

Approaches towards mitigating methane from India's wastewater system

Center For Water and Sanitation, CRDF, CEPT University

Approaches for mitigating methane from India's wastewater systems

Key aspects of the project

a methane capture unit.

recovery product

Understanding the feasibility of installation of 02 Backward and forwards linkages of resource **Generating evidences**

Mitigating methane emission from wastewater systems

Quantification and

identification of methane mitigation potential from

wastewater for cities of

Maharashtra

Dissemination and Capacity building support to govt. officials and scale up

03

- On field methane emissions estimation
- Localized emission factor for Indian cities.
- Methane capture potential estimates/feasibility for sanitation technologies.
- Feasible business models and preliminary market assessment

- Resource material preparation for dissemination of findings
- Capacity building workshops and dissemination of learning to state and national level

for approaches to

sanitation systems

mitigate methane from

Renewable energy and Improving sanitation condition on National and International Agenda

National and International agenda focus on renewables and improving WASH services to tackle climate change

International agenda

- Various international program focus on using methane as a resource and using as source for clean energy. Global Methane Pledge focus on reducing methane emission by at least 30 % from level in 2020 till 2030.
- SDG 6 highlighting the access to clean water and sanitation with ensuring availability and sustainable management of water and sanitation for all. SDG 7 highlighting the access to affordable, reliable, sustainable and modern energy for all.

National agenda

- SBM 2.0 and AMRUT 2.0 focus on improving overall sanitation condition in India across the urban areas with focus on circularity
- National level programs like SATAT and GobarDHAN focus on making clean energy from waste.

Initiative aligning with the national agenda of NDCs and policies

Various national level programs focus on non fossil fuel-based energy

Swachh Bharat Mission SBM 2.0 (Phase 2, 2020-21) targets ODF-plus, waste management, biomethanation, and mechanized desludging with urban-rural treatment integration.

2014

Gobardhan Scheme Part of the "Waste to Wealth" initiative, with financial and technical support up to ₹50 lakhs per district

2018

Draft National Resource Efficiency Policy focus on reducing primary

resource consumption, creating higher value with less material, and minimizing waste

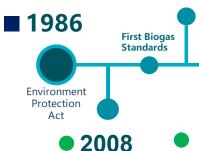
2019

Biogas Programme (MNRE)

Provides Central Financial Assistance (CFA) for setting up biogas plants

2021-26

Fertilizer control order for inclusion


Biogas projects under the priority

of fermented organic mater

Draft Liquid Waste Management Rules

Sets reuse targets for bulk water consumers: 20% by 2027-28, 50% by 2030-31. Guides sewage sludge management with strict monitoring for safe agriculture and biomethanation potential.

2024

National Urban

Sanitation Policy

Included used water

component and focus on

3 R concept

Solid waste

2015-17

AMRUT & National Policy on FSSM Includes sludge management in urban sanitation, with FSSM adopted in 2017

Both

First revisions in biogas

standards

2018

Agriculture & Livestock

SATAT initiative Encourages establishing CBG plants, ensuring market linkage for biofuel in automotive fuels.

National policy

for biofuels

2021-22 ■

Waste to Energy Programme It focuses on energy recovery from sewage sludge through incineration and anaerobic acid on a dry matter basis.

sector

Swachh Bharat Mission (2.0) Included usedwater component and focus on 3 R concept

2022 ■

The Energy Conservation (Amendment) Bill. 2022

Biogas injected into

Natural gas grid

Energy efficiency and conservation. mandating the use of non-fossil sources by designated consumers, and enabling carbon credit trading

> DST have also floated proposal for methane mitigation and monitoring

There is an opportunity to tap the potential from sanitation and usedwater services

Wastewater

Quantification and identification of methane mitigation potentials across sanitation service chain

Quantify methane across the sanitation sector

- On-field emission quantification
- Developing emission factors

Landscape assessment of current practices in the sanitation sector

- Mapping best practices and current situation.
- Understanding technical, financial, and operational models of existing STPs

- Understanding methane potential for different technologies
- Exploring Methane emissions into resource

Assessment of current practices and methane quantification across the sanitation service chain

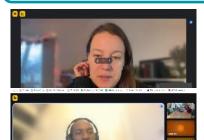
Assessing Market & Potential Model

- Understanding market potential for recovered resource usage.
- Market provider for STPs with methane recovery unit.
- Exploring viable model

Overall approach for conducting quantification of methane across sanitation service chain

Desk review

Field visits to build inventory


Discussion with domain experts

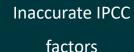
Finalisation of methodology and on-field testing

Literature review of existing studies related to GHG emissions for sanitation value chain.

Field visits and surveys were carried out in four cities-Ichalkaranji, Satara, Wai and PCMC, to identify septic tanks, maintenance holes, STPs, and discuss with experts and government stakeholders

Discussion with academic professionals and sector professionals having expertise and knowledge related to emissions in sanitation sector

Finalisation of methodology based on discussions with experts and implementing the quantification activity across the sanitation chain



In-depth literature review was conducted to understanding the linkages of methane across sanitation service chain

• Field data shows actual CH₄ & N₂O emissions are varying compared to IPCC defaults1.

Containment

Emissions

•Septic tanks and pits are one of the sources of methane¹.

Local climatic, demographic factor impact

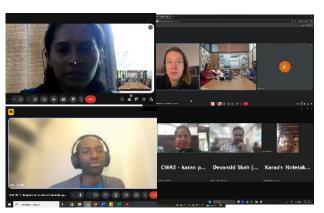
• Rainfall, temperature, and use patterns influence the methane concentration and performance of the onsite containment system¹.

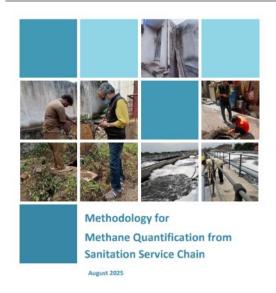
•The emissions from the STPs vary based on the treatment technologies².

Call for More Data

- More field monitoring and a local-level database are needed for decision making³.
- Field monitoring across sanitation value chain will provide more clarity on factors affecting emissions and building solutions to use it as a resource.

Based on literature and discussion with sector experts, a methodology is developed for quantification of methane across sanitation service chain


Literature review and learning from SWM sector and others



Discussion with experts

- Academic institutions
- Sector partners and researchers
- Professionals working in remote sensing domain

Methodology Note

Identified various sensors, gas analyser, and laboratories available in the market for quantifying methane

Handholding gas analyzers

- Handheld sensor with electro-chemical methane sensor providing 2 additional gas measurements:
 - CH₄ (methane), O₂ oxygen), CO (Carbon monoxide).

Fixed ambient air quality sensors

- Multiple air quality monitoring (P1): 4 Parameters CH₄, NO, NO₂, Wind speed and wind direction. 300-meter radius monitoring; with active air suction and gas detection
- Single parameter monitoring (P2): CH₄ 150-meter radius monitoring; with active air suction and gas detection

Lab-based Process

- Identifying laboratories that carry out gas chromatography tests as well as effluent tests
- Biochemical methanation Potential, COD, VSS and more

Flux Chamber

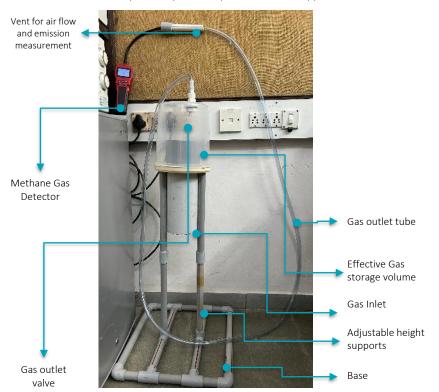
· Flux chambers not available in market

• Exploring the customizable solutions and fabrication of the flux chamber with vacuum suction pump

Low-cost sensors

Testing low-cost methane sensors by validating readings with gas analyzers

Exploring the sensor-based drones for mapping and quantification of emissions through remote sensing- work in progress

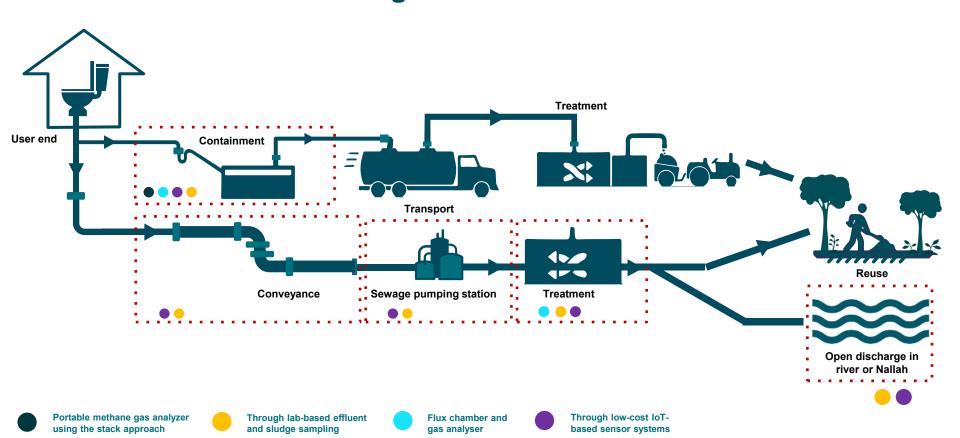


In-house flux chamber development

Detachable setup is handy for transport and on field applications

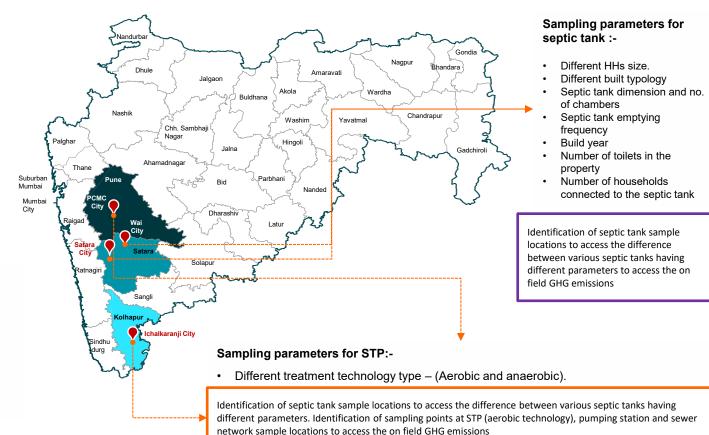
Glimpse during fabrication

Pilot testing



Exploring quantification through gas analyser, flux chambers, low-cost sensors and lab-based testing

Cities selected for on field emission quantification


Selection of cities based on:

- Sanitation system coverage

 (onsite, offsite, combine system)
- Type of sanitation treatment facilities – (FSTPs, STP - (anaerobic or aerobic)
- Different operational and management models and conditions of sanitation services provision
- Different climatic conditions

Sampling parameters for Sewage pumping station:-

- Surrounding Land Use
- · Chocking frequency and sewer flow
- Elevation (in low-lying areas and with higher slopes)
- · Pumping based or gravity based
- Sewer system age
- Maintenance frequency

Inventory of Septic tank survey, maintenance hole selection and STP selection on field

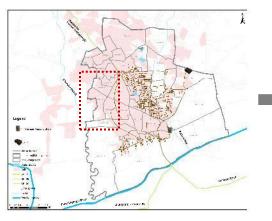
1. Identified area with septic tank in a selected cities

2. Prepared a household survey form

3. Conducted a household survey

4. Selection of Household for methane measurement based on survey results

5. Profiling of sewerage pumping station and STPs


6. Taking permission of city officials for measurements at SPS and STPs

7. Started measurements at identified Households, SPS and STPs

8. Analysis of measurement results

Identified area with septic tank in a selected cities

Permission letter from city officials to conduct study

dhwani.shahysoept.ac.in Switch account	@
The name, email, and photo associated with your Google account will be recorupload files and submit this form	ded when you
Containment Details (Septic tank details)	
Type of toilet	
○ Indian Tollet	
○ Western Toller	
Toriet Connected to	
○ Septic tank	
○ Single Pit	
○ Twin Pit	
Sewer Network	
Open Discharge	

Prepared a household survey form

Initiated on field emission quantification at Ichalkaranji and Pimpri Chinchwad Municipal Corporation

On field methane concentration

Septic tanks and other containments

Different impacting factors –Climatic conditions, water usage, septic tank condition, sludge condition dried or fresh sludge

Sewage Treatment plant

Readings are taken across different components of STPs covering different technologies

Exploring pumping stations and sewer network

Setting up the regime and sampling methodology for pumping station and maintenance hole

Next steps:

- Continue the activity of quantification of methane emissions for understanding the influence of seasonal variation
- Derive the local emissions factor for cities

Assessing and identifying methane as a resource across sanitation service chain

Quantify methane across the sanitation sector

- On-field emission quantification
- Developing emission factors

Landscape assessment of current practices in the sanitation sector

- Mapping best practices and current situation.
- Understanding technical, financial, and operational models of existing STPs

Assessing methane as a resource

Understanding methane potential for

different technologies and across sanitation value chain

Exploring Methane emissions into resource

Assessment of current practices and methane quantification across the sanitation service chain

Assessing Market & Potential Model

- Understanding market potential for recovered resource usage.
- Market provider for STPs with methane recovery unit.
- Exploring viable model

Exploring efforts to mitigate methane emissions across sanitation service chain

Exploring scope for strengthening and refurbishment of existing infrastructure

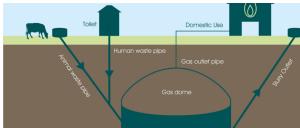
the sanitation sector

.

Explore the interlinkages between the sanitation, agriculture, and SWM sectors to enhance the methane capture potential

Exploring opportunities to enhance the existing O&M models.

Capacity building and training for operation and maintenance of infrastructure.


Assessing and identifying methane as a resource across sanitation service chain

Resource to Recovery options - At Septic tank (Community level and Household)

Regular septic tank emptying at 3 - 5 vears

Reducing the COD and BOD load leading to reduction of methane generation and improving efficiency

Capturing the household level methane gas generated from pit and using it as cooking fuel

Exploring the septic tank level methane capture unit with micro gas scrubber.

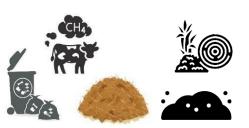
Resource to Recovery options - At STP

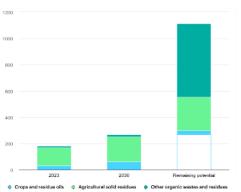
Improving the working efficiency of pretreatment and primary treatment with reducing the mixing of industrial effluent in the domestic used water

Enhancing the sludge management process and incorporating the digestor unit for capturing the methane from sludge.

Energy

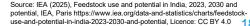
Generation

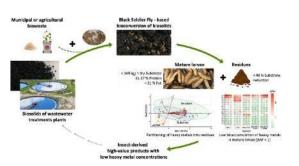


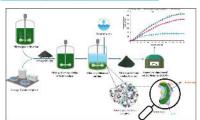


Compost Construction Generation Material

Resource to Recovery options -Combined with allied sector


Integrating the different feedstock from different allied sector to enhance the energy generation and gas generation potential

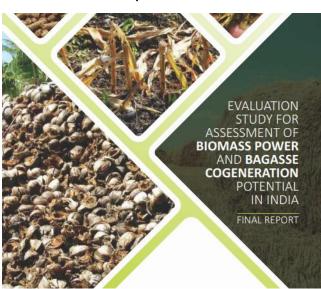



Literature and discussion with partners for enhancing methane as resource

Exploring the bacteria and algae consuming the methane as food for survival

Using Solider flies and fighter flies to reduce the methane emissions from wastewater systems

Source: Bohm, K., Hatley, G. A., Robinson, B. H., & Gutiérrez-Ginés, M. J. (2022). Black Soldier Fly-based bioconversion of biosolids creates high-value products with low heavy metal concentrations. Resources Conservation and Recycling, 180, 106149. https://doi.org/10.1016/j.resconrec.2021.106149


Using algal bloom for enhancing the methane production from the wastewater system.

Enhancing the methane potential generation and capture – through engagement with allied sector

Engagement and discussion with sector partners – GERMI and TERI

Source: Tiwari, H., & Prajapati, S. K. (2025). Insights on the use of activated sewage sludge for microalgae harvesting and improved biogas production. ACS Sustainable Resource Management, 2(6), 985–992. https://doi.org/10.1021/acssusresmgt.5c00014

Image Source: Cover page of report Evaluation Study For Assessment Of Biomass Power And Bagasse Cogeneration Potential In India prepared by ASCI published by MNRE, India; 2021

Collaborative research with different institutions working on methane reduction, feedstock

Landscape assessment of current practices in the sanitation sector

Quantify methane across the sanitation sector

- On-field emission quantification
- Developing emission factors

Landscape assessment of current practices in the sanitation sector

- Mapping best practices and current situation.
- Understanding technical, financial, and operational models of existing STPs

Assessing methane as a resource

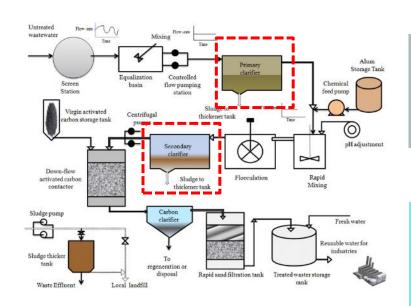
Understanding methane potential for different technologies

Exploring Methane emissions into

Assessment of current practices and methane quantification across the sanitation service chain

Assessing Market & Potential Model

- Understanding market potential for recovered resource usage.
- Market provider for STPs with methane recovery unit.
- Exploring viable model



Understanding treatment processes to identify affecting factors behind methane generation at STPs is essential

1469 STPs are installed in India out of only ~11 STPs captures methane

Major technologies contribution					
Aerobic treatment	Anaerobic treatment				
Activated Sludge Process	Upflow Anaerobic Sludge Blanket				
Moving Bed Biofilm Reactor	Waste Stabilization Pond				
Oxidation Pond	MBR and FMBR				
Aerated Lagoon	Electro Coagulation				
Sequential Batch Reactor					

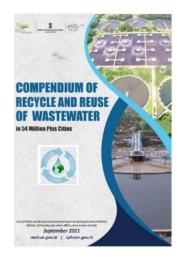
Treatment technology

Tapping wastewater and sludge components of the treatment process and its backward and forward linkages

Understand the methane capture potential for the wastewater sector and understand possible business models

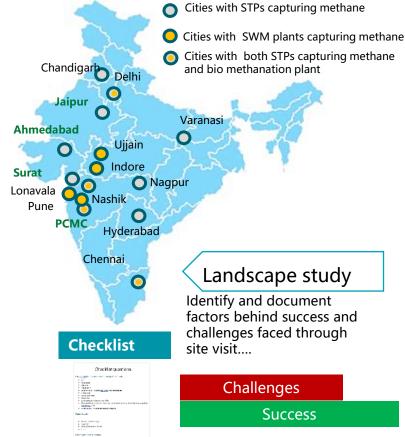
Our assessment highlights the need to understand influencing factors such as sludge quality, plant efficiency, reuse market, and governance.

Source: 1. National Inventory of Sewage Treatment Plants June 2020, https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNiE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg==



Landscape assessment and review of existing practices helps to understand the current scenario in India

Local governments have adopted approaches to capture methane from sewage treatment plants (STPs) and Solid waste management(SWM) plants and convert it into a resource



Literature review

Secondary research

Power Generation	Plant Capacity	Place	Client
800 KWe	122 MLD STP	Anjana	Municipal Corporation, Surat
1000 KWe	100 MLD STP	Hebbal	Bangalore Water Supply & Sewerage B
625 KWe	60 MLD STP	Koyambedu	Chennai Water Supply & Sewerage Boa
625 KWe	84 MLD STP	Variav	Municipal Corporation, Surat
750 KWe	66 MLD STP	Dindoli	Municipal Corporation, Surat
635 KWe	100 MLD STP	Bamroli	Municipal Corporation, Surat
250 KWe	200 MLD STP	Bhesan	Municipal Corporation, Surat

The study captures various aspects

1. STP technology and methane capture type

- Types of STP technologies (e.g., anaerobic digesters, advanced AD, biogas upgrading)
- Methane capture methods (flaring, direct use, purification, adsorption technologies)

2. Operational and Contractual Arrangements

- Role and involvement of private operators and stakeholders
- Contract models—value, duration, and risk-sharing
- Funding mechanisms and financing structures

3. Business and Financial Models

- Payment structures and revenue models (e.g., pay-per-unit methane, carbon credits)
- Risk mitigation and allocation (technical, financial, operational)

4. Monitoring and Performance Evaluation

- Types of STP technologies (e.g., anaerobic digesters, advanced AD, biogas upgrading)
- Methane capture methods (flaring, direct use, purification, adsorption technologies)

Visited cities STPs with Aerobic treatment technology

Surat

- Population (census 2011) -9.8 lakhs
- Projected population (2023) 82.32 lakhs
- Water Supply 1611.3 MLD
- Total Sewage generation -1062.5 MLD
- Sewerage coverage -99.7 %
- Utilisation 100%
- Population (census 2011) -17.29 lakhs
- Projected population (2023) 36 lakhs
- Water Supply 615 MLD
- Total Sewage generation -492 MLD
- Sewerage coverage -96 %

- Population (census 2011) 30.46 lakhs Projected population (2023) - 42.07 lakhs
 - Water Supply 495 MLD
 - Total Sewage generation 400 MLD
 - Sewerage coverage 70 %
 - Delwas STP receives about 50 % of the total connected sewage load

Ahmedabad

- Population (census 2011) 55 lakhs
- Projected population (2023) -74 lakhs
- Water Supply 1750 MLD
- Total Sewage generation 1363 MLD
- Sewerage coverage 97 %
- Pirana receives 155 MLD load

Majority of STPs use methane as a resource to generate power

Aspect	Surat (Aanjana STP)	Jaipur (Delawas STP)	Ahmedabad (Pirana STP)	PCMC (Akurdi STP)	
Use of methane as a resource	Electricity generation	Electricity generation For CNG generation- sell it to nearby private buyer	Electricity generation	Electricity generation	
Electricity generated and taken from grid	40% from biogas, rest from grid (paid by ULB), Need to pay penalty if used more	17,000 unit/day, 17,415 Unit/day from grid (paid by ULB) -Need to pay penalty if used more	60% from biogas, rest from grid (paid by ULB)	60% from biogas, rest from grid (paid by ULB)	
Reuse / Resource Recovery	Sometimes to water the nearby gardens and plants of road dividers, rest disposed to nearby Khadi	Treated water to housing colony; sludge reused	Treated water sold to industry @ ₹10/MLD	Treated water reused internally (not sold)	
Benefits	 Significant energy cost savings through in-house power generation Promotes resource recovery and partial usage of non fossil fuel-based energy in operations Penalty clauses helps ULB to track the performance of private 				

Next steps:

- Conduct visits to other case studies
- Understanding current engagement models towards operation and resource recovery Analysing its success, gaps and challenges

Way forward

Quantify methane across the sanitation sector

Continuation of on field methane quantification activity and initiation of lab testing

Validating the estimations with existing theoretical estimates

Derive local emissions factor for cities

Assessing and identifying methane as a resource across sanitation service chain

Identify methane capture/ mitigating options at septic tanks/ pumping stations/ STP

Enhancing the potential of methane as resource

Landscape assessment of current practices in the sanitation sector

Understanding other practices and exploring the opportunities for improvement

Developing different pathway solutions for sanitation sector to move towards sustainability

Assessing Market & Potential Business Model

Understanding the private service providers perspective

Exploring viable model and creating enabling environment for backward and forward linkages

Developing resource material for decision making

