                                  | 4500 – P D                             |  |
| Faecal Coliform (MPN / 100<br>mL)                                                      | MPN method-Presumptive<br>CFU method | Incubator (Remi Instruments)                                     | 9221 E (MPN method)                    |  |
| Total Kjeldhal Nitrogen (TKN)                                                          | Digestion and distillation<br>method | Distillation apparatus                                           | 4500 – N <sub>org</sub> B              |  |

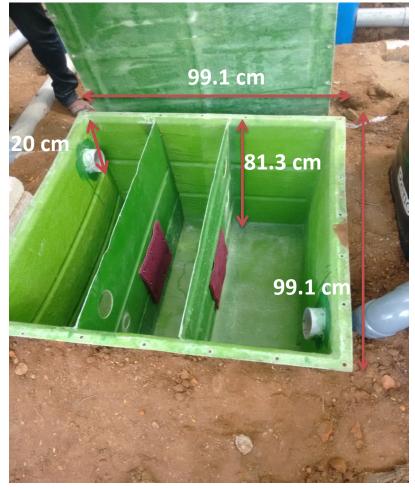
#### **Comparison between Grab and Composite sampling**



#### Comparison between Grab and Composite sampling



**Sampling Sites** 


# Evaluation details on the onsite biodigester in IIT

## Madras (Cauvery & Krishna hostel)

|                                  |                    |         |                                         |         | <b>_</b>                            |                     |     |
|----------------------------------|--------------------|---------|-----------------------------------------|---------|-------------------------------------|---------------------|-----|
| Banka Bioloo<br>(Cauvery hostel) | Dige:<br>label     |         | Operation strat                         |         | egy                                 |                     |     |
| Site 1                           | Diges              | ster A  | Control                                 | Control |                                     | Simple se without i | -   |
|                                  | Diges              | ster B  | Control + inoculation —                 |         |                                     |                     |     |
| Site 2                           | Diges              | ster C  | Frequent inoculation                    |         | Seption Seption Seption             |                     |     |
|                                  | Diges              | ster D  | D Addition of chem<br>Phenyls, Bleach e |         | U                                   | inocu               | lum |
| Cauvery hostel - MAK             |                    | Digeste | r label Operation strategy              |         | eration strategy                    |                     |     |
| Site 3                           | Digeste<br>Digeste |         | nro                                     |         | ed on licensee's<br>cedure          |                     |     |
| Krishna hostel                   | Digester l         |         | er label                                |         | Operation strate                    | egy                 |     |
| Site 4                           | Duke unit          |         |                                         |         | Strategy develog<br>Duke university | ped by              |     |

# FRP biodigester used by DRDO licensee





- □ The chief components of biodigester : anaerobic microbial consortium and fermentation vessel.
- The provision of immobilization material (PVC) is provided to afford attachment site for bacteria, reduce wash out and to enhance the rate of waste fermentation.

# **IIT Madras Cauvery & Krishna sites**





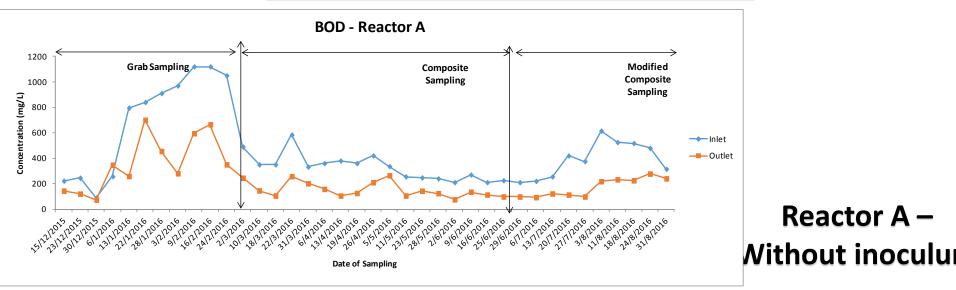
#### Reactor D (left ) and Reactor C (right) in Site 2

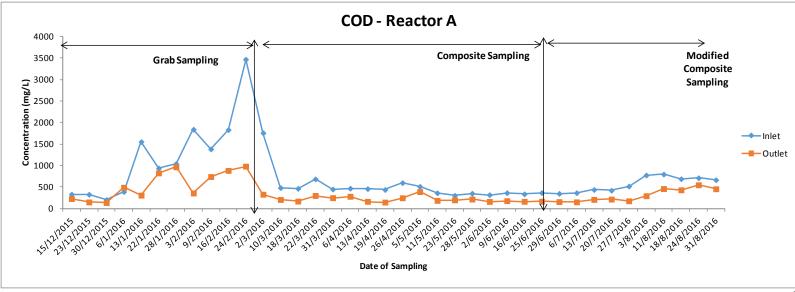


# <u>Composite sampling & Offline pipe</u> connections in <u>Cauvery site</u>

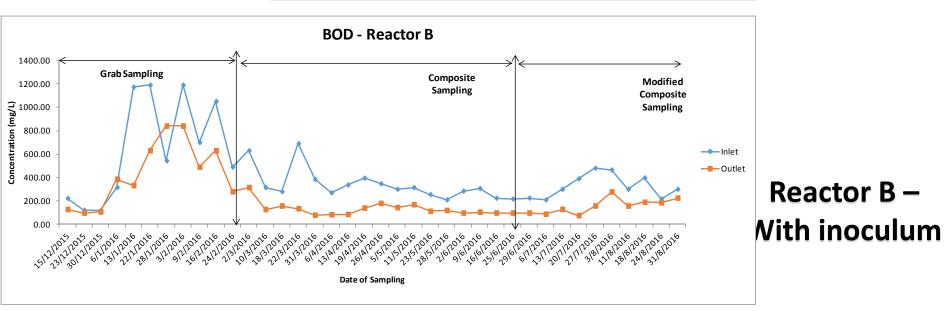


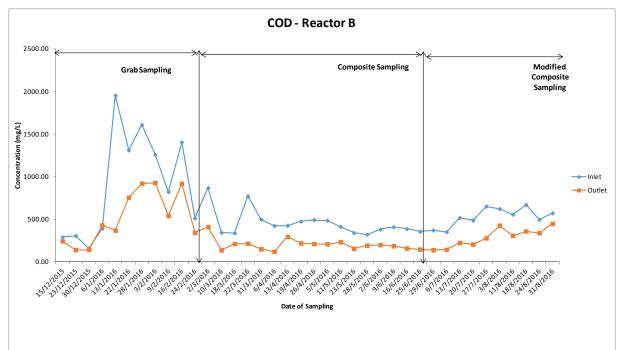
□ The content of the inlet and outlet


tanks were pumped out to the

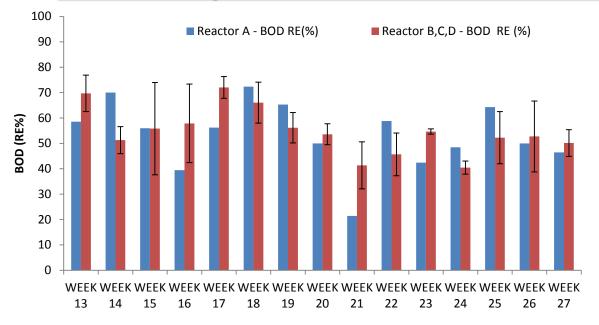

main sewer line using 1 HP pump.

After 24 hrs the inlet and outlet sample is collected.

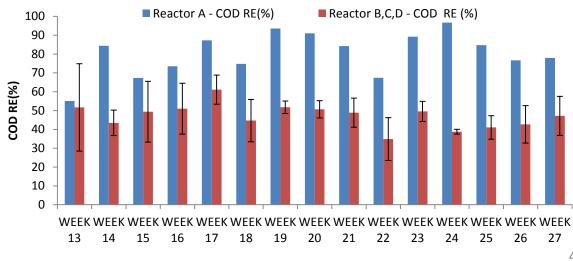




## **BOD & COD values of Reactor A**



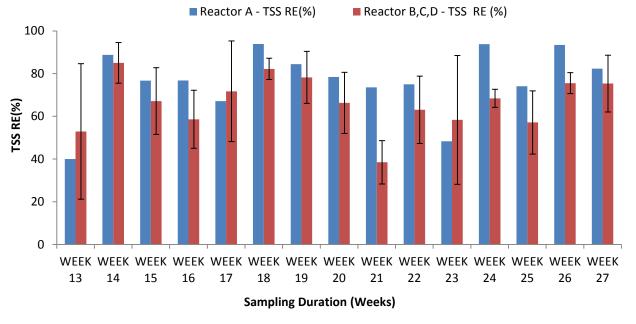


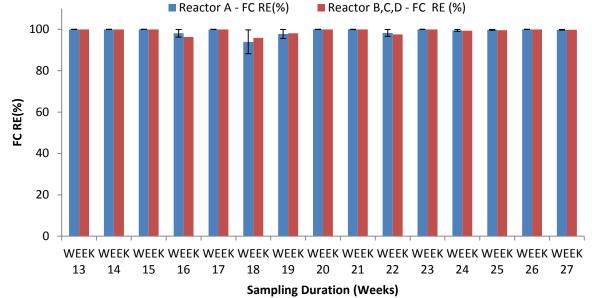

### **BOD & COD values of Reactor B**



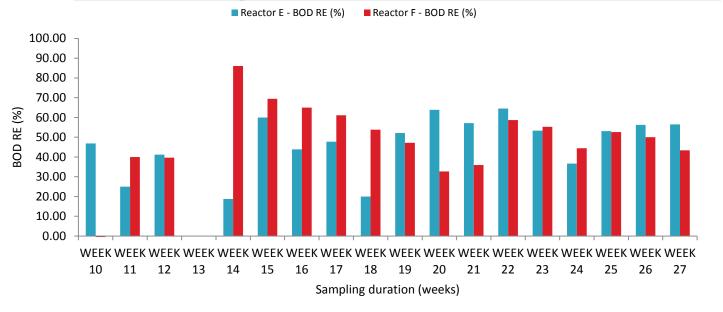


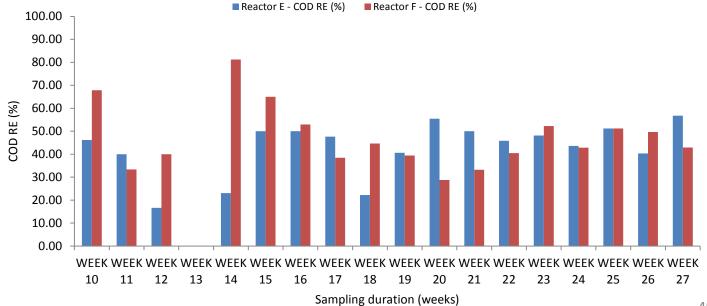

### **Removal performance Reactor A Vs B,C,D**



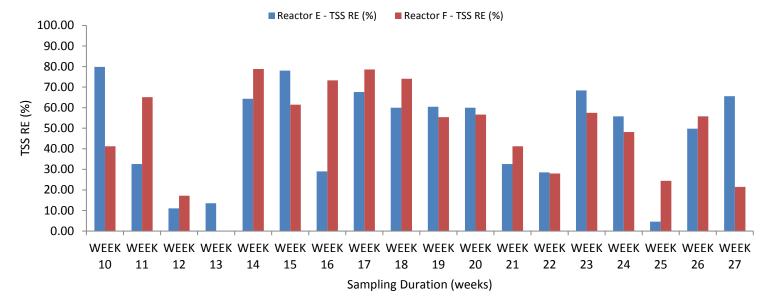


Sampling Duration (Weeks)

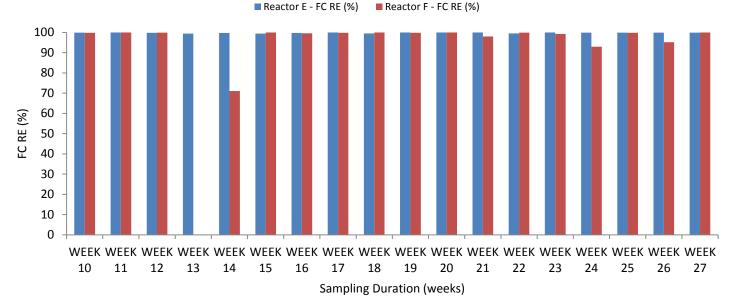



Sampling Duration (Weeks)

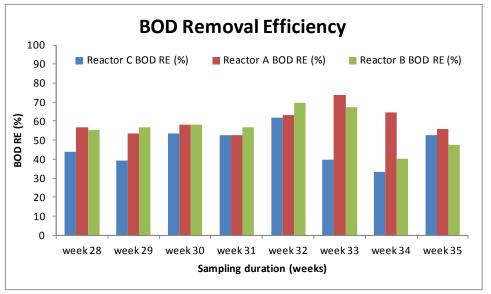

## **Removal performance Reactor A Vs B,C,D**

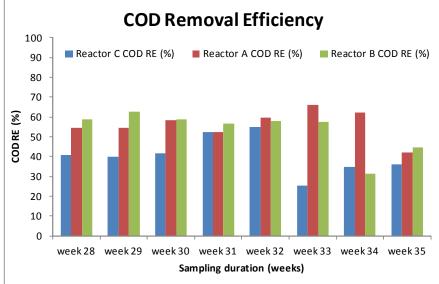


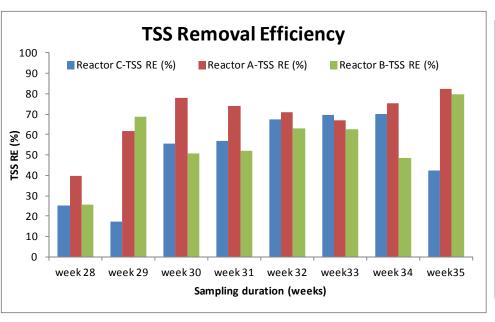


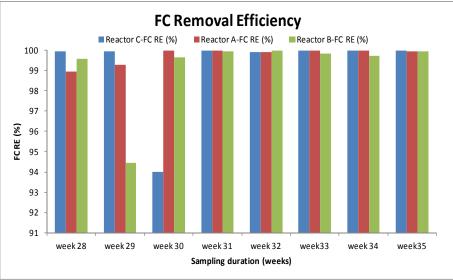


## **Removal performance Reactor E Vs F**



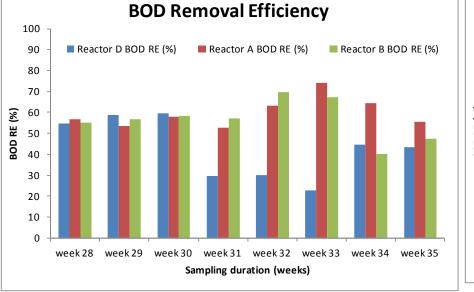


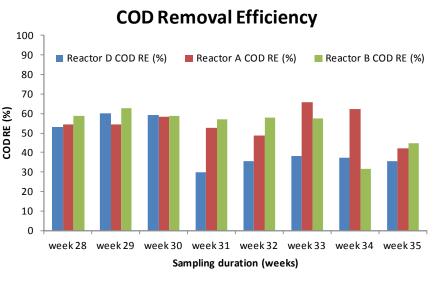


## **Removal performance Reactor E Vs F**

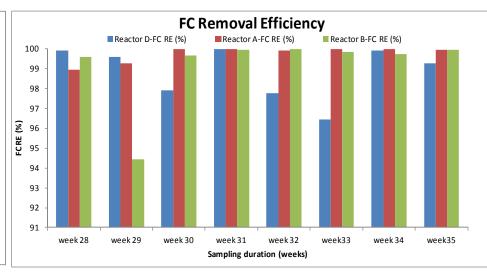


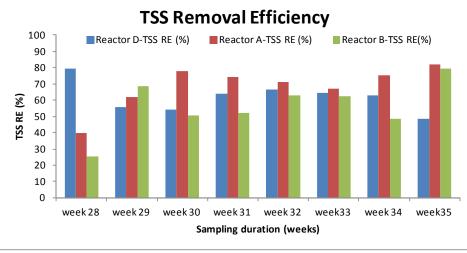




## Variation of Reactor C with respect to A and B



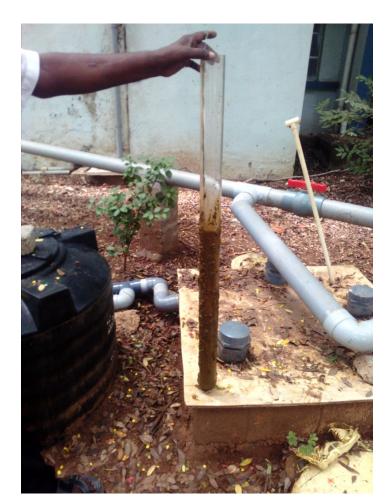




## Variation of Reactor D with respect to A and B










# **Sludge Measurement in Onsite IITM units**

- Scum layer on top and mixed liquor suspended solids at the bottom was observed in all the digesters
- Hence, sludge depth measurement was difficult







# Hydraulic Retention Time of the Biodigesters

| React<br>or | Vendor | Reactor liquid<br>volume (L) | Sludge depth<br>(m) | Mean Water<br>Depth in<br>reactor<br>(m) | Inlet<br>collection<br>tank<br>volume (L) | Flow rate<br>(L/d) | HRT(h)        |
|-------------|--------|------------------------------|---------------------|------------------------------------------|-------------------------------------------|--------------------|---------------|
| А           | Banka  | 584.30 - 585.83              | 0.206 – 0.250       | 0.595 -0.597                             |                                           | 279.70 -           | 48.15 -49.92  |
|             | Bioloo |                              |                     |                                          | 500                                       | 292.80             |               |
| В           | Banka  | 628.50 - 647.65              | 0.206 – 0.250       | 0.664 -0.660                             |                                           | 284.70 -           | 52.80 -54.35  |
|             | Bioloo |                              |                     |                                          | 500                                       | 285.60             |               |
| С           | Banka  | 594.10 - 666.30              | 0.206 - 0.230       | 0.610 -0.679                             |                                           | 269.80 -           | 52.80 - 53.57 |
|             | Bioloo |                              |                     |                                          | 500                                       | 297.60             |               |
| D           | Banka  | 559.70 - 684.94              | 0.206 - 0.210       | 0.570 -0.698                             |                                           | 279.70 -           | 48.00 -57.88  |
|             | Bioloo |                              |                     |                                          | 500                                       | 283.20             |               |
| E           | MAK    | 548.54 - 559.70              | 0.200 - 0.224       | 0.570 -0.559                             |                                           | 244.80 -           | 54.72 -62.94  |
|             |        |                              |                     |                                          | 500                                       | 235.20             |               |
| F           | MAK    | 571.11 - 510.60              | 0.224 – 0.229       | 0.520 -0.582                             |                                           | 239.80 -           | 50.88-62.22   |
|             |        |                              |                     |                                          | 500                                       | 247.20             |               |

# **Comparison of performance**

| Reactor | Operational                         | BOD RE         | COD RE         | TSS RE         | FC Concentration |          | NH4 <sup>+</sup> | (mg/L) |
|---------|-------------------------------------|----------------|----------------|----------------|------------------|----------|------------------|--------|
|         | strategy                            | (%)            | (%)            | (%)            | Inlet            | Outlet   | Inlet            | Outlet |
| A       | Control (No<br>inoculum)            | 54.2 ±<br>13.2 | 51.3 ±<br>11.2 | 73.1 ±<br>14.0 | 8.22E+08         | 6.18E+05 | 34.8             | 48.02  |
| В       | External inoculum addition(once)    | 56.1 ±<br>15.7 | 47.5 ±<br>12.9 | 64.5 ±<br>22.2 | 7.47E+08         | 3.03E+05 | 35.11            | 50.12  |
| C       | Frequent inoculum addition          | 48.5 ±<br>15.8 | 41.9 ±<br>12.8 | 59.3 ±<br>20.1 | 3.49E+08         | 3.99E+05 | 38.48            | 54.92  |
| D       | Addition of extra chemicals         | 41.2 ±<br>14.7 | 46.7 ±<br>12.6 | 66.7 ±<br>14.4 | 4.20E+08         | 3.27E+05 | 43.47            | 51.19  |
| E       | External inoculum<br>addition(once) | 49.6 ±<br>14.1 | 44.6 ±<br>15.8 | 54.3 ±<br>22.4 | 4.76E+08         | 4.31E+05 | 41.25            | 44.29  |
| F       | External inoculum addition(once)    | 54.9 ±<br>14.2 | 50.0 ±<br>14.8 | 55.2 ±<br>19.4 | 4.91E+08         | 3.65E+06 | 37.55            | 47.01  |

# <u>Specific Methanogenic activity test results for Banka BioLoo Inoculum, MAK Inoculum, MAK Inoculum and Control Anaerobic sludge</u>

| S.N | Organic<br>Loading<br>rate | Banka BioLoo<br>Inoculum               |                                                        |                                     |                                                        | MAK<br>Coimbatore<br>Inoculum       |                                                        | Control<br>Anaerobic<br>Sludge      |                                                        |
|-----|----------------------------|----------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------------------------------|
| 0   | (kg COD<br>/kg<br>MLVSS )  | Methane<br>production<br>rate<br>(L/h) | Specific<br>methanog<br>enic<br>activity<br>(L/kg/h at | Methane<br>production<br>rate (L/h) | Specific<br>methanog<br>enic<br>activity<br>(L/kg/h at | Methane<br>production<br>rate (L/h) | Specific<br>methanog<br>enic<br>activity<br>(L/kg/h at | Methane<br>production<br>rate (L/h) | Specific<br>methanog<br>enic<br>activity<br>(L/kg/h at |
|     |                            |                                        | STP)                                                   |                                     | STP)                                                   |                                     | STP)                                                   |                                     | STP)                                                   |
| 1.  | 0.5                        | 0.096                                  | 77.50                                                  | 0.12                                | 99.03                                                  | 0.03                                | 12.64                                                  | 0.168                               | 50.36                                                  |
| 2.  | 1.0                        | 0.254                                  | 116.02                                                 | 0.19                                | 112.07                                                 | 0.12                                | 50.14                                                  | 0.384                               | 272.33                                                 |
| 3.  | 1.5                        | 0.044                                  | 43.85                                                  | 0.21                                | 136.12                                                 | 0.02                                | 8.36                                                   | 0.216                               | 35.99                                                  |
| 4.  | 2.0                        | 0.084                                  | 31.15                                                  | 0.12                                | 62.46                                                  | 0.04                                | 15.38                                                  | 0.072                               | 42.94                                                  |

SMA results :

Banka BioLoo - 0.140 g CH<sub>4</sub>-COD/g VSS/d; MAK - 0.132 g CH<sub>4</sub>-COD/g VSS/d; MAK Coimbatore - 0.105 g CH<sub>4</sub>-COD/g VSS/d;

Control Anaerobic Sludge - 0.193 g CH<sub>4</sub>-COD/g VSS/d

#### SMA values:

Industrial &laboratory digesters: **0.1 and 1.0 g COD/g VSS/ d;** Pure or enriched methanogenic cultures≈**10 g COD/g VSS/d** Septic tanks - **0.09 g CH<sub>4</sub>-COD/g VSS/d** 

(Dolfing and Bloemen, 1985; Guiot, 1991;Soto et al., 1992; Harper and Pohland, 1986; Korsak and Moreno 2006)

#### Specific Methanogenic activity test results for Banka BioLoo Inoculum

|      | Organic                 | Banka BioLoo Inoculum |                  |      | Organic                 | Banka Bi     | oLoo Inoculum        |
|------|-------------------------|-----------------------|------------------|------|-------------------------|--------------|----------------------|
| S.No | Loading rate<br>(kg COD | INITIAL SMA           |                  | S.No | Loading rate<br>(kg COD | SMA before a | ddition in Reactor C |
|      | /kg MLVSS )             | Methane               | Specific         |      | /kg MLVSS )             | Methane      | Specific             |
|      |                         | production            | methanogenic     |      |                         | production   | methanogenic         |
|      |                         | rate                  | activity (L/kg/h |      |                         | rate         | activity (L/kg/h at  |
|      |                         | (L/h)                 | at STP)          |      |                         | (L/h)        | STP)                 |
| 1.   | 0.5                     | 0.096                 | 77.50            |      |                         | ,            |                      |
| 2.   | 1.0                     | 0.254                 | 116.02           | 1.   | 0.5                     | 0.156        | 71.63                |
| 3.   | 1.5                     | 0.044                 | 43.85            | 2.   | 1.0                     | 0.240        | 112.31               |
| 4.   | 2.0                     | 0.084                 | 31.15            | 3.   | 1.5                     | 0.071        | 33.13                |
|      |                         |                       |                  |      |                         |              |                      |

<u>SMA results :</u> Banka BioLoo - 0.140 g CH₄-COD/g VSS/d SMA results:

2.0

4.

Banka BioLoo - 0.133 g CH<sub>4</sub>-COD/g VSS/d

0.072

**SMA values:** 

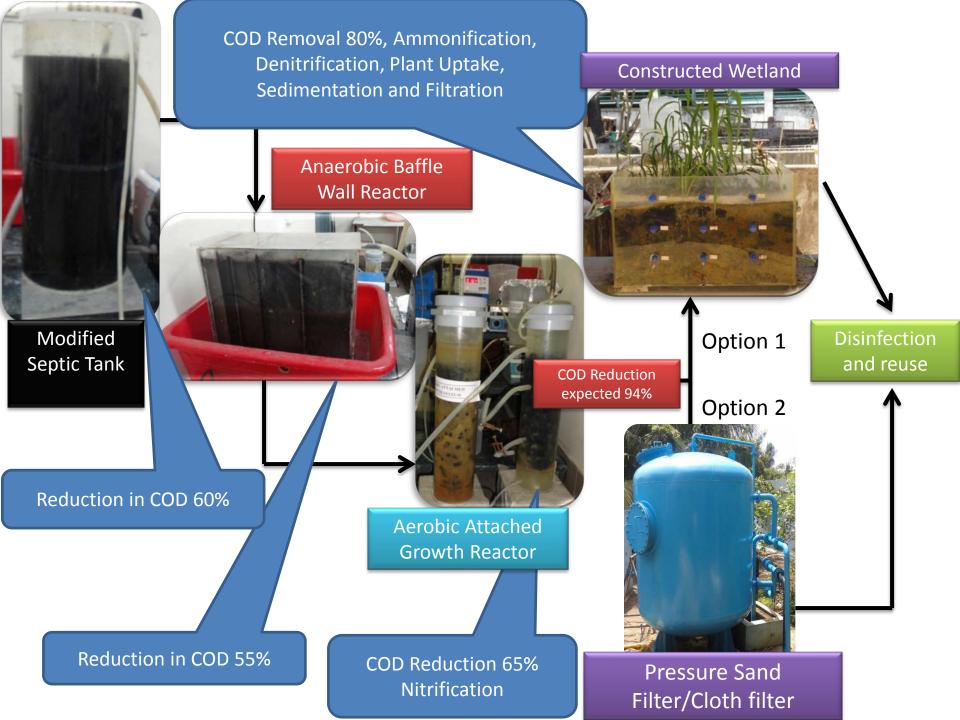
Industrial &laboratory digesters: **0.1 and 1.0 g COD/g VSS/ d;** Pure or enriched methanogenic cultures≈**10 g COD/g VSS/d** Septic tanks - **0.09 g CH₄-COD/g VSS/d** 

(Dolfing and Bloemen, 1985; Guiot, 1991;Soto et al., 1992; Harper and Pohland, 1986; Korsak and Moreno 2006)

26.13

# Thank you

www.keralatourism.org


Photo : Kuttiyapillai

# Onsite wastewater management systems

•Minimum use of pumps or other electrical equipment

•Minimum level of monitoring and process control

•Aeration to be carried out for part of 24 hour cycle to simulate power interruptions or use of nonconventional energy sources



# Pilot Scale system: Nellavathi Illam, Mullai Street, Medavakkam, Chennai





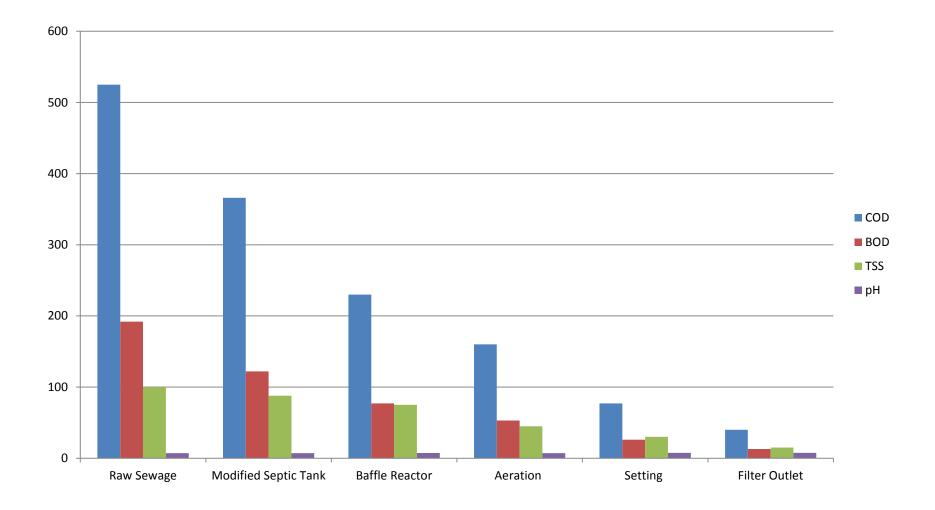


## **SOLAR PANEL**



Generating 1.5 HP has three mode of operation

- 1. From Direct solar.
- 2. From UPS.
- 3. From household electricity supply.

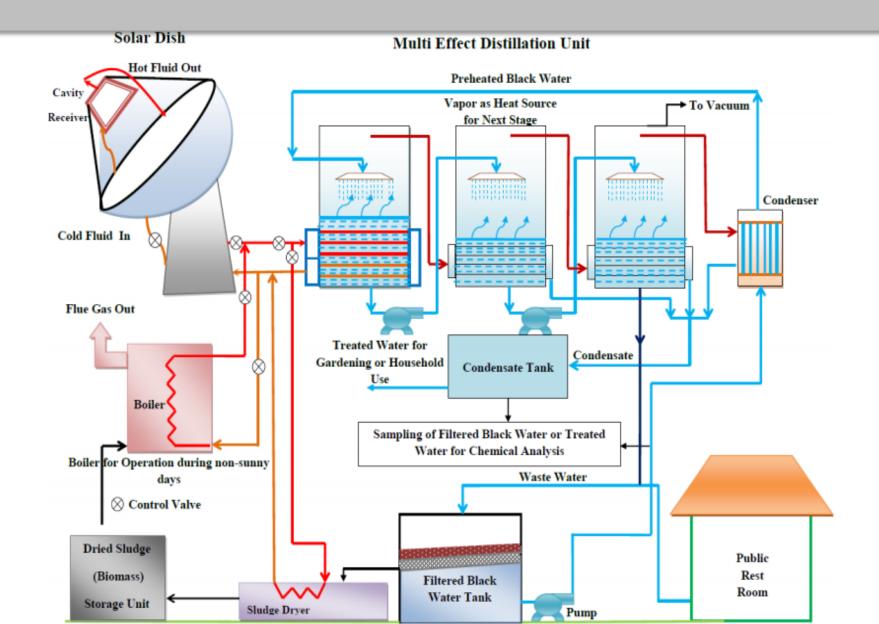

# **REACTORS IN PILOT PLANT**



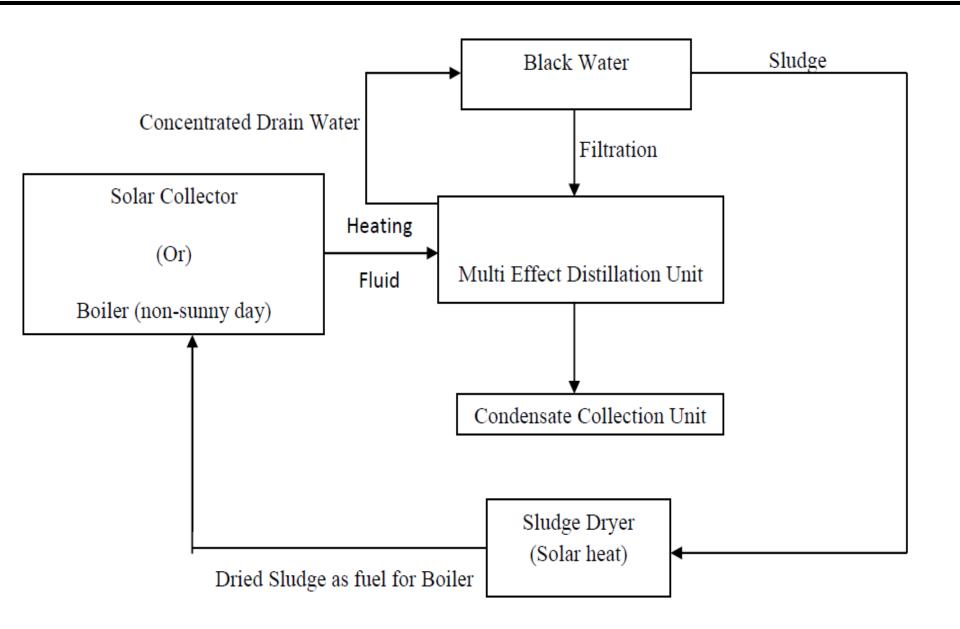
- 1. Modified septic tank
- 2. Anaerobic Baffle reactor
- 3. Aeration tank

- 4. Settling tank
- 5. Sand filtration tank
- 6. Holding tank

# Performance of the system




#### Water Quality Photos




## Design and Development of Solar Thermal Energy System for Domestic Sewage (Black Water) Treatment

#### **Solar Thermal Energy Unit for Sewage Treatment**



# **FLOW DIAGRAM**



# LAB SCALE ELECTRICAL DRYER UNIT FOR FAECES & URINE

# **ELECTRICAL DRIER** LOAD DESIGN OF SOLAR THERMAL ENERGY SYSTEM FOR BLACK NATER TREATMENT -ELECTRICAL DRYER -DR. LIGY PHILIP

# ELECTRICAL DISTILLATION UNIT

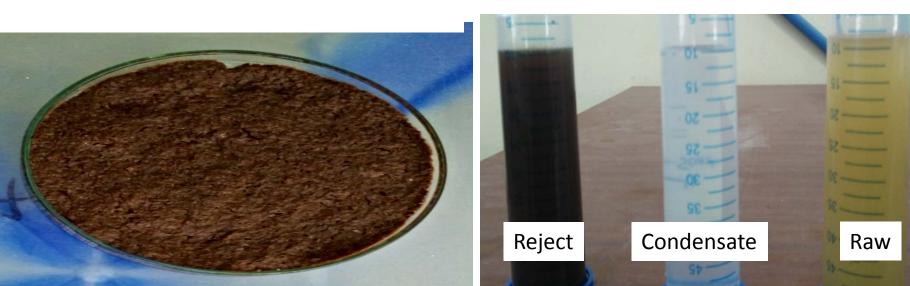


## **Elemental analysis**

| TESTS                 | С%    | H%    | N%   | <b>S%</b> |
|-----------------------|-------|-------|------|-----------|
| Synthetic faeces with | 39.62 | 5.944 | 4.49 | 0.305     |
| E.Coli                |       |       |      |           |
| Synthetic faeces      | 41.70 | 6.336 | 4.24 | 0.284     |
| without E.Coli        |       |       |      |           |

## **Plate count test**

|                          | Before            | After             |
|--------------------------|-------------------|-------------------|
|                          | drying(CFU/100mL) | drying(CFU/100mL) |
| Synthetic faeces with    | 4*10^5            | 0                 |
| E.Coli                   |                   |                   |
| Synthetic faeces without | -                 |                   |
| E.Coli                   |                   |                   |


# Synthetic Faeces made artificially Synthetic Urine made artificially in lab in lab



**Synthetic Faeces After Drying** 



**Synthetic Urine After Distillation** 



# Pilot scale solar thermal black water system includes:

- Automated separator cum conveyor systemwhich separates solid and liquid directly from toilet
- Solar Inclined still-for treating liquid waste(urine)
- Solar dryer- for treating solid waste(Faeces)
- Data logger- for continuous monitoring of temperature of the system
- Pyranometer-To measure the solar radiation

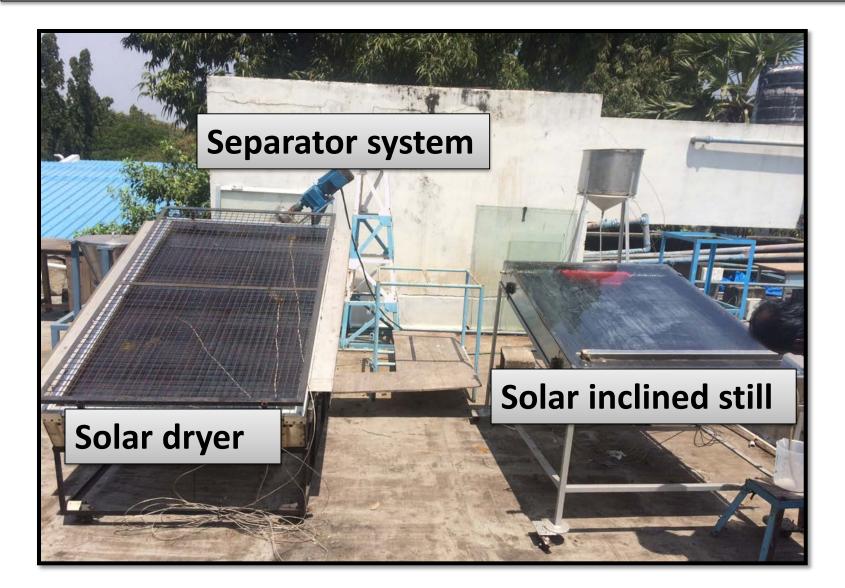
# **Photographs of Individual Treatment Units**



#### Separator system

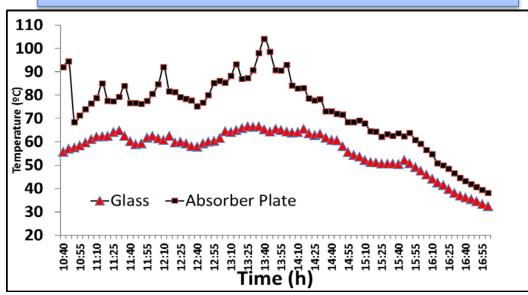


**Solar Dryer** 

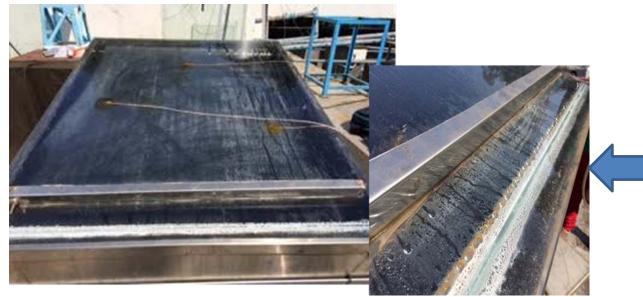



#### System with Data Logger



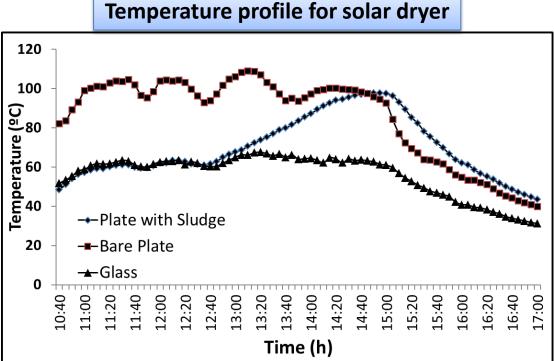

#### **Solar Inclined Still**

# **Integrated Pilot Scale System**




# **Experiments on Inclined solar still**

#### Temperature profile for solar inclined still




Maximum plate temperature-105°C Maximum glass temperature -65 °C Ambient temperature -30°C Maximum solar radiation 920W/m2



Solar Inclined Still during Condensation

# **Experiments on Solar Dryer**



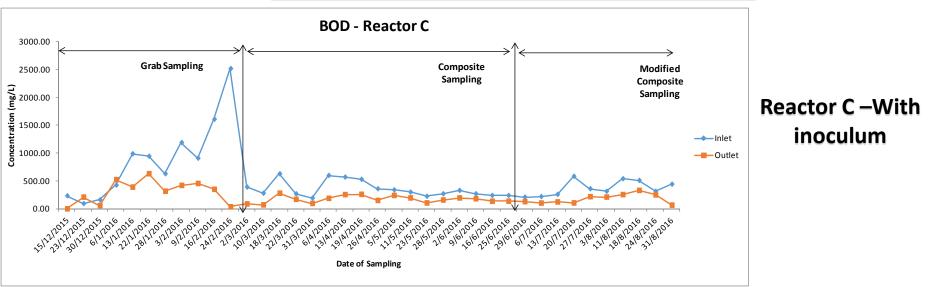
Maximum temperature for Plate with sludge 97.8°C Bare plate 109°C Glass-67°C

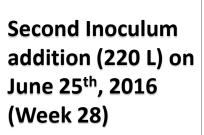


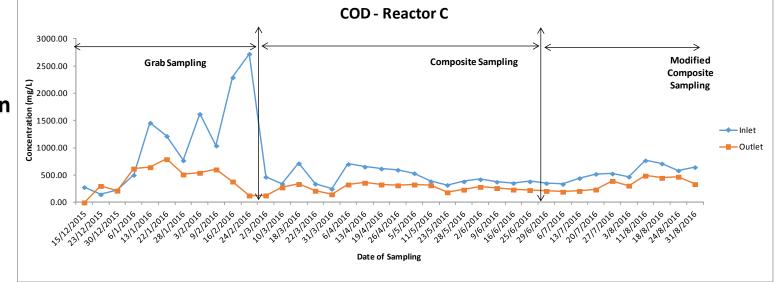
Solar Dryer loaded with synthetic faeces

# **Quality of dryed Faeces**

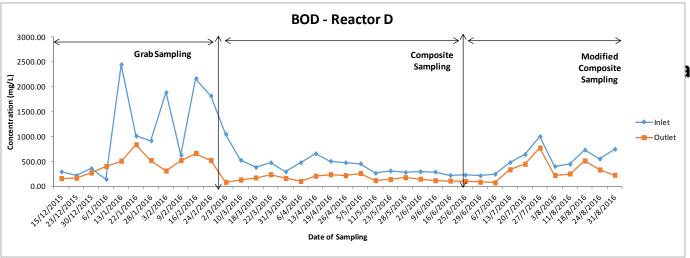
| Parameters                        |                   |              |
|-----------------------------------|-------------------|--------------|
| Moisture content (%)              | 90.2%             |              |
| Bacterial content<br>(CFU/100 mL) | Initial<br>5*10^6 | Final<br>Nil |





#### Synthetic faeces before drying



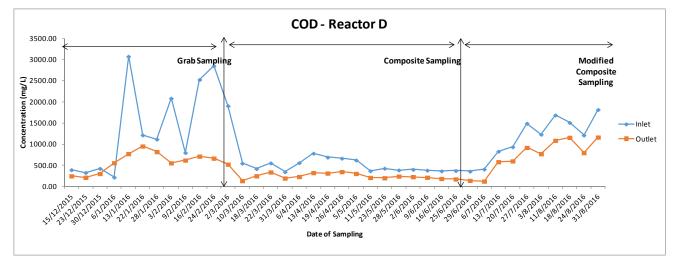

Synthetic faeces after drying


## **BOD & COD values of Reactor C**

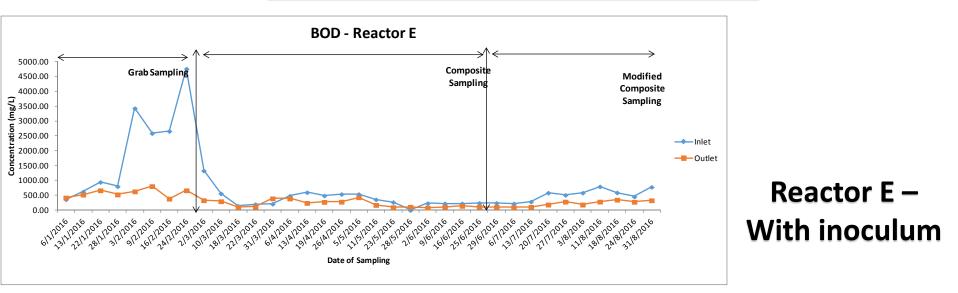


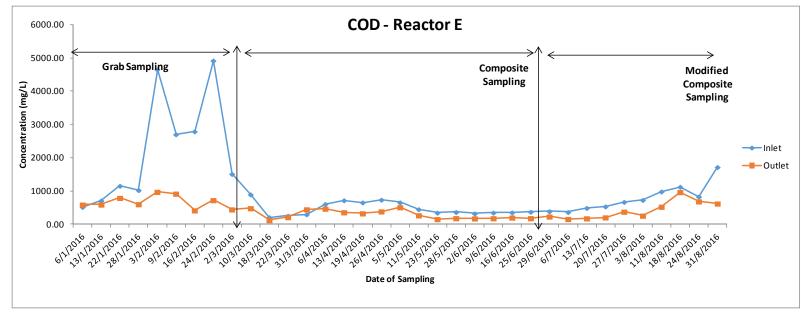




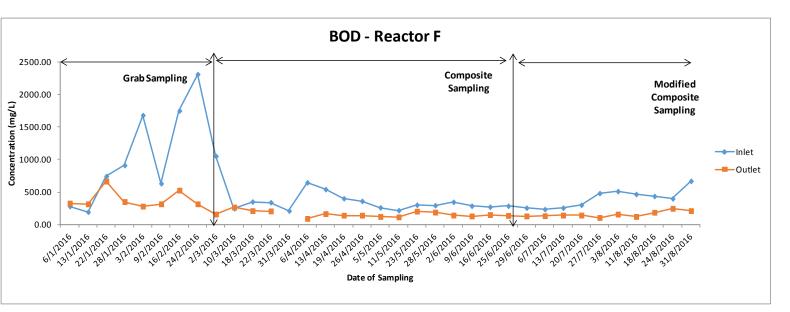

## **BOD & COD values of Reactor D**

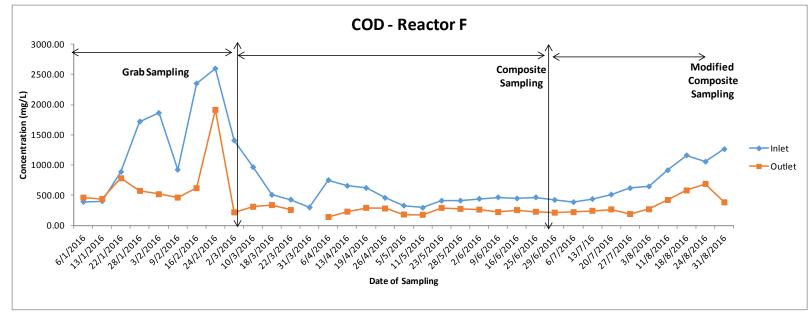



#### actor D – With Inoculum

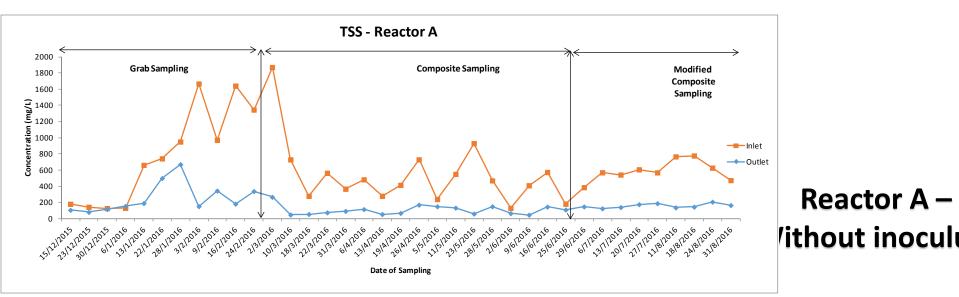

Everyday addition of chemicals (2x) from June 25<sup>th</sup> 2016 (Week 28)

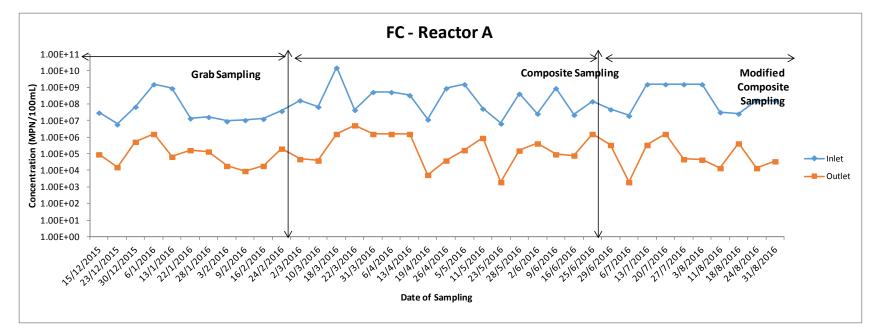
200 mL of Soap solution 200 mL Phenyl solution



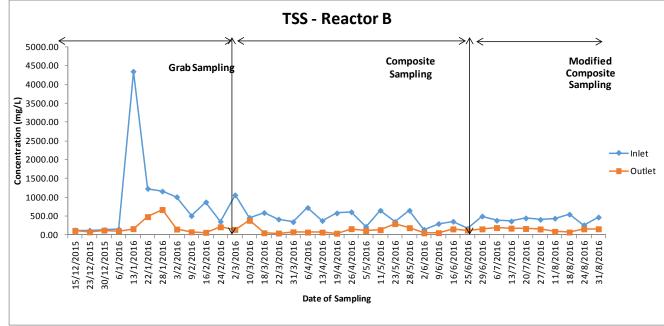


### **BOD & COD values of Reactor E**

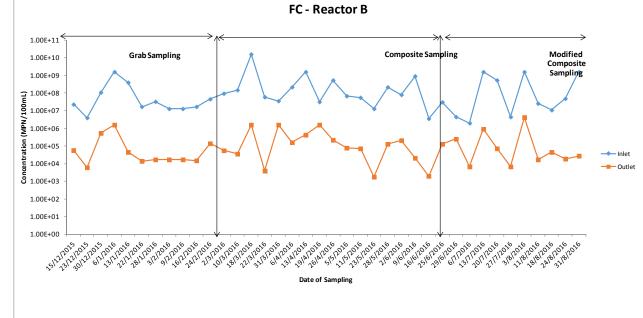






#### **BOD & COD values of Reactor F**

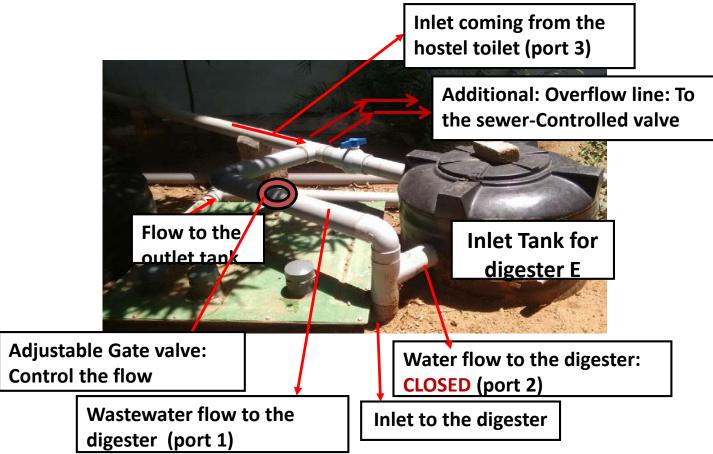






## **TSS & FC values of Reactor A**



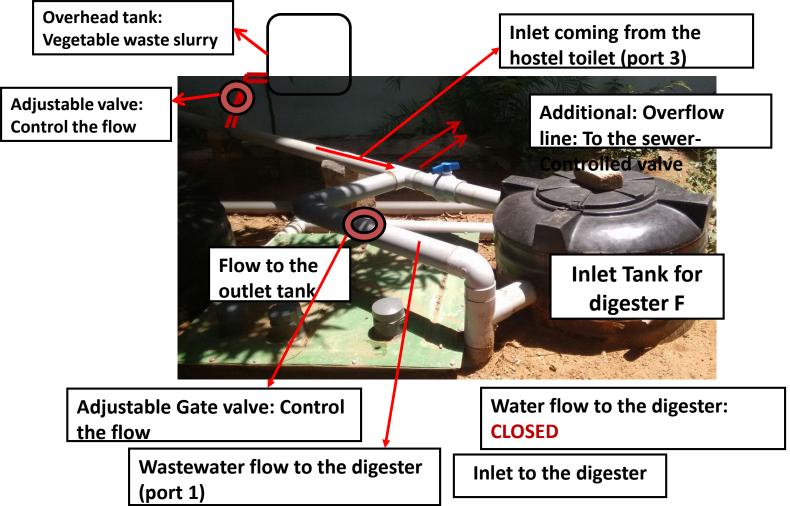



#### **TSS & FC values of Reactor B**





83


#### **Reactor E-Modified Plan: Inlet Tank & Digester setup**



>Flow to the digester will be controlled from the through gate valve shown according to the HRT

- >Reactor operation will be completely in continuous mode
- Sampling frequency will be according to the fixed HRT
- > Each HRT will be maintained for a period till pseudo steady state will be achieved
- Continued for a period of next 6 months

### **Reactor F-Modified Plan: Inlet Tank & Digester setup**



- •Need to maintain the flow rate and influent COD
- Influent COD maintained through: Vegetable waste in a slurry form mixed to influent using overhead tank
- Flow rate will change according to the HRT: OLR will change
- Each OLR can be maintained till pseudo steady state which will be continued for a period of next 6 months

# **FUTURE WORK – Fieldunits**

#### **Old Sites** Performance evaluation of DRDO toilets with anaerobic biodigesters Tirumalai Nagar park, Perungudi in TN /AP / Telangana/ Rajiv Nagar park, Perungudi 12 units **Karnataka** Kappalore community toilet block K.Paramathy, community toilet at MAK company premises Community toilet at old age home, Monitoring of Field units (Composite Sampling – 24h) Ongole Common toilet at construction site, Bellandhur Old sites - 6 New sites - 6 **New Sites** Raj classic Foods, Hyderabad Questionnaire Mantri Developers Pvt Ltd., Nagawara G-Block, Western side of the Shapoorii Pallonii Evaluation of the socio - economic and institutional Construction site, Panorama Brigade Site Office block, Shapoorji Pallonji Construction condition on the selected existing onsite biodigesters site, Panorama Brigade

Mandal Parishad Primary School, Talamanchipatnam village

Mandal Praja Parishad School, Chinnakomerla village