

3rd Semester Infrastructure Planning | MURP DATE: 08-11-17

Under Guidance of MEERA MEHTA MONA IYER MAITREE PATEL

Aim To prepare a water sanitation plan envisioning 2035 for Ahmedabad **SOLID WASTE** WASTEWATER WATER HERITAGE Π To revive the ancient water **Optimum utilisation of** Using waste water and sludge **Delivering equitable sanitation** practices and sensitize resources and enhancing water as a resource with improved services sanitation in heritage supply system service level precincts of Ahmedabad FINANCE Ensure fund allocation and cost recovery mechanisms VISION Water sensitive and sanitized Ahmedabad Service • • Finance Resource

Methodology

SUSTAINABLE DEVELOPMENT GOALS (2015-2030)

SURFACE WATER

OPEN DEFECATION

Global Perspective on Water and Sanitation

				SECTOR	IS COVE	RED								
	City Plans	Water Supply	Waste water Management	Stormwater Management	Ground Water Recharge	Toilets	Water Recycling & Reuse	Solid Waste Management	Urban Poor	Heritage				
	PORTLAND													
1	Citywide systems plan										ভূ র	> 🥝 (\$	
2	Water Management & conservation										℅	() چ	\$	
3	Storm water management										×	୍ଦ୍ର ୁ ଦ୍ୱପ୍ର		(
4	Environmental Services system Plan										℅	୍ଦ୍ର ୁ ଦ୍ୱର୍	\$	
5	Portland Recycles Plan										℁	୍ଦ୍ର ୁ ଦ୍ୱପ୍ର		(
	VENICE										3/			
1	Water Supply Master Plan										76	Å		
2	Waste Water Master Plan										×	୍ଦ୍ର ୁ ନ୍ଦ୍ର	\$	
3	Reclaimed Water Master Plan										×	୍ଦ୍ର ୁ ଦ୍ରପ୍	٢	
4	Solid waste management plan										×			

Capacity Building

National Level Planning In India

Short listed Ministries for each Goal and Programs to assist them

Foundation of Ahmedabad Water works On the banks of Sabarmati **Construction of First Water Tank by** River, Manek Chowk, Bhadra city committee and municipal work 1890-1931 Fort, Muhurt pol. 1834 started for network layout First sewers laid, 1894 Pirana Sewage 1411 1847 Municipal work Farm built, using sewage for Beginning of infrastructure irrigation. Entire Old City is sewered. development Sewerage • City Committee •

Municipal Corporation

under the BPMC act. Expansion of water and sewer lines to the north and east. New water pumping station added

1950

In 1965 First Ahmedabad DP formed by AMC under Bombay Town Planning Act **Capital City** **GPCB Estd.** In 1976, GTPUDA in into

effect and formation of Development authority

1974

1960

Ahmedabad City Profile

Administrative boundary: AUDA(1866 sq. km) & AMC(466 sq. km)

> Administrative Setup in AMC: Zones: 06 & Wards: 48

Ahmedabad experiences predominantly dry climate which is of semi-arid nature. Average Rainfall - 750mm

CILMATE

Source: Census of India 2011, <u>http://www.ahmedabadonline.in/</u>India Meteorological Department (record high and low up to 2010, AUDA DP 2021

Governance-roles and responsibilities

South zone

New west zone

Central zone

AUDA

Administrative boundary – AUDA(1866 sq. km) & AMC(466 sq. km) Administrative Setup in AMC: Zones: 06 & Wards: 48

Governance-roles and responsibilities

— What is the Budget and the Budgeting Process?

<image/>	AMC Central Office	Municipal Commissioner		<image/>		
AMC asks Zonal Offices for Sectoral Project Details in the	Revised Budget Estimates of the current Financial year & BE for the upcoming year.	Modifications from MC are taken into consideration if any.	Final Report of the Draft Budget for the Upcoming year forwarded to the Standing Committee for	Finally, the budget estimates approved by the Standing committee are incorporated in the Budget book for the		
November	Abstract Report of Income and Expenditure estimates are presented		According to the act, it has to be done by the 10 th of December.	to the General Board and the final approval rests within them.		
	to the Municipal Commissioner		11 members Headed by MC	4 ward councillors x 48 wards = 192 members Headed by Mayor		

Water – Sanitation in Amdavad 2017

Source: Service level improvement plans - AMC(2017), PAS

Scope of work

Finance |

Water

- Supply
 - Network and its components •
- Resource
 - Ground water •
 - Storm water \bullet
- Waste collection and management •
- **Dumpsite closure** •
- Slums and services •
- **Community and Public Toilets** •

Solid waste management

Waste water management

Network- Centralised WWM • Decentralised WWM, •

Cost recovery, New financial mechanism

Reuse •

• Heritage precinct's surroundings • Heritage water structures

Heritage

What we ACHIEVE??

Improve network efficiency	Reduce Non-revenue water	Water metering
System Atomisation	Reduce ground water extraction	Ground water tariff
Improve Network efficiency	Storm water recharge	Waste water reuse
On- Site sanitation solutions	Recharge Ground Water	Cost Reduction - network efficien
Bin free city	Improve treatment efficiency and reuse	Income from waste treatment
Community and public toilet	Waste water reuse in DWATS	Waste management charge
Improving services in slums	Improve waste segregation	
Maintaining heritage surroundings	Improving treatment and recovery	
	Recharging the water structures	

Service Efficiency

Resource Optimisation

Financial Improvement

ICY

THANKYOU

Finance & Governance

Overall Budget

What is the Budget and the Budgeting Process?

<image/>	AMC Central Office	→ ₩unicipal Commissioner		<image/>		
AMC asks Zonal Offices for Sectoral Project Details in the	Revised Budget Estimates of the current Financial year & BE for the upcoming year.	Modifications from MC are taken into consideration if any.	Final Report of the Draft Budget for the Upcoming year forwarded to the Standing Committee for	Finally, the budget estimates approved by the Standing committee are incorporated in the Budget book for the coming year and is presented to the General Board and the final approval rests within them.		
month of November	Abstract Report of Income and Expenditure estimates are presented		the review. According to the act, it has to be done by the 10 th of December.			
	to the Municipal Commissioner		11 members Headed by MC	4 ward councillors x 48 wards = 192 members Headed by Mayor		

Source: Various Newspaper Articles

Source: AMC Budget 2011-12 to 2017-18

*All the values above are in **Rs. Crore**

Source: AMC Budget 2011-12 to 2017-18

*The above rates are calculated using CAGR method

FINANCE

Financial Analysis – Revenue Account

Source: AMC Budget 2011-12 to 2017-18

Financial Analysis – Revenue Account

Source: AMC Budget 2011-12 to 2017-18

Financial Analysis – Capital Account

Source: AMC Budget 2011-12 to 2017-18

Financial Analysis – Capital Account

Source: AMC Budget 2011-12 to 2017-18

FINANCE 34 / 10

Zone wise Capital Works Allocation (2011-17)

Source: AMC Budget 2011-12 to 2017-18

Zone wise Capital Works Allocation (2011-17)

Source: AMC Budget 2011-12 to 2017-18

37 / 10

Zone wise Capital Works Allocation (2011-17)

Source: AMC Budget 2011-12 to 2017-18

38 / 10
Zone wise Allocation (2017-18)

- **Ongoing Projects:**
- Water Distribution lines in various wards.
- 2. Drainage lines in various wards.
- **Upcoming Projects:**
- Water Distribution lines in remaining wards.
- Drainage lines in the 2. remaining wards.

Ongoing Projects:

- Storm water Drainage line in Vatva Ward.
- Water Distribution and 2. **Drainage lines in Vatva** Ward.

Source: AMC Budget 2011-12 to 2017-18

67 crore

Upcoming Projects:

- Water and Drainage works for slums and chawls.
- Improvement in Water and 2. Drainage lines in various wards.

37 crore

Upcoming Projects: 1. Rehabilitation of the Main **Trunk Line**

FINANCE

Ongoing Projects:

- Storm Water lines & Drainage lines in Jodhpur ward.
- 2. Water distribution lines from WDS to various societies in Thaltej Ward.
- 3. Drainage lines in Sarkhej Gamtal

Upcoming Projects:

- Improvement in Water Distribution lines in Thaltej, Gota, Vejalpur ward.
- 2. Drainage lines in the new TP scheme area of Ghatlodia ward

Ongoing Projects:

- Water Distribution lines in Bhaipura ward for slums & Chawls
- 2. New Water Distribution lines and Drainage lines in Vastral ward.

Total Capital Works Allocation **370** crore

40 / 10

ULB's flow of Funds

Where will the Rupee come from ?

Where will the Rupee Go ?

Loans

FINANCE

Water – Sensitive Ahmedabad

- Planning for the better future -

Under the guidance of Meera Mehta Mona Iyer Maitree Patel

3rd Semester

CEPT University DATE 10th November, 2017

— Conceptualization ————

			r		n	
Concept		IWRM	IUWM	WSUDP	WSP	Public
Scale of	Basin Scale	\checkmark				Health and
	City Scale		1	\checkmark	√	Engineering
Implementation	Zonal Scale			\checkmark		Concentrates on provision of water supply only
	Local Scale			\checkmark		
	Accessibility to water	\checkmark	\checkmark		\checkmark	
	Water Quantity		\checkmark	\checkmark	\checkmark	
Parameters	Water Quality		1	\checkmark	\checkmark	Ý
Considered in the Concept	Water Supply System		1	\checkmark	1	
	All Water Resources are Considered		1	 Image: A second s		Water Sensitive
	Flood Mitigation	\checkmark		\checkmark		Planning
	Waste Water Reuse		\checkmark	\checkmark	\checkmark	
	Regulations			\checkmark	\checkmark	Concentrates on both resource and supply perspective
					1	

WATER

Our Understanding

"Water sensitive planning is amalgamation of water resource management, and efficient water supply system"

<u>Water Resource Management</u> Urban Water Cycle Check on Water Pollution and Usage • Surface water sources (Lakes and rivers) • Ground water • Storm water Efficient Water Supply System

- Efficient Usage of current water withdrawal from source
- Treatment system
- Supply and distribution system
- Inefficiency in the system (Losses)

Demand & Supply Analysis

Trend analysis of Ground water usage

Ahmedabad has been supply surplus over the decades thereby increasing the need for efficient management of resources.

Demand & Supply Analysis – Present Scenario

WATER

Water Resources

Overview of Water Resources in Ahmedabad

WATER BALANCE OF AHMEDABAD

■ SQ ■ GWSQ ■ GWDQ ■ REVAP ■ ET

Total Water Supplied by AMC= 1080 MLD

Comparison w.r.t. Water Supplied by AMC

Water Precipitated : 1581.3 MLD+ 46.4%Water infiltrated as ground water: 335.63 MLD31.07%Water flowing as runoff: 639.314 MLD59.19%

Water losses in natural processes: 591.36 MLD

Over two decades there has been increase in the built up area of the city and simultaneously decades there has been decrease in infiltration capacity of the soil due to same.

Source: Arc GIS Analysis from USGS map data for December 2010 and 2017.

Existing Scenario – Ground water

Entire Ahmedabad district falls under over exploited state for ground water for year 2014

The pre and post monsoon levels show that there has been decrease in water levels from pre monsoon period to post monsoon period for Ahmedabad district.

Source : SLIP 2016-17, Water sensitive group Water sanitation studio 2017-18

WATER

Methodology for Ground Water Analysis

Overview of Ground Water Resources in Ahmedabad DEPTH OF GROUND WATER FROM THE SURFACE GROUND WATER PUMPING ANALYSIS

- Ahmedabad has multilayered Quaternary alluvial aquifer system having varying thickness of 300-400m. Hence, Ahmedabad city has high potential to store ground water in unconfined as well as confined aquifer but has a low rate of infiltration.
- The tentative unconfined aquifer depth of Ahmedabad is 150m BGL.

- High Ground water table with low extraction
- Highly dependent on AMC water supply
- Because of AMC bore wells .and newly constructed apartments, some parts of this zone shows more extraction and lower ground water table
- Aquifer analysis also justifies the water levels as well as availability of GW at lower depth from ground

Source: Primary Survey, Water and Sanitation Studio 2017 (100 Samples) and Impact of Sabarmati Riverfront on Ground Water by Shipra Patel 2016 (25 Samples)

WATER

- Continuous Aquifer available at depth of 80m
- There are certain regions where GW level is 100 120m which is majorly Industrial area (Naroda)
- These Industrial clusters have higher extraction rate also
- From stake holder consultation we came to know about the quality issues around Naroda GIDC at the shallow level due to re flushing of chemicals

•

- In spite of having more open space the GW level is low
- If we see Aquifer actual GW is available at 40m but due to high extraction by industries the water is available at 120m depth
- Quality issues around Vatva Industrial clusters at shallow level due to re flushing of chemicals

.

- High Ground water table with low extraction
- Aquifer analysis justifies the water levels as well as availability of GW at lower depth from ground
- Quality of water is seen to be affected by presence of some dye industries indulged in flushing of waste water in the aquifer.

- Water is available at average depth of 70m and extraction is also low
- Dependency of private water suppliers is more in these areas

- When we see the Aquifer water is available at 20m due to more open space
- Due to high extraction the water is available at 100 120m
- High extraction is mainly due to the private water suppliers located more in the New West zone

Users and Ground Water

MAJOR USERS OF GROUND WATER

PRIVATE WATER MARKET

Source: Primary Survey, Water and Sanitation Studio 2017

Overview of Ground Water Resources in Ahmedabad

QUALITY OF GROUND WATER BASED ON OBSERVATION WELLS

1.Rakhiyal 2.Vasna(Barrage) 3.Scout Bhavan(Paldi) 4.Vatva-1 5.Vatva-2 6.Vatva-3 7.Airport 8.Isanpur 9.Rakhiyal – 1 10.Vasana

Parameters	Pre Monsoon	Permissible Limit
TDS (ppm)	998	2000
рН	6.7-7.0	6.5-8.5
Magnesium (mg/L)	16.2	100
Chloride (mg/L)	286	1000
Calcium (mg/L)	10	200

Inference

- TDS is within permissible limits(2000 ppm) however people find it difficulty for portability so they prefer usage of RO and filters in individual household level
- pH shows basic nature of GW especially in industrial areas of vatva and naroda due to flushing of chemicals into Borewells

Source: GWRDC , Vasna barrage, Ahmedabad, 2017.

Regulatory Framework

Central

- Central Ground Water Authority
- Central Ground Water Board
- Central Pollution Control Board
- National Water Resources Council
- National Water Board
- Ministry of Water Resources
- Ministry of Urban development
- Ministry of Agriculture
- Ministry of Environment and Forests

State

- Irrigation Department
- Tube well Corporation
- State Pollution Control Board

Local

Panchayat and Municipalities

Others

- NGO
- Water Associations

lssues

- There are no provisions for restricting the quantum of water extracted from the existing ground water structures.
- Administrative implications of the regulatory system have not been either understood or
- properly followed.
- Adequate funds as well as manpower having dedicated responsibility and proper accountability exclusively for regulation and control
- Massive awareness
 programme is, therefore,
 required for the successful
 implementation
- No punitive action (including imposition of fine) has been taken anywhere even though the number of over-exploited, critical and semi-critical units are

Source: Institutional Framework for Regulating Use, Institute for Resource Management and Economic Development of Ground Water in India

Initiatives for Managing Ground Water Sources

INITIATIVES OF AMC

- Has a mandate in GDCR for provision of recharge wells and percolation pits in any new constructions for obtaining built use permission.
- AMC has its own 10 recharge wells of diffang and percolation well type.
- Recharge wells installed in some of the AMC and AUDA parks

ISSUES

- GDCR has provision of recharge shafts in any new constructions but these are not monitored and are mostly filled up after permissions.
- The bores are not technically designed, unmonitored and hence most of them are in non-working condition.

Source: Primary Survey, Water and Sanitation Studio 2017 and Impact of Sabarmati Riverfront on Ground Water by Shipra Patel 2016

- Site Selection Parameters

Zone	GW levels	GW Quality	GW extraction	
West	3	3	3	
New West	4	4	4	
East	4	3	5	
North	3	4	5	
South	2	4	3	
Central	3	2	3	

Note: Lower the value better the parameter aspect.

<u>GW Levels (Quantitative Analysis)</u>	<u>GW Extraction (Quantitative Analysis)</u>	<u>GW Quality (Qualitative Analysis)</u>
8-30m 1 30-60m 2 60-100m 3 100-120m 4 120-200m 5	1-250 I/day 1 250-500 I/day 2 500-1000 I/day 3 1000-2000 I/day 4 2000-5000 I/day 5 5000-25000 I/day6	Excellent 1 Very Good 2 Good 3 Average 4 Poor 5

WATER

Interventions

✓ The proposal feasibility mentioned in next point

Memnagar Lake:Existing Scenario

Source: Primary Survey, Water and Sanitation Studio 2017, Faculty of Planning, CEPT University, Ahmedabad.

Memnagar Lake: Proposal

The natural slope is towards the west area of the lake and hence a recharge shaft at that end will be preferable as the water will naturally drain towards that end.

Also, it is assumed that the ground water will follow a similar pattern to the surface water.

Thus, the recharge shaft along with the percolation tank will be provided in the highlighted area.

<u>Note</u>: Infiltration through recharge wells is technically viable also owing to its **pre-dominant usage in aquifers** where the **shallow aquifer has dried** and **existing tube wells** are tapped **in deeper aquifer**.

Source: Primary Survey, Water and Sanitation Studio, Faculty of Planning, CEPT University, Ahmedabad.

Memnagar Lake: Proposal

Level of Ground Water in Zone(m)	Availability of Potential Aquifer for recharge
	120
100-120	160
	200

The recharge shaft will be designed for a depth of 142m from ground level due to:

- Availability of substantial aquifer
- More economical due to lesser boring as compared to other two depths.

Also, a percolation pit will also be provided as shown below:

 It facilitates frequent cleaning of the well so as to avoid clogging due to fine sand particles.
 RECHARGE THROUGH INJECTION (BORE) WELL

Image Source: https://www.hyderabadwater.gov.in/en/rainwater/images/img6.png

Source: Primary Survey, Water and Sanitation Studio 2017

Design and Costing

Memnagar Lake: Proposal

Reference: *http://www.thewatertreatments.com/water-treatment-filtration/rapid-sand-filters/

— Memnagar Lake - Proposal Costing

Cost of Project ~78 lakhs

Sr. No	Description	Unit	Quantity	Cost per unit	Cost incurred
1	Levelling of Lake surface	lumpsum			5,00,000
2	Boring of recharge well up to 130m depth	lumpsum			2,50,000
3	Casing Pipe of 250mm dia	m	142	1,700	2,41,400
4	Percolation pit	sq m	60	15,000	9,00,000
5	Sand for pit	per tonne	206	900	1,85,400
6	Gravel for pit	per tonne	1147	1,000	11,47,000
7	Strainers	Running m	10	4,000	40,000
	Total Cost of one tank				22,72,400
	Total cost of 3 tanks				68,17,200
Total Cost					78,08,600

Time Taken for Project ~10 Months

Type of Work	Days
Design	60
Construction	
Bore drilling	60
Filteration tanks	180
Total time in Days	300
Total Time in Years for a lake	0.822 = ~10 months

Reference: http://shodhganga.inflibnet.ac.in/bitstream/10603/139309/14/14_chapter%204.pdf

Recharging of Ground water by Utilizing Parks

Total number of Parks within AMC boundary: 232Total area of Parks within AMC boundary: 24052 Sq.m

New West Zone GW level 100 -120m GW Extraction 500 – 1500 Predominantly Residential and Open spaces

PRAHALAD NAGAR GARDEN:

- > Area : 15600 Sq.m
- Very well Landscaped
- Ground water dependent
- Provided with Storm water Drains based on provided slope on the footpath
- Park is maintained by Amul

WATER

Existing Scenario of Prahalad Nagar Garden

Source: Primary Survey, Water and Sanitation Studio 2017

Proposal for Prahalad Nagar Garden

Connecting Storm water drains to Percolation pit and Recharge shaft at depth based Aquifer Analysis of that Area

Prahalad Nagar Garden Proposal Design

Cost of Project ~59 lakhs

Sr. No	Description	Unit	Quantity	Cost per unit	Cost incurred
1	Boring of recharge well up to 130m depth	lumpsum			2,50,000
2	Casing Pipe of 250mm dia	m	142	1,700	2,41,400
3	Percolation pit	sq m	60	15,000	9,00,000
4	Sand for pit	per tonne	275.4	900	24,78,600
5	Gravel for pit	per tonne	1530	1,000	15,30,000
6	Strainers	Running m	10	4,000	40,000
	Total Cost of one tank				22,72,400
	Total cost of 3 tanks				54,35,720
Total Cost					59,27,120

Time Taken for Project ~10 Months

Type of Work	Days
Design	60
Construction	
Bore drilling	60
Filteration tanks	180
Total time in Days	300
Total Time in Years for park	0.822 = ~10 months

Reference: http://shodhganga.inflibnet.ac.in/bitstream/10603/139309/14/14_chapter%204.pdf

WATER

Ground Water Tariff

Increasing critical areas over the years
 One way to control exploitation of the ground water

Criteria to be considered in fixing the GW Tariff

- > Existing water and sanitation charges
- > Complete or partial dependency on ground water
- > Domestic and Non domestic categories
- > Horse power of the pump used
- > Dia of the pipe
- Metered or Not metered
- AMC borewells, Areas and scale that had been served should be captured

Gaps □ ≻ Re

- Registration of Bore wells
- Data on capacity of pump
- > Water metering

Case of Bengaluru

Tariff

For Domestic connections fixed flat charge

For Non Domestic connections charged per HP of Bore well pump

For Non Domestic connections like hospitals, lodges, shopping malls charges are fixed based on scale

Bulk Users like Industries, Flats , multi-storeyed buildings charges are fixed based on consumption of water

All the above said charges may vary based on partial or complete dependency

Source: BWSSB.gov.in.

Storm Water Management

Existing Scenario

Financing Storm Water Management In Ahmedabad

CAPITAL EXPENDITURE- SOURCES

Investments only in Storm water drains and its de-silting

Total: **224 Cr.** (from 2010) Major components: **Storm Water Drains**, Pumping Stations

Source: AMC Budget 2002-2017

WATER

No Recovery in Revenue from own sources

Total: **23.6 Cr.** Major components: **Desilting**, Salary, Operating cost (pumping stations)

79 / 122

Existing Scenario Storm water Coverage - 55%

Average annual Rainfall – 800mm

Predominant Issue

Source : AUDA DP, https://www.worldweatheronline.com/lang/en-in/ahmadabad-weather-averages/gujarat/in.aspx, AMC Monsoon Control Room

WATER

Source: AUDA DP 2021, Secondary data - AMC, SLIP - Amrut, AMC Monsoon Control Room

Water logging - stagnant water for more than four hours of a depth more than 6" (SLB guidelines)

But Water logging is considered if it is affecting the transportation and normal life.

992 total water logging complaints registered in 2017

There are **45 major Water Logging** location in the city

(i) Along roads (length-50m or more)

(ii) Key intersections

(iii) Localities

WATER

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room

- East, New West and South zones are the low laying areas
- But major Water logging is also seen in higher elevation region
- This is the impact of change in natural topology due to new construction of roads and buildings

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room, https://www.youtube.com/watch?v=IT6nqSYC0BU, Ahmedabadmirror- news article WATER

Source: AUDA DP 2021, Secondary data - AMC, SLIP - Amrut, AMC Monsoon Control Room

- The storm water coverage is 55%
- But yet Water logging is seen majorly seen in the storm water covered area.

STORM WATER COVERAGE

Will Storm Water system become 100% efficient by achieving 100% coverage ??

No because these storm water networks are not designed to collect 100% runoff of peak rainfall intensity.

It is designed for 25-50% of peak rainfall intensity.

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room

Intervention News Articles

Printed from THE TIMES OF INDIA

City soaked to bones

TNN | Jul 23, 2017, 04.00 AM IST

Ahmedabad: Rains continued to lash the city unabated as many Amdavadis chose to remain indoors on Saturday. The city received average 65.71mm rainfall from 6 am to 10 pm. This is by far the highest rain received on a single day this season. In several areas like Valinath Chowk, Jaymangal BRTS stretch, Pallav Crossroads, complaints of waterlogging were reported. In the West zone, Chandkheda received the highest rainfall of 119.5 mm from 6am to 10pm on Saturday.

In the East and North zones, to,o there were issues of drainage spills and waterlogging complaints from several areas. In several areas of Nikol and Bapunagar, citizens moved around knee-deep and waist-deep water for several hours.

"Both roads flanking the Kharicut canal were waterlogged. Many societies located alongside the canal could not move for around for several hours," said a resident Satish Patel.

One of the worst affected stretches was on 132 feet Ring Road, from Helmet Flyover to Shastrinagar Crossroads. Since there was waterlogging at Helmet Crossroads, traffic police diverted people towards the flyover. However, the move did no good as it led to severe traffic congestion right from Helmet Flyover to AEC Flyover till Shastrinagar and Pragatinagar BRTS stops.

"I had to turn towards Drive-In Road, but since the road was waterlogged, I had no option but to take the Helmet Flyover. Going further, as I descended the flyover, there was heavy waterlogging. At one point, I almost thought my car will stop and not start. It was scary and tiring," said Falguni Patel, a commuter.

https://timesofindia.indiatimes.com/city/ahmedabad/city-soaked-to-bones/articleshowprint/59718623.cms

AhmedabadMirror

MUMBAI MIRROR I BANGALORE MIRROR I PUNE MIRROR

WATERLOGGED ROADS

vadis woke up to an overcast sky which soon turned into a torrential downpour on ay. The city received 4 inches of rain in fi ve hours between 6 am and 11 am. City roads vaterlogged, traffic came to a standstill even as AMC-run schools as well as several schools in the city declared a holiday. Residents of Shrinandnagar in Vejalpur had to hrough kneedeep water as the entire area was inundated with rainwater.

ars ago but it has failed to solve our waterlogging problems, " says Rahul Parekh, who lives

andnagar-3, says, "Every year, rain causes severe waterlogging in our society. This time due to waterlogging. There was three feet of water inside and outside the society for lines. A wall fell near Shrinandnagar 1.'

The area around Sonal Cinema also witnessed waterlogging. Several cars got stuck on the flooded roads. Vehicles were also stranded near Jivraj Park where the problem is severe due to the ongoing metro train project. The same situation was witnessed at Helmet Circle due D work on MEGA project. Office-goers were stranded at most intersections. Ankit Patel, a 25year-old MA student from Memnagar who got stuck at Helmet Crossroads said, "This crossroad witnesses flooding every year. Our roads are never rain ready even though AMC always boasts of having a monsoon plan."

Present condition of drains in Helmet cross road and Torrents circle stretch

Findings of the primary survey in this stretch,

- The residents of this stretch said that cleaning of drains will happen during monsoon when the water get clogged
- No pre monsoon cleaning is seen.

- The pilot stretch considered is 1.1km (from Helmet circle to Torrents power circle)
- The flow is towards Helmet circle.
- Catchment area of 4,75,165.89 sqm is considered
- The Runoff obtained in this area is
 35.34 lakh litres
- The capacity of drains is 12.44
 lakh litres.
- The excess of runoff is 23 lakh litres.

89 / 122

Rainwater harvesting and recharge

Bioretention Basin

- Bioretention basins water quality and water quantity control treatment practices .
- The shallow depression of the garden holds the water so it can slowly infiltrate back into the soil as the plants and soil naturally remove pollutants from the runoff.
- Infiltration of shallow aquifer is possible from his structure.
- The runoff is allowed to pass through filtration tank before entering to the basin for further reduce silt formation.

Recharge well

Source: https://www.skymetweather.com/content/lifestyle-and-culture/what-is-a-rain-garden/, https://timesofindia.indiatimes.com/city/hyderabad/New-airport-to-have-rain-gardens/articleshow/2848667.cms

Financing

Capital investment of 16.5 lakh [Cost of drain connecting Memnagar lake 8.35lakh and Cost of Recharge basin 8.1lakh]

- Net profit of GMDC = 354.8 Cr
- 2% of Net profit for CSR = 7.1 Cr
- Capital investment accounts for 2.4% of its CSR budget

Operation and Maintenance

- Total O&M cost = 5000. Rs annually (for labour and pressurised water for cleaning)
- Cleaning of filtration tank during Pre-action Monsoon Plan

- Alternative method to reduce water logging along roads and junction is to provide recharge structures in BRTS
- 86 km BRTS route with 127 BRTS station
- 18 among 127 station are major water logged areas
- Providing Rainwater harvesting structure in these BRTS station in 1st phase

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room, <u>www.ahmedabadbrts.org/</u>, http://www.unescap.org/sites/default/files/4.2%20Institutional%20issues%20and%20coordination%20in%20sustainable%20transport%20-%20CEPT.pdf WATER

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room, <u>www.ahmedabadbrts.org/</u>, http://www.unescap.org/sites/default/files/4.2%20Institutional%20issues%20and%20coordination%20in%20sustainable%20transport%20-%20CEPT.pdf

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, AMC Monsoon Control Room, <u>www.ahmedabadbrts.org/</u>, <u>http://www.unescap.org/sites/default/files/4.2%20Institutional%20issues%20and%20coordination%20in%20sustainable%20transport%20-%20CEPT.pdf</u>

Source: AUDA DP 2021, Secondary data – AMC, SLIP – Amrut, www.gujaratmetrorail.com/

- Alternative method to reduce water logging along roads and junction is to provide recharge structures in BRTS
- 39.3 km Metro rail in phase-1 route with 32 metro station
- As number of rainy days is less in Ahmedabad providing RWH structure for an interval of 20m or 100m would not seem physically and financially feasible
- Providing Rainwater harvesting structure in these phase1 Metro station

WATER

Rain water harvesting at Metro stations

Bangalore

- BMRCL has launched its rainwater harvesting project.
- Storage tank of 3000l capacity on both side of every second pillar.
- 18ft deep and 5ft diameter recharge pit to recharge overflowing water from the storage tank located between two pillars at 28m interval
- The water collected in the storage tanks could be used by general public or companies for a fee.
- Proposal to harvest rooftop rainwater harvesting in the metro station.

Delhi

96 / 122

Source: SWM Retrofitting our urban streets for sustainable drainage by Oasis Design Inc. for UTTPIEC – Delhi Development Authority

http://www.thehindu.com/news/cities/bangalore/bmrcl-gets-to-work-on-rainwater-harvesting/article3383145.ece ,http://www.deccanherald.com/content/602583/metro-extend-rainwater-harvesting-project.html http://epaper.timesofindia.com/Repository/getFiles.asp?Style=OliveXLib:LowLevelEntityToPrint_TOINEW&Type=text/html&Locale=english-skin-custom&Path=CAP/2011/09/03&ID=Ar00201

Total cost of installing 27 Recharge well = **21,73,933.62 Rs.**

Recharge well of 150 meter for recharge of deep aquifer

WATER

There will be reduction in 24 water logging points by implementing RWH structures any by proper maintenance of it in the circled points. **Consumer approach**

WHO ARE THE MAJOR USERS OF THE RESOURCE ?

Higher consumption of water & dependency on ground water

Easily implementable in initial stage

Better **monitoring** in clusters

Availability of **space**

WATER

Coverage

Private water suppliers

- Increased private bore wells
- Increase in water demand

Ground water dependent

Shopping malls

Industrial clusters

Large paved areas within the city – reduced natural infiltration

- Townships
- High potential for RWH
- Water logging areas

Mainly along the West-New West regions

- Incomplete storm water coverage & water logging issues
- High dependency on alternative water sources- private & bore wells

Source : AUDA DP, Water sensitive group Water sanitation studio 2017-18

Residences - Townships Case study: Savvy Swaraaj, Gota- 227800 Sq.m Total No of Units: 2976

Towers: 62 organized in 5 clusters **Expected demand:** 1607KL/day

Recharge Potential

Reuse club houses & **Recharge**

ISSUE: Longer dry period

Increased cost

Bigger tank size

WATER

Rooftop : 7300 KL/yr

RECHARGE

Paved area: 62900 KL/yr

Unpaved area: 13439 KL/yr TOTAL HAVESTING POTENTIAL : 84095KL/yr

Requires 14 recharge wells with trenches

00034.111)				
Cost (for 80KL)	Harve	sted rain water	20L Bottle can	AMC Water
Capital cost		350000	@ Rs 30/20L	@ 200/ year
Maintenance cost		3000		
5 years		350000	90000	1000
10 years		365000	180000	2000
20 years		395000	360000	4000
L/yr enches of 50m3	L TotaCwa Cost of I capa	ter phantivestien harge pits – Ha narvesting = acity 1500 KL	chal 60% of water West overall cons Existing rech	consumed truction cost arging pits

Commercial

Case study: Acropolis Mall, Thaltej- 6800 Sq.m

Source of supply:

Water demand: 12600KL /Yr Exiting bore wells : 2 Depth of bore well: 200m

Rooftop area: 6400 Sq.m Paved area: 250 Sq.m

Total harvesting potential : 3264 KL/Yr

Considering 12 such malls:

Total harvesting potential Area = **169919 Sq.m** Harvesting potential = **108700 KL** Total Cost = 16 Lakhs for each mall (approx.)

Source :www.googlemaps.com, www.furaat.com

Industrial

Case study: Industrial Clusters

EXISTING SCENARIO

- High dependency of industries on ground water (As AMC doesn't provide to the industries)
- Recharge: NIL
- Negative boring techniques were used to pump waste water to ground water, thus contaminating the ground water

Guidelines/Criteria for evaluation of proposals/requests for ground water abstraction

Industries	Water intensive industries		
Recharge 50% of withdrawal	Recharge 100 of withdrawal		

Source : Guidelines for NOC of industries

Industrial

Industrial Est	tate	Type Clus	of ter	No. of u	inits		
0	Zone	9	N boi	lo. of rewells	70 24		
V	Centr	al		34			
N	Sout	h		111	15		
	Wes	t		69			
	East	t		117	N	arol	Total
Water Consumption (in MLD)	6.7	,	1.7	23		98	129.4
Water to be harvested	6.7	,	1.7	34.04		163	205.44
Area (Ha)	346	6	127	527	:	500	1500
Units	111	5 4	470	2500	2	224	4309

Water intensive industries: Here include Textile, water production & chemical

Onsite recharge limitation:

Lack of **space** Possibility of contamination Increased cost of filtration units due to extra filtering for oil and dirt

Potential Harvest Option

AMC Wells – 547 bore wells

If at least 10% of industries usage is recharged, all the bore wells can be recharged

Source : CEPT Thesis : Agglomeration of industries, AMC visit

Existing policy and governance

Case Studies

Source: <u>http://www.cseindia.org/content/legislation-rainwater-harvesting</u>, Thesis CEPT university- Mannan Shah

Approaches

- Mandate in 2009
- State level Rain water harvesting policy
- High NGO + Institution participation
- Focus on awareness
 programs- rainwater theme
 Step by step process- High importance to
- Rainwater^{awareness}ting cell
- Incentives for reduced piped use
- 2% tax rebate
- Penalization by increase of 25% monthly water bill (2016)

- Mandate in every building since 2003
- Critical issue of water scarcity and heavy flooding urged the people
- One year deadline
- Inspection in 2003 and

Rushed implementation-awareness and

- Decenalties drove the initiative for RWH
- High importance given by
 State government and
 political support
- No incentives/ subsidies
- Strict penalization as

DELHI /

- Mandate in every building since 2001
- Delhi Jal Board Rain cell
- Several institutions involved
- Subsidies up to 2 lakh
 - Trained plumbers/
 - construction workers

•Involvement of multiple institution caused CS Einefficient implementation

 Implemented successfully in societies through Bhagyadhara scheme

Source: www.kscst.org.in/rwh.html, rain water harvesting in Checkerse.ink.propertyotax

Support from State government : GWSSB

administration Revision of GDCR with respect to type of building and detailing of rain water harvesting options

Formation of a dedicated cell- Rain water harvesting cell

Monsoon control cell

- Functional for 4 months only
- Collects rainfall & water logging data
- Complaint redressal during monsoon

RWH cell

- Technical evaluation and support of projects
- Approval of subsidies
- Act as a single dedicated system for RWH
- Coordinates between NGO's people and government

Effective

- Making a detailed manual considering the hydrologic and climatic conditions as RWH is a local level management
- **AUDIT** is performed to monitor and bring about changes in the reforms and to ensure functioning of the systems
- **TRAINING** to plumbers and contractors through GJTI (Gujarat Jalseva Training Institute)

Incentives /Penalties

Options	Incentive/Subsidy	Amount	Effectiveness	% of assisstance
Option 1	Rebate (@10%) on property tax	Comes upto 500 annually	Less tax collection efficiency- maynot be effective	only 5% assistance
Option 2	Subsidies	Upto 10000 or 50% (which ever is less)	More attractive option to user	nearly 18% assistance
Option 3	Tax waiver	Average 5000	Easy to implement	9% assistance

furaat

- Good incentive should comes with strong penalizations
- 25% extra on property tax till RWH is installed

PRAVAH

ON DRINKING WATER AND SANITATION

Creation of awareness through NGO and Private RWH firms

UTTHAN

Cost & Phasing –

Sr. No	Description	Cost incurred	Years
1	Formation of Rain water cell		1
i	Establishment cost	50,000	
ii	Salary	1,00,000	continues
2	Awareness activities	1,00,000	2
3	Subsidies	5,90,00,000	1 (continues)

Total cost – 6 Crores

Time frame : 3 years

Water Supply

Overview – Level of Services

Indicators	Present Status	MOUD Benchmark	Reliability
Coverage of water supply connections	Avg. 90%	100%	В
Per capita supply of water	145 LPCD	150 LPCD	С
Extent of metering of water connections	NIL	100%	
Extent of non-revenue water	43%	20%	С
Quality of water supplied	98%	100%	В
Cost recovery in water supply services	31%	100%	С
Efficiency in collection of water supply related charges	70.44%	95%	А

Total length of the supply network is 4015 km.

90% of the network has metallic pipes and 5% of the network has non metallic pipes.

Total storage capacity is 1306.19 MLD UGT– 1224.66 MLD OHT– 81.53 MLD

Source: SLIP – Amrut, Secondary data-AMC

Financial Overview

2500

2000

1500

1000

500

0

in lakhs

Rupees

2015-16

Actual

Revenue Expenditure

2016-17

2011-12 2012-13 2013-14 2014-15 2015-16 2016-17 2017-18

Year

Source of Water in Ahmedabad

Historical Trend: Source of water

Surface Water:

- 1. Narmada main canal 330 MLD
- 2. Intake wells 495 MLD
- 3. Dholka branch canal 275 MLD
- 4. Sabarmati river 70 MLD
- 5. Shedhi branch canal 200 MLD

Ground Water:

- 1. French wells (7nos)-170MLD
- 2. Bore well 300MLD

75.0%

25.0%

Source: AMC

Overview - WTP

Kotarpur Water Treatment Plant

- 1. Year of construction : 1987
- 2. Year of operation : 2000
- 3. Acquisition of land : 215 acres
- 4. Plant process : Conventional water treatment

with declining rate filtration

- 5. Capacity : 650MLD + 200 MLD
- 6. Quality and quantity checks of raw and treated

water

- 7. Water supplied to : West, Central, East, North
- zones (70%) of Ahmedabad
- 8. 4% loss of water at WTP.

Source: Field survey

WATER

Overview – **Distribution stations**

O&M Contracts

Water Treatment Plant

- 1. O&M contracted to Vivatech Vabhag for 3 years
- Contract is given a lump sum amount as per the lowest bid (Lump sum amount – Rs30 lakh/month)
- 3. 8 key persons
- 4. Works in 3 shifts
- 5. If **maintenance is not done on time** AMC gives notice to the contractor and then it is **penalized** for the same on the basis of:

 \mathbf{T}

AMC

- Less water supply
- Power factor
- Treated water quality
- Attendance of key person

Water Distribution Station

- 1. 163 WDS outsourced for O&M to 8 contractors who are spatially distributed.
- 2. 3 operators/WDS
- 3. Contract given on lump sum amount of Rs. 35,000- 40,000 per month
- 4. Maintenance checks on daily, monthly, quarterly, half yearly and yearly basis as mentioned in contract.
- 5. Cleaning and housekeeping of pumping station.
- 6. Security of pumping station

Source: AMC office; O&M contract document

Contracts Improvement

Performance based evaluation

Integration of the SCADA and O&M contracts

Financial Performance Indicators

- Savings in energy costs
- Savings in transportation of chemicals and replacement of machines if required.

Indicators measuring efficiency of operations

- Reduction in staff
- Response time

Records of repair and maintenanceleads to preventive maintenance

Capacity building of O&M staff regarding SCADA Basic analysis of SCADA and give recommendations Indicators measuring operating performance

- Water quality
- Level of treatment

Source: Capacity for Water Cooperation in Eastern Europe, Caucasus and Central Asia

Initiatives - SCADA

Source: Site visit; SCADA office and Water Production Department

Contract

Contract for 5 years

- 1. Roles of AMC
- Supervising
- Monthly payment for maintenance and monitoring (Nearly 2.4 lakh / 5 years (per WDS))
- Capital amount during construction (Nearly 30 crores)
- AMC staff 6-7 people
- Electricity bill
- 2. Role of Private Contractor
- Install all equipments
- O & M of equipments
- Monitoring of data
- Generation of reports

Initiatives - SCADA

Quantitative Data

- 1. Flow rate
- Raw water
- Treated water
- 2. Income and supply (current day and previous day)
- 3. Functioning of the equipments (coloured signals)
- 4. Pump parameters
- Number of pumps running
- Actual capacity
- Run hours
- Energy Consumption (Power factor)
- Pressure
- 5. Filter bed levels
- 6. Storage tank sump levels

Qualitative Data

- 1. Quality (pH, Turbidity, Chlorine)
- Raw water
- Treated water

High potential of usage

Source: Site visit; SCADA reports analysis

Interventions-SCADA Usage

IIIIGI VEIIIIUIIS-SUADA USage		Data		Kind of I	Vind of Information			Inferences/Use				
		Set					Long term	Day to day				
Data management	Equipment management			Particular	Raw water	Treated	water					
			Pre-	рН	7	-		Medium quality of raw				
			monsoon	Turbidity	1	-		water-				
	SCADA provides equipment			Chlorine	-	307.98		conventional treatment	Amount of			
managerial purposes	status monitoring including	Quality of water	Monsoon	Particular	Raw Water	Treated	water	process.Management	chemical dosing -			
including historical trending	temperature and use this			рН	9	7.89		of sludge -	When turbidity is low, less chemical is added.			
usage and hill generation	data for maintenance			Turbidity	28.8	-		Sludge from				
regulatory reporting etc.	prediction or repair and			Chlorine	-	274.77		low in normal				
	replacement forecasting			Particular	Raw water	Treated	water	season and is almost				
			Post-	рН	8.05	8		double in the monsoon				
			Monsoon	Turbidity	1.3	1.2						
Automated operations	Analyze losses			Residual Chlorine	-	0.29		Season.				
				Particular	Intake 1	Intake 2	CWPH		Power			
		Energy consu	Energy consump	Normal Season	Pumps running	3	4	10		consumption is higher in		
Automatic switching pumps on and off will reduce the manpower requirement	Capture information	tion	tion	Power consumption	121946 5	-	3371264		monsoon season so is			
	to WDS and analyze them for estimating NRW trends						Particular	Intake 1	Intake 2	CWPH		the amount of bill generation
				Monsoon	Pumps running	4	5	10		and ways to minimize the		
Source: Site visit: SCADA reports analysis				Power consumption	111330 3	-	3371264		same.			

WATER

Interventions-SCADA Usage

		Data Sat	Kind of Information			Inferences/Use			
	anagement	Equipment management	Data Set				Day	/ to day	Long term
					Particular No. of pumps	4			
SCADA sensors -	SCADA provides equipment status monitoring including		Intake 1	No. of pumps running Capacity of pumps(theoretical)	3 7500 m3/hr.				
including big	lai purposes	run-time, oil pressure and			Inlet flow	7500 m3/hr.	•	The pumps are almost 12 years old so there is a decrease in	
of water of		temperature and use this			Efficiency	71.4%			
	hill generation	data for maintenance			Particular				Knowing the pump parameters
	regulatory reporting etc.	prediction or repair and	Pump		No. of pumps	7			
	replacement forecasting	Parameter	Intake 2	No. of pumps running	4		its efficiency. There can be a data discrepancy for intake 2.	can help AMC to take preventive measures and save time as	
	Li			Capacity of pumps(theoretical)	10000 m3/hr.	•			
				Inlet flow	3912 m3/hr.				
				Efficiency	40%	•	The pumps		
	1				Particular		a L	are also not used to its full capacity	wen as money.
Automate	ed operations	Analyze losses			No. of pumps	10			
					No. of pumps running	10			
;	<u>i</u>	[]		CWPH	Capacity of pumps(theoretical)	41000 m3/hr.			
	Automatic switching pumps				Inlet flow	17728 m3/hr.			
Automatic s		Capture information			Efficiency	44%			
on and off will reduce the manpower requirement	the to WDS and analyze them for estimating NRW trends	Filter Beds	Level of water 1.7mtrs)	above filter media (should not be	e greater than	٠	Backwashin g time ad frequency.	 Can help in determining the efficiency of filter media i.e. if the level remains high. 	

÷.

Source: Site visit; SCADA reports analysis

Interventions-SCADA Usage

Source: Site Visit; Cost-Benefit Analysis of complete WTP Automation, AWWA Research Foundation

WATER

	AMC: Water Projects Department	Scenario 1 : Manual operations
Description	Cost of water per kilo litre (Rs)	Cost of water per kilo litre (Rs)
Raw water cost	2.86	3
Water Production cost (including energy cost, O&M cost, chemical cost)	1.152	1.15

Scenario 3: MaitalahorerofrozetehtceathSQADaht

- Debethis a Disch stice still so 2860 tak tak taken is equivalent to one 1.
- Conversion of the second secon 2.
- Cenerciical sadaroa des ao atito elationation de la constante ela consta 3:
- Average water production per day is compared to SCADA. Energy savings by maintenance and repair is 10%. 32:

Assumptions

- 1. Water demand is increasing by 2% yearly.
- 2. Inflation rate is 7%

Source: Water Project Department Disclosure; Site Visit; Establishment of SCADA (Vibrant Gujarat); AWWA Research on automation

— Initiatives taken by AMC ——

Reports	Reports Daily report		Zonal report	Daily pump report	
	Total inlet	Total inlet	Capacity of tank	Pump parameters	
	Total supply	Total supply	Total inlet	Pressure for every	
 Pump specifications Pump type Pump age Pump capacity 	Pressu Ch ope	lorine plant eration time	Tota Capacity and Level of water in OHT		
	Sump level High potential fo	Peak sump level or usage of thes	at 6:30 and 7:30 e data		
Qualitative data How this data o	Turbidity an be utilized in Distribut	understanding t	he performanc	e of the	
Source: SCADA	DISTIDUT	IUII STATIONS ??			

Major issues

Performance issues

About 81% of the total actual expenditure for the pumping stations is spent only on the electricity charges.

Contract issues in SCADA

126 / 122

8 mi

Performance issues

_	Infere	ences ———					
	Zones	WDS	Eff.	Age	> 2 spare pumps	PF	ОНТ
		Batata mill	50.2	7	1	0.8-0.85	NO
	67	Lal Darwaza	50.3	25	1	0.8-0.85	Yes
	CZ	Madhubag	51.3	20	1	0.85-0.90	NO
		Shahibag	57.4	9	0	0.8-0.85	NO
		Asarwa	57.5	5	3	0.8590	NO
	17	Chamanpur	50.3	7	1	0.85-0.90	NO
	NZ	Kalapinagar	56.3	1	3	0.85-0.9	NO
		Meghaninagar	12.3	36	2	0.9-0.95	NO
		Bapunagar	14.18	35	2	0.8-0.85	Yes
	F7	Anand bapunagar	71.7	9	1	0.8-0.85	NO
	ΕZ	Gomtipur Hati	30.6	1	2	0.8-0.85	Yes
		Odhav Fire	65	8	4	0.8-0.85	NO
		Gulbai tekra	33.8	25	4	0.9-0.95	Yes
	NA (7	Navrangpura	74.6	8	2	0.85-0.9	NO
	VV Z	Stadium	40.9	4	4	0.9-0.95	Yes
		Usmanpura	67.9	16	1	0.9-0.95	Yes
		Kankaria football ground	39.27	9	1	0.8-0.85	NO
		Jamalpur	17.68	15	2	0.85-0.9	NO
	SZ	Dhanilimda	61.02	12	2	0.859	NO

14

2

0.85-0.9

NO

58.2

8 WDS have 3 out of the 4 issues

4 WDS have pumps which are <5years old and are working with <60% efficiency.

4 WDS have pumps which are over 20years old and are working with PF< 0.9

Berampura

Interventions at Distribution station

WATER

SCADA related Interventions- Automated operation of pumps

Non SCADA Interventions

1. 8th year is the optimum time to replace the pumps at the lowest cost, thereby reducing the total life cycle cost.

2. Similar assessment can be done for the pipes in the distribution network for estimating the optimum period for the replacement of network pipelines.

WATER

Non SCADA Interventions

- 1. Maintains constant, reliable water supply and pressures.
- 2. Increased operational flexibility, efficiency and convenience.
- 3. Decreasing power costs particularly for "time-of-day" energy pricing.

We can also learn from other cities with better operation and maintenance of the distribution system

Non SCADA Interventions – Case Study

Surat city

GRID system

- All water works and the distributions stations are interlinked
- Any water work can feed any distribution station.
- Various energy saving measures reduced specific energy consumption n water supply.
- Re engineering of water supply routes helped them saving over 34000 KWH/day

Usage of renewable energy in water supply:

- 2 wind mills were installed.
- 6.4GWH/annum of Energy is generated.

Including both re engineering of route and usage of renewable energy

- Over 138 lakh KWH/ annum is saved.
- Rs 6.36 crores/ annum is saved.

Non-Revenue Water

Overview – Non Revenue Water

Unbilled but authorized consumption **Fire fighting** • Water fountains Gardens • **Public toilets** ٠ Free connections -**Educational and religious** institutions 3.80%

Source: AMC and PAS

Physical losses

Majorly during backwashing of filter beds

During continuous transmission of water from WTP to respective WDS

Due to High pressure, badly installed pipes and service connections, aging network, poor choice of network materials, lack of maintenance **32.0%** (391 MLD)

14.0%

4.0%

Source: AMC and Field surveys

Physical Losses – Bucket Survey

Source: Bucket Survey - 2017

- Selection of 1 ward in each zone
- Around 20 samples in each ward considering the distance of samples from the WDS and typology of buildings

Ward Name	Network Type	LPCD – supplied from WDS	LPCD - consumer end	Losses in %	
Thaltej	New	265 lpcd	180 lpcd	32%	
S. P. Stadium	Medium	220 lpcd	138 lpcd	37%	
Dariyapur	Old	160 lpcd	90 lpcd	44%	
Asarwa	Old	197 lpcd	160 lpcd	18%	
Saraspur- Rakhiyal	Old	156 lpcd	130 lpcd	19%	
Behrampura	Medium	164 lpcd	94 lpcd	43%	

WATER

Physical losses

Source: AMC and Field surveys

Interventions

Reduction of losses in main transmission lines:

Standardization and establishing **baseline data** (asset information)

 Network map (GIS) with flow direction and junctions

- Pipe diameters
- Pipe materials
- Age of the pipeline
- Quantity of water carried by each pipeline

Source: Map taken from AMC Water Projects department

Physical losses

Majorly during backwashing of filter beds

During continuous transmission of water from WTP to respective WDS

Due to High pressure, badly installed pipes and service connections, aging network, poor choice of network materials, lack of maintenance

Source: AMC and Field surveys

Strategies to reduce NRW

ADVANTAGES

- Water flows at lower rate as compared to intermittent supply→ Lesser losses
- System pressure is routinely measured and controlled → Lesser bursts in pipes
- Always full and under constant pressure → leaks can be identified using traditional sounding techniques and can be accurately located
- Unauthorized connections can be identified

Source: Guidance Notes for Continuous water supply (24-7 Supply), MOUD

Case Studies

Parameters	Ho Chi Min City, Vietnam	Selangor, Malaysia	Bangkok, Thailand	Nagpur, India	Mysuru, India
Duration of Contract	5 years	10 years	4 years	25 years	6 years
Responsibilities of private contractor	 Establishment of DMAs Asset rehabilitation Leak detection and repair 	 DMA management Leak detection Installation and repair of meters 	 Leak detection and repair O&M of all DMAs Efficiency in metering 	 24*7 water supply 100% metering Billing efficiency NRW reduction Redressal of customer complaints 	 Rehabilitation of assets Improving operational performance
Financial model	Fixed + Performance based fee	 Lumpsum Contract Penalty clauses for failure to achieve target 	 Fixed Fee + Performance fee + Reimbursable payments 	 Fixed Fee + Performance fee Bonus for NRW reduction, additional billing Penalty linked to quality, pressure, customer complaints 	 Share of private contractor in capital cost+ fixed O&M fee + Performance fees

purce: 1.Moving Towards 24*7 water supply in Class "A " Municipalities in Maharashtra , PAS Project

2.Running Water in India's Cities: A Review of Five Recent PPP Initiatives, The World Bank

3.Bill Kingdom & Roland Liemberger - The Challenge of reducing Non- Revenue water in Developing Countries, 2006

4.Paul Fanner, Non-Revenue Water reduction Contracts and illustrated examples

Metering Initiatives - Ahmedabad

Metering Initiatives - Ahmedabad

Source: Primary Survey – Water and Sanitation Studio 2017

- Moving Towards 24*7

STAGE 1

Selection of Pilot Area (DMA)

Pilot Area - Selection

1.Ground water Exploitation

Total Population (estimated) -1,40,000

S.P. Stadium

3. Mix of Typology – Individual houses, Low Rise & High rise

4.Data Availability

Total Population (estimated) – 1,25,000

Vasna

Moving Towards 24*7

- Network Map
- Demand Analysis

Existing Network Map

S.P. Stadium WDS

WATER

Moving Towards 24*7

Network

Existing Network Map

WATER

Moving Towards 24*7

designed

Absence of

network

Network

- Changing pipe diameter
- Pressure management
- Extension of network
- NRW reduction

— 24*7 Water supply

3 Pumps – Pressure head = 82 m 1 Pump – Pressure head = 18 m

Analysis

Intermittent supply

- 1. Reduction of Losses
- distribution networks
- storage reduction
- household connections
- 2. Demand Management
- water metering

> 24 X 7 Water Supply

Funding Mechanism

— Total Project Costing

For Water metering:

Ward- S.P stadium	West Zone
HH with water connections[DMA area]	6000
Cost per water meter connection[in Rs]	3000
Total cost for meters [in Rs]	180
Contingencies@5%	9
Total project cost [in Rs lakhs]	189

Revenue Income:290 lakhs

Revenue Income:117 lakhs

For 24 * 7 water supply: Capital Expenditure

Name of the ward	Length of DI pipeline	Total cost	
S.P Stadium	5.2 km	1.2	
Vasna	6.1km	6.7	
Total project cost [in Rs lakhs]	11.3 km	7.9	

— Project costing & Funding

Name of the project	Overall cost (INR Cr.)	Time frame/contract period	Funding agencies
Automation of water treatment plant	18	2	Central + State
Recharge wells in lakes	0.78	1	CSR
Recharge wells in parks	0.59	1	CSR
Rain water harvesting in townships, commercial, industries	6	3	Central + ULB
Automation of water distribution stations	0.03	1	ULB
24*7 water supply & metering	14	10	ULB (VGF) + Private
Rain Water Harvesting structures along transit corridors	0.41	2	CSR+ Ahmedabad Janmarg Ltd

- Service Improvement

Service Level Water

Extent of metering of water connections–60% from 0% Extent of non revenue water–25% from 43%

Conclusion

Business as Usual Scenario

Storm Water Recharge Reuse Effective Supply Supply Demand

Post Interventions...

Reuse
Effective Supply
Supply
Demand

WATER

Conclusion

WATER SENSITIVE AHMEDABAD

Thank You

Vaishvik (PP0002216)

Pratik (PP0002816)

Gargi (PP0003216)

Prasenjit (PP0007216)

R avi (PP0007616)

R hea (PP0007716)

Wastewater Management

— INTRODUCTION : Urban Area

	% of HH connected to Sewer System	% of HH having Septic Tanks	% of Open Defecation	
Indian Scenario	32.7	38.2	7.5	 7% urban HHs use Pit latrines 64% STPs are functional only with 37% treatment capacity only
Gujarat Scenario	60.4	24.5	O (OD free)	100 out of 167 cities in the state do not have any underground drainage system and are dependent on technologies of OSS for waste water disposal.
Ahmedabad Scenario	86.0 /RUT. Swachhta Report-2017	4.9	O (OD free)	 24750 (2%) HHs are without any outlets for toilets. Toilet coverage reached 100% under SBM, but treatment still pose a challenge

WWM

181 / 10

CONTENTS

OFF-SITE SANITATION

Centralized Sewerage Network in Ahmedabad City

Centralized Sewage Treatment Plants (STPs)

RE-USE of Treated Wastewater

ON-SITE SANITATION

Decentralized Wastewater Treatment (DEWATs)

Faecal Sludge Management

RE-USE of Treated Wastewater and Sludge

Conclusion

- SPATIAL GROWTH

1995

- SPATIAL GROWTH

1995 2005

- SPATIAL GROWTH

STUDY AREA DELINEATION

2017

Spatial growth generally observed towards **Western direction**.

Study Area includes **AMC and PERIPHERAL areas**

Area: **446 sq. km.** Population: **68.04 Lakhs** Zones: **06** Wards: **48**

POPULATION				
PROJECTION				
2021	70	lacs		
2031	87.5	lacs		

AMC Boundary
 AUDA Boundary

Peripheral areas

– Service Level Benchmark

COVERAGE OF SEWAGE NETWORK

ADEQUACY OF TREATMENT CAPACITY

EFFICIENCY OF COLLECTION OF SEWAGE

COST RECOVERY – O&M IN WW MANAGEMENT

REUSE AND RECYCLING OF SEWAGE

90% to100% 97% to 100% 97% to 100% 50% to 100% 0% to 20%

System

Ahmedabad Municipal Corporation (AMC): Departments

Notified Heritage Buildings

(Walled City)

٠

	Health	Environmental Services	Support	Finance	
AMC	 Health Department Birth & Death Registration Malaria Cell Epidemic Control Cell Immunization Yellow Fever National Health Mission Revised National TB 	 Central Laboratory Solid Waste Management Water Operation (Electrical & Mechanical) Water Project Department Drainage 	 E-Governance Municipal Secretary Election Municipal Chief Audit Department Central Workshop 	 Professional Tax Shops & Establishmer Vehicle Tax Assessment and Tax Collection Department 	
			Town Planning	(Property Tax)	
	 Status of H1N1 (Swine Flu) Swachh Bharat Mission Scheme 		 Building Permission Fee Calculator Town Development 		
	Dead & Transportation		Department Building Permission		
	IIrban Poor & Housing	 List of available 	Other Services		
	 Engineer Bridge Project Engineer Road Project Light Department Traffic Bus Rapid Transit 	orbailt oor & hoosing	TDR(Transferable	Officer Services	
		 Urban Community Development Housing & Slum Networking Project 	 Development Rights) holders Restoration of Heritage Building and Heritage T.D.R. Building Height more than 45 Mtr. 	 Cattle Nuisance Control Department Heritage Department Garden Department Fire Department 	

Source: AMC, 2017

Provision of new sewer

Ahmedabad Municipal Corporation (AMC): Departments

Health Environmental Services Support Health Department Governance

Functions:

- Communication (G2C, G2G, G2B)
- JnNURM DPR Implementation
- CCRS (Comprehensive Complaint Redressal System)
- GIS
- Managing 54 Civic Centres
- CCTV Surveillance
- E-Tendering

 Assessment and Tax Collection Department (Property Tax)

Finance

Functions:

Tax collection and assessment

AMC

Plays an important role at **zonal level** in **cleaning** and **maintaining** of

Functions:

 Setting up and maintaining new STPs, SPS, Storm water pumping stations

Drainage

- Laying drainage / storm water drainage **networks** in AMC area.
- Cleaning of main storm water and drainage trunk lines and rehabilitation (strengthening) of old sewage lines

Source: AMC, 2017

Functions:

connection

khalkuva

Septic tanks and

Zonal Level: Departments and Organization Structure

ZONAL

WARD

Peripheral Areas

AUDA

Gram Panchayats (GP)

Functions:

- Preparation of **TP Scheme**
- Planning of trunk sewer network
- Providing Capex for installation of STPs, SPS and network

Functions:

- Regular O&M of Sewerage Network and Septic tanks
- Addressing **complaints** received
- Collection of **Property taxes** and user fee

Gandhinag

Issue lies in areas where TP Schemes are **not prepared** but settlements are present.

- Pressure on OSS increases which needs regular O&M by GPs.
- Improper disposal of wastewater and sludge in natural drains due to lack of treatment

Coordination between different agencies becomes a **challenge**.

Source: AMC, 2017

Financial Analysis

Capital Expenditure

WWM

Source: AMC Budget

Revenue Expenditure

193 / 10

Financial Projections

Suitable assumptions were made to arrive at Financial Projections under all 4 heads

WWM

Financial Projections were made for future 10 years (2017-2018 to 2027-2028)

Wastewater Sector Budget

Source: AMC Budget

Centralised Sewerage Network

Existing Sewerage Network

196 / 10

Government's call on Expansion of Sewerage Network (Proposed Projects)

Two Possible Scenarios upon Sewerage Network Expansion

Following recent spatial growth trend: Expansion of network along Western, Southern and Eastern parts

- High Capital Costs (laying new Sewer Network and SPS)
- Additional O&M Costs (difficult to pump from low lying areas)
- Time consuming process
- Temporary disturbance to built environment

Source: Sewerage SLIP, AMRUT, Swachhta Report-2017

Expansion of network along Western and Eastern parts only. Developing OSS facility in Southern low lying areas

- Cost and time efficient
- Less disturbance to built environment

Hence, Scenario 2 preferred over Scenario 1 due to its financial, environmental benefits.
CENTRAL ZONE

- Frequent Complaints of breakdown and blockage
- Old city: drainage lines were laid in 1921.
- Highest Density : 415 PPH
- Increasing cases of water borne diseases (Jaundice, Typhoid).

No interventions proposed by government

Image Source: Google Earth

West zonc 39 % New west zone ast zone South zone

Frequent **Complaints** of breakdown and blockage (September 2017)

Manhole Repair

•

•

- Sewer Breakdown
- Manhole cleaning
 - New Manhole

Source: AMC Sewa app

CENTRAL ZONE

- Frequent Complaints of breakdown and blockage
- Old city: drainage lines were laid in 1921.
- Highest Density : 415 PPH
- Increasing cases of water borne diseases (Jaundice, Typhoid).

No interventions proposed by government

Image Source: Google Earth

•

CENTRAL ZONE

- Frequent Complains about breakdown and blockage
- Old city: drainage lines were laid in 1921.
- Highest Density : 415 PPH
- Increasing cases of water borne diseases (Jaundice, Typhoid).
 - No interventions proposed by government

•

Possible reasons for frequently occurring issues Inefficient sewer network

> or Inefficient pumping station

> > or

Poor management of sewer lines

South zone

Image Source: Google Earth |

INTERVENTION & OBJECTIVE

Intervention 1: Identifying need for retrofitting existing Sewer lines in Central Zone

BJ

BJECTIVE: To strengthen the efficiency of existing centralized WW conveyance system (Network and SPS)

Central Zone

206 / 10

* For desired flow rate, velocity ranges between 0.9-1.5 m/s

Total Length of trunk line: 6.2 km -

Existing flow rate of WW is much lower than the desired flow rate.

Sufficient Design CC of sewer lines

Central Zone		Existing	Scouring	
SPS	Diameter (mm)	velocity (m/s)	velocity (m/s)	Efficiency (%)
Shahibaug	750	0.29	0.9	32
Old Girdharnagar	450	0.28	0.9	31
New Girdharnagar	500	0.51	0.9	57
Dariyapur	1400	0.16	0.9	18
Jamalpur	1800	0.22	0.9	24

* For desired flow rate velocity ranges between 0.9-1.5 m/s

Total Length of trunk line: 6.2 km -

Existing flow velocity lower than scouring velocity causing silting.

(Chances of abrasion, pipe burst

Trunk Lines

INTERVENTION 1: Identifying methods for Retrofitting

WWM

210 / 10

10

INTERVENTION 1: Phasing and Costing

* AMRUT SLIP, under NRCP Scheme 70.6 Crores for 4.5 km

INTERVENTION 1: Phasing and Costing

e Source: Google Earth

carrying capacity for the future population.

INTERVENTION & OBJECTIVE

Intervention 2: Improving efficiency of Sewage Pumping Stations.

WWM

213 / 10

Process of Functioning of SCADA for SPS

Total SPS in Ahme	dabad: 51
with <u>SCADA</u> :	40
without <u>SCADA</u> :	11

Separate Contracts for outsourcing O&M of SPS and SCADA

SCADA Contractor: Chetas Control Pvt. Ltd. SCADA Operation began in July, 2016

General Benefits of SCADA

- Performance Improvement
- Better management
- Indication of problem before hand
- Reduction in Operation Cost (Opex)

Data Source: AMC, 2017

Total SPS in Central Zone: 5with SCADA:5Schematic Diagram: SCADA

WWM

Considering life cycle (15 years) and efficiency of pumps, Need for replacement to be identified

Data Source: SCADA (September, 2017)

Jamalpur SPS

	O&M Contract			SCADA Contract			
Type of Contract Comprehensive O&M Renair		ي ت ن ن	<u>Concession Period</u> 2 Years	<u>Concession Period</u> 5 Years	ب ت ن ن		Type of Contract O&M and Renair
Work Contract		Private Contracto	r's Scope	Private Contractor's Scope			2 separate
		Energy Conservat factor above 0.9.	tion Maintain power . else, pay Torrent	Help in Energy Conservat Send daily reports/SMS to A	ion MC		isolation
		Cleaning, gardening	g. Deploy staff. st have to maintain	Generate monthly and zon	al	M	Difficult Coordination
		SCADA system & SCADA basic.	operate SPS on	report			Need for Integration
Source: AMC, 2017		<u>AMC</u> Scope Pay Electricity Bi Recover penaltie Monitor and ass reports	lls, monthly fees s sess monthly	<u>AMC</u> Scope Pay Electricity Bills, mont Recover penalties Monitor and assess mon reports	thly fees		Data <u>not</u> efficiently used in Decision Making

Improving Operational Efficiency of SPS

Sewage Treatment Plant (STP)

INTRODUCTION-Centralised STPs

9 Sewerage Treatment Plants under AMC.46 Sewage Pumping Stations.

Capacity of STPs

5 STP- ASP technology 2 STP- UASB technology 2 STP-Lagoon technology (under up gradation)

Total (Western Side) : 477 MLD. Pirana (Eastern Side) : 528 MLD Vinzol (Eastern Side) : 70 MLD Total (Eastern Side) : 598 MLD. Total (Eastern & Western Side) 477 + 598 = 1075 MLD.

5 STPs are also proposed for the major growth centers of AUDA,

- Sanand
- Kamod
- Mehmdabad
- Dehgam
- Kalol

Source: Primary Survey

— Current Scenario Are these STPs working efficiently?

C DUD the second	int.aspx?area=/&cmd=stp_overviev	v&prev=overview&preparam=		+ C Search		Parameters	ASP
FectoryTalke ViewPoint	AHME		TRAL CORROY			BOD	< 30
C C C C C C C C C C C C C C C C C C C	SEWA	GE TREATEMEN	NT PLANT OV	ERVIEW		COD	< 250
	INLET					TSS	< 50
PIEANA STP CAPACITY-180 HED PH 7.272 TSS 360.296 TOC 57.149 TOC	577 7-608 52.073 142.003	A STP TT 340 HLD 7.631 528.856 0.000 TOC	5779 14.257 TLET	ROL STP ACTTY- 79 HLD 7.508 310.792 0.281 TOC	PERANA STP CARACITY- 1005 HED 8.316 201.660 0.000	Total Suspen standards meet	ded Solids are not ing.
PIRANA STP CAPACITY-180 MLD PIRANA S CAPACITY H 7.866 5S 204.078 DC 2.794	ТР Ф.391 32.091 78.708 ТОС	A STP TY- 240 MLD 7,918 308.725 0,120 TOC	177-35 HLD 7.661 80.367 0.803 TOC	01.577 (CTTY-79 MLD) 14.000 2500.00 0.561	PTRANA STP CAPACITT- 106 HLD 4 7.795 S 78.166 DC 0.000		

Source: Primary Survey

224 / 10

Need for Intervention AA AA Collection →

• 91% coverage of sewerage network

 Capacity of treatment plants is adequate in ratio of the sewerage generated in the city.

- Broken sewer lines
- Open manholes
- Illegal connections
- **Blockage** of lines
- Sewage backflow

 Mixing of storm water and waste water during monsoon.

• This **increases** the load on sewerage line and in turn the increases load on capacity of treatment plants. •27km long mega pipeline laid from naroda to pirana carrying treated effluent from CETP discharges into Sabarmati river.

 Treatment of water till secondary level.

• **Discharge** of partially treated waste water in the rivers.

• As per CPCB domestic sewage is responsible for 80% of water pollution in India.

• Existing STPs need to upgrade their effluent standards as per new standards released in 2015.

 Poor disposal of segregated solid waste.

• Flaring of biogas generated in the air.

- **Reuse practice only in 1 STP** 180mld-pirana $\sqrt{}$ Solid waste Biogas Sludge 25% of Sorting 4045m3 sludge is done by
- gas is taken by corporation generated AMC and and then and used sold to recycled. as CNG. vendors

Why No Reuse in other STPs?

Policy Framework – Need for Intervention

State of Gujarat has drafted a policy for promotion of Waste Water and Reuse (2017)

At least **20%** of total recycle of waste water should be used for recharge of ground water and discharge into surface bodies (maintaining norms prescribed by CPCB for discharge into surface water bodies) to reduce their pollution load and enable minimum environmental flow.

How can we ensure 20% of reuse of waste water?

- 1. To improve efficiency of treatment systems in terms of performance and cost recovery.
- 2. To implement/promote the idea of reuse of treated waste water to its maximum extent.

Technology Intervention

Parameter	Units	Municipal raw sewage characteristics	UASB	ASP	SBR
BOD	Mg/l	200 to 250	< 30	< 30	< 10
COD	Mg/l	400 to 450	< 250	< 250	< 50
TSS	Mg/l	200 to 250	< 100	< 50	< 10
Overall Plant Odour			Very High	Med. To High	Odourless

Source:- All India Institute of Hygiene & Public Health, Govt. of India

Comparison with new standards

Parameters	ASP	SBR	New Standards
BOD	< 30	< 10	20
COD	< 250	< 50	50
TSS	< 50	< 10	20

Operation and Maintenance

SBR technology requires less land, low periodic maintenance and the **treatment efficiency** is also **very good**.

Other technologies like membrane process which requires periodic maintenance and a lot of man power which is currently lacking.

Addition to treatment technology and infrastructure needed **management aspect** should be given importance.

Trained staff should be appointed and periodic monitoring of the quality of sewage water should be conducted by the officials.

Though the **initial capital cost** of this technology is **high** but the **O&M cost** is **less** comparatively to other technologies.

Source:- Primary Observation, Discussion with AMC officials

Is improvement in the Technology the only Solution? or Is it the Management Issue?

No integration between Contracts

Working of STPs- BOOT/DBOT basis

WWM

SCADA Controller Operator

The **O&M contract** should be outsourced to a **common contractor** which looks after efficient operation and maintenance of STP with the help of **SCADA monitoring system** on a regular basis to achieve required standards.

Source:- Primary Observation, Discussion with AMC officials

Agriculture - Reuse of Wastewater _____

Sr.N o.	Sewage Treatment Plant	Type of sewage treatment	Disposal point after secondary treatment of sewage	Indirect reuse of secondary level treated waste water in irrigation
1	106 MLD STP, Pirana	UASB		
2	60 MLD STP, Pirana (JNNURM)	ASP		
3	180 MLD STP, Pirana (JNNURM)	ASP		
4	240 MLD STP, Vasna	ASP		Where is this happening & how much?
5	126 MLD STP, Vasna	UASB	Sabarmati River	
6	35 MLD STP, Vasna (JNNURM)	ASP		
7	70 MLD STP, Vinzol	ASP	Kharicat Canal	
8	182 MLD STP, Pirana	Facultative lagoon	Sabarmati River	
9	76 MLD STP, Vasna	Facultative lagoon	Sabarmati River	

Source: Primary Survey

Agriculture Reuse Interventions

No of Villages availing waste water	Wastewater irrigated net area (in ha)	Wastewater irrigated gross area (in ha)	Agriculture receipts (Rs. in crores)	Cash profit (Rs. In crores)	% of net profit
45	9450	13346	83.7	50.77	61

Case Study

535 agriculturalists-Pirana Sewage Farm Water Requirement-268 MLD Cost-0.15 Rs/kl

650 agriculturalists-Miroli Mandali
Water Requirement- 160 MLD
No. of farms - 17 farms
500 Farmers are members
Cost- 0.08 Rs/kl

Sewage water is partially treated.

It is **good for farms** but **not** for **health** of farmers and livestock.

Farmers face a lot of **skin diseases** when this water comes in contact with their skin.

There is **no other source** of water available for these farmers.

Source:- Primary Survey

231 / 10

Agriculture Reuse Interventions

WWM

Health risks associated with wastewater use in agriculture

Parameter	Land for irrigation	Group exposed	Helminth Infections	Bacterial/virus infection	Protozoa Infections	
PH value	5.5 to 9.0		Risk of Ascaris infection for		Parasitic protozoa on	
BOD	100	Consumers	both adults and children with untreated waste water.	Cholera,typhoid,diarrhoea	irrigated vegetable suirfaces	
Suspended Solids	200			Voune obildroe		
Oil and grease	10	Earm workors	Risk of Ascaris infection for	Cholera,typhoid,diarrhoea if water	Pick of amochiasis	
Arsenic	0.2	and their families	and their families	and their abildren backwarm infection	quality exceeds 10 ⁴	when contact with
Cyanide	0.2			in workers	seroresponse to norovirus in adults	untreated waste water
Alpha emitter micro curie/m	10^-8			exposed to partially treated water		
Bio-assay test	90% survival of fish after 96 hrs in 100% effluent	Nearby Communities	Risk of Ascaris infection for for flood or furrow irrigation when in heavy contact.	Sprinkler irrigation with poor water quality and high aerosal exposure associated with increased rates of	No data on transmission of protozoan infections during sprinkler	
Beta emitter micro curie/m	10^-7			Intection	wastewater	
Source: CPCB.1993		Source: WHO Gu	idelines			

Irrigation water is safe from point of view of CPCB established standards ,health implications for farmers and consumers need to be assessed.

Agriculture Reuse Interventions

Test	Irrigated of ornamental fruit trees and fodder crops	Irrigation of vegetables likely to be eaten uncooked
BOD (mg/l)	< 240	< 20
Sample no	Sample/month	2 samples/month
TSS	< 140	< 20
Sample no	Sample/month	2 samples/month
Thermotolerant coliforms (cfu/100ml	< 1000	< 200
Sample no	2 samples/month	Sample/2 weeks

Permitted limit for grey water reuse

According to WHO guidelines, wastewater of high microbial quality is needed for irrigation of certain crops –crops which are eaten uncooked.

Low quality of water-crops which are cooked like potatoes, industrial crops like cotton, sisal but this quality will affect field workers and crop handlers.

Crops can be divided into 2 category.

Category A

Protection required for consumers, agricultural workers and general public.

This includes crops which are **eaten uncooked**, **spray irrigated fruits**.

Category B

Protection required for **agricultural workers** only because here crops are not eaten raw.

This includes cereal crops, industrial crops, food crops for canning, fodder crops, vegetable crops which grow above the ground (potatoes,paes,chillie tomatoes and green beans)

In this case it is necessary to ensure crop is not contaminated with sprinkler irrigation.

– Agriculture - Reuse of Wastewater

Are the Current regulations adequate to meet wastewater use objectives?

Protect Public health Prevent environmental damage Meet quality standards

Despite presence of standards, discharge of treated sewage is almost completely unmonitored and unregulated.

Strong Institutional Framework	Changes in Reuse Policy	Creating Awareness
There does not exist any organization dedicated to wastewater treatment and reuse. There is no clarity in	Waste Water reuse <i>regulations</i> for irrigation <i>should specify type of crops</i> that can be irrigated with recycled water of a given quality as well as <i>public access and other restrictions.</i>	 Heavy metals and faecal coliform are the parameters of concern for use of sewage for irrigation. Farmers should be advised of the importance and necessity of the restrictions drafted in the policy.
framework. <i>Appointment of trained staff</i> to monitor the quality of water.	Dos and don'ts during irrigation for farmers with specific quality of water and the risks and health hazards associated to the user.	They should be assisted in developing a <i>balanced mix of crops</i> which makes full use of the partially available treated waste water by conducting <i>awareness</i> <i>campaigns, irrigation programs in</i> <i>local language</i> .

Industrial Profile

Dominant Types of Industries

Estate	Dominant Type of Industries	No. of Dominant Industries
Naroda	Engineering Industries	285
Vatva	Chemical Industries	600
Odhav	Metal Industries	143
Narol	Textile Industries	150

Classification of Industries in Odhav

Type of Industry	Number of units
Metal Industries	225
Engineering Industries	95
Foundry	50
Paper, Pulp and Packaging	15
Rubber, Plastic and Insulation	12
Chemical Industries	35
Pharmaceuticals	18
Miscellaneous Industries (Electronics,Oil Mill, Pesticide	20
Total	470

— Industrial Profile

Classification of Industries in Naroda

Classification	of	Industries	in	Vatva
----------------	----	------------	----	-------

Type of Industry	Number of units
Chemical, Dyes and Intermediates	221
Ceramics, Minerals and Glass	38
Engineering Industries	285
Paper, Pulp and Packaging	26
Rubber, Plastic and Insulation	67
Textile	47
Food and Agro Based	80
Pharmaceuticals	38
Service Industries	12
Miscellaneous Industries (Electronics,Oil Mill, Pesticide	226
Vacant/Closed	75
Total	1115

Type of Industry	Number of units
Chemical, Dyes and Intermediates	675
Engineering Industries	565
Metal Industries	375
Foundry	125
Paper, Pulp and Packaging	18
Rubber, Plastic and Insulation	15
Textile	25
Food and Agro Based	22
Pharmaceuticals	60
Service Industries	15
liscellaneous Industries (Electronics,Oil Mill, Pesticide	550
Plastic Manufacturing and Processing	55
Total	2500

Source: Primary Survey

23 / 0

Assessment of Industries

GIDC Estates	Area (Ha)	Units
Naroda	346	1115
Odhav	127	470
Vatva	527	2500
Narol	500	224

Industrial Estate	Type of Cluster	No. of units
Odhav	Metal	225/470
Narol	Textile	150/224
Vatva	Chemical	600/2500
Naroda	Engineering	285/1115

Water Consumption (in MLD)	Naroda	Odhav	Vatwa	Narol
	6.7	1.7	25	98

Desirable Water Qualit	y Parameters for	Textile Wet	Processing
		and the second se	

1. pH→6.5-7.5	
2. TDS→ 300 ppm	
3. Color→ 5 Hazen No.	
4. Residue on ignition \rightarrow 250 pp	in
5. Total Hardness→ 30 ppm	
6. COD →nil	
7. Turbidity→ nil	
8. Suspended Solids→ nil	

- 9. Copper →0.01 ppm
- 10. Iron →0.01 ppm
- 11. Chromium→ 0.01 ppm
- 12. Manganese→ 0.05 ppm
- 13. Aluminium→ 0.2 ppm
- 14. Chloride →150 ppm
- 15. Sulphate →150 ppm
- 16. Nitrite→ nil

	Parameters	Raw Sewage	Secondary Treated Sewage	New Standards	Tertiary Treated Sewage
	PH	6.5-8.5	7-8.5	7-8.5	6-7.5
1	BOD	320 mg/l	20 mg/l	20 mg/l	<5
2	TSS	350 mg/l	30 mg/l	20 mg/l	<2
	COD	600 mg/l	100 mg/l	50 mg/l	<50
	FAECAL COLIFORM		1000-10000 ml	<100 ml	

Quality Requirement

Parameter	Textile Input Standard	Tertiary Treated Sewage
PH	6.5-7.5	6-7.5
COD	Nil	<5
BOD	Nil	<2
TSS	Nil	<50

Quantity Requirement

Pirana STP -180MLD

Narol industries water requirement- 98 MLD

Source:- Primary Survey, CBCB norms

Reuse Feasibility

Textile Industries

PLANT EFFICIENCY & COST AT DIFFERENT TECHNOLOGY LEVEL

Source: Research paper on Water demands in industries

WWM

238 / 10
Industries - Sample Study

Current Scenario – Vatva Industrial Estate

Total Industrial units- Approx 2000 units

Source of water supply- Ground water supply for 24 hrs. Agency involved- Vatva GIDC Association

No. of Bore wells-12 with 1000m3 depth, - 40 private unaccounted bore wells

Total demand of water in industries- 25-30mld per day

Average cost of water supplied – Rs.10/KL.

Where is the Problem?

Supply of Narmada water

Priority 1 :- Residential area

Priority 2:- Irrigation (Rs.16 per KL)

Priority 3:- Industries (only 2%)

No other option Available

Source: Primary Survey

Feasibility of Reuse of WW

Current cost of water supply – Rs.10 per KL

Cost of tertiary level treated water – Rs.25-35 per KL

It is difficult for the industries to shift from usage of ground water to reuse waste water because of increase in price.

What needs to be done? (options to be explored further)

- Strict policies and regulations should be made to ban usage on ground water. (Ground water policy is since 10 years but yet no result)
- State government should get involved in this process and strive to provide treated waste water at a subsidized rate (max 15-20 Rs.)
- This has to be a **gradual process**, the **standards** of the tertiary treated water should more or less match the standards of the water supplied now to industries to **avoid human health hazards** like typhoid, cholera, polio, diarrhea, miscarriages etc.

Recommendation

Recommendation 1:- To propose a tertiary level treatment plant in Vinzol STP in order to provide the treated water in Vatva Industries.

Recommendation 2:- To propose a tertiary level treatment plant in 180 MLD Pirana STP in order to provide the treated water in Narol Industries.

Is this reuse Feasible?

Industrial Reuse – Vinzol Project

WWM

Existing Scenario

Vinzol STP Capacity: 70 MLD Treatment : Secondary

Vatva GIDC Demand : 25 MLD (Future 30 MLD) **Current Source : Bore wells**

72 km network in Vatva GIDC

Capital Investments

TTP of Capacity 30 MLD **4575** lakhs Water Pumping Station 75 lakhs Water supply trunk line **1000** lakhs

Total 5895 lakhs

Major Stakeholders

Vatva Industrial Association

Private Player

242 / 15

Project Structuring

- Equity : 30%
- Debt : 70%
- Concession period : 20 years (including construction period of 24 months)
- Interest on debt : 11%
- Tenure of loan : 7 years (excluding 2 years of moratorium period)

Financial Feasibility

Secondary Treated Wastewater ₹ 3 per Kl @ 5% increase in rate pa

Benefits to AMC

1. Saving in Capital Investment

₹ 6900 lakhs

2. Direct Reuse of treated wastewater **30** MLD

3. Revenue from the sale of Secondary treated water

During Concession period

period

WWM

- **₹ 27** lakhs ₹ 62 lakhs (2039-2040)(2019-2020)
- **After Concession** ₹ 2000 lakhs

Risk in executing project

If Vatva Industrial Association do not agree to pay for thr trunk line and concessionaire has to bear that cost, then

```
Project IRR drops to 22%
           &
Equity IRR drops to 12%
                             @ 5% increase in rate pa
```

244 / 15

Tertiary Treated

Wastewater

₹ 22 per KI

Wastewater DEWATs Reuse

Source : Mona lyer, "Urban wastewater reuse governing paradigms and enabling environment : a case study of Ahmedabad, Gujarat" - 2016

			E	
TECHNOLOGY	AREA REQUIREMENTS (SQM)	CAPACITY (KLD)	CAPITAL COST (LAKHS)	O&M COST (LAKHS/ANNUM)
Soil Bio Technology	400	100	8	2
Fixed Film Bio- Technology	2.80	1	0.35	0.01
DEWATs	2000	100	30	4
Phytorid	3000	100	30	2
Anaerobic Baffled Reactor	1000	100	40	3

LAND USE MAP OF AMC& AUDA

SATYAGRAH CHHAVANI

GHB TRANSPORT NODE, SHASTRINAGAR

Possible STP site location

NAME	GODREJ	SHANTIGRAM	SATYAGRAHA Chhavani	GHB Shastrinagar	BOPAL 2
Total Water Demand (MLD)	10.01	11.55	0.41	1.18	2.5
Wastewater Generated (MLD)	7.72	8.91	0.33	0.94	2
Total Reuse Potential (MLD)	4.14	7.75	0.22	0.78	0.88
Reduction in Fresh Water Demand	41%	67%	54%	83%	35%

LAND USE MAP OF AMC& AUDA

BOPAL -2

Parks & Garden

Total No. of Parks & Garden : 202 Total Area: 17,27,296 sq.mt. Total potential Reuse of Wastewater : 13.48 MLD

(Source: AMC)

Major Projects

Potential WW reuse assessment in miscellaneous activities with huge water demand - Riverfront, Stadium, Airport

Technical Details(Parks & Gardens)

WWM

 Rasala Treatment Plant (1,530 sq.mt.)

AMC's Proposal

- 2 MLD treatment plant at
 - Asarwa Lake(Central Lake)
 - Udadi Lake & Gotil Garden (New West Zone).
 - Dedki Garden(South Zone)
 - Shramik Garden(East Zone)

Intervention

- Treated WW for refilling of various lakes.
- Excess of treated wastewater can be used in Gujarat college ground.

Law Garden
 Area: 43422 sq.mt.
 WW Reuse: 0.086 MLD
 Storage tank: 10,000 Lit.

Parimal Garden
 Area: 36625 sq.mt.
 WW Reuse: 0.072 MLD
 Applications: Landscape,
 2 Adjoining Public Toilets.

(Source: AMC Draft Budget, 2016-17)

Technical Details(Parks & Gardens)

Parimal Garden

WWM

WW supply: Near By ____ Sewerage Network

Treatment Capacity: 1 MLD Underground storage tank: 10 Lakh Lit. Contract : EPC(4.5 Crore) O&M contract: Shivam Water

Treaters (10 Years)

Other Applications <

Rasala Nature Park (Tertiary Treatment Plant)

Law Garden

(Source: AMC, Shivam Water Treaters)

Technical Details(SP Stadium)

The stadium holds the honor of hosting the first ever <u>One Day International</u> match played in India.

At present, no provision of Wastewater Reuse for maintaining cricket ground.

Continuous (14 Hrs) Supply of Water Through Individual Bore well.

Sports Club

Swimming Pool: 4.5 Lakh Lit

Ground Area: 18,500 sq.mt

- WW generated disposed directly into sewers.
- No reuse of water in Swimming pool.

SP Stadium, Navrangpura: Potential consumption/Day: 0.055 MLD

 Fresh water Consumption from Bore well

(Source: AMC Stadium Curator, Vijay Bhatt)

Treatment Plant(SP Stadium)

Treatment Plant

Bore Well

Reuse Potential: 0.25 - 0.3 MLD

Proposed Treatment Plant Location

(Source: Shubham Inc, Ahmedabad)

The stadium holds the honor of hosting the first ever **One Day International** match played in India.

Use Of Packaged Treatment Plant by CDD

Best Practices: IIM Udaipur, Kadi Municipality (World Bank Funded project), Samarpan Ashram-Dandi Raksha Shakti University- Ahmedabad, etc.

Plant Specifications:

- Cost: 3.5 4 Crore
- Capacity: 0.5 MLD
- Space Required:500 750 sq.mt.
- O&M expenses- 5,000-10,000/Month

Components of treatment plant:

Advantages

- Decentralized system useful in areas with space constraint
- Low operation and maintenance cost
- Does not require skilled human resources for operation.
- Re-use of treated water
- Low/Nil post installation management burden.

Settler Tank| Horizontal Baffled Reactor| Constructe

Constructed Wetlands | Polishing Ponds

Technical Details(SP Stadium)

- Freshwater Source: AMC supply + Bore Well
- O& M Cost : 40-50,000/Month
- Freshwater consumption/day: 15,000 Lit.

- - Treatment Type/Level: Ultra Filtration Plant
 - Footfall/day : 500-800
 - Water recycled from last 7 years.

- Capital Cost:52
 Lakhs/Unit
- Treatment Plant:
 3.6 lakh lit/hr.

- Very less amount of water is being discharged into sewerage network.
- AMC practices reuse at **14** such swimming pools in city with individual **UF TP**.

Technical Details(Sabarmati Riverfront)

Key Challenges faced while implementing SRFD Project

- Unorganized Gujari Bazaar of more than 1200 vendors on the banks of the river.
- Thoroughly polluted and contaminated Sabarmati river through 38 storm water outlets.
- Nearly 160 *Dhobis* using both the banks of the river for washing activities.

(Source: Sabarmati Riverfront Development Corporation Limited)

Technical Details(Sabarmati Riverfront Interceptor Lines)

• Pollution of the river from the 38 storm water outfalls and industrial effluents, for that integrated storm water and sewage system with interceptor sewers has been installed.

- Dia. For interceptor lines ranging from **1200 to 2000mm**.
- At present, 90% of the WW is being trapped by Interceptor lines.
- Around 80 MLD of Untreated WW is conveyed from this interceptor lines to STP at south of Vasna Barrage & Pirana separately.

(Source: Sabarmati Riverfront Development Corporation Limited)

In, operation from **2011** as part of Environmental improvement objective at SRFD Project.

Technical Details(Sabarmati Riverfront Park)

Subash Bridge Garden

50,000 sq.mt.

Reuse potential: 0.1 MLD

Area:

Area: 18,500 sq.mt. Reuse potential 0.038 MLD

- At present fresh water application, to maintain landscape
- Water source: Each park has individual bore well.
- Water disposal: Generated WW from Toilet, • Cleaning of promenades is directly disposed into sewer lines.

Flower Garden

Event Ground

Garden Area: 52,000 sq.mt. Reuse potential 0.104 MLD

Event Ground: 25,000 sq.mt. Reuse potential: 0.05 MLD

(Source: Sabarmati Riverfront Development Corporation Limited)

Technical Details(Sabarmati Riverfront)

Total Water Requirement/Day for maintaining Landscape & other applications: 1.5-2.0 MLD

Policy Intervention: Mandatory treatment plant for new development along riverfront with specific capacity respective to the built-up Area.

(Source: Sabarmati Riverfront Development Corporation Limited)

Technical Details(Sabarmati Riverfront)

Proposed Technology

- Sequencing Batch Reactor(SBR)
 - Membrane Bioreactor(MBR)
 - CDD Technology

(Source: Shubham Inc, Ahmedabad & CDD)

Funding Mechanism

- Likely revenue from sale of land Rs. 2300 Cr.
- Out of which, Rs. 1200 Cr. to be returned by SRFDCL to AMC.
- A corpus of Rs. 500 Cr. to be kept aside for O & M Exp. of the project.

WWM

Cost of Installation

Civil Work: 60 lakhs & System: 18-20 Lakhs, O&M Cost: 27-30K per month System: 0.8 -1.0 Crore O&M Cost: 45-50K per month

System: 1.2 Crore/ 150KLD, O&M Cost: 8K per 150 KLD per month

Comparison with Alternative Technologies

(Source: Sabarmati Riverfront Development Corporation Limited)

Project Feasibility & Structuring

Cost of Ground Water Extraction v/s Cost of treated WW.

 $\begin{array}{l} \textbf{5-6Rs/kl} \text{ is cost for extraction v/s } \textbf{4-6Rs/KL} \text{ for STW} \\ \textbf{10-12Rs/kl} \text{ for TTW}. \end{array}$

retention & recharge as self sustained model.

Project Benefits

Under Gujarat State Reuse Draft policy_2017, it ask for clear measures to restrict Ground water use for Public parks, gardens, nondomestic uses, etc.

- Direct cut on extraction of ground water(1.5-2 MLD), help to reduce **ground water depletion.**
 - (1.5-2 MLD), help to reduce
 Taping Untreated WW from the inceptor lines directly in return helping in reducing the load on existing infrastructure.
 As, a part of Environmental improvement objective with goal for water

Business Model & Project Structuring

Three Business models based on the needs of local government & Market conditions are,

Ahmedabad International Airport

WWM

(Source: AAI Office, Ahmedabad)

SVPIA Total Area: 45.5 lakh sq.mt.

(7.4 million passengers,165 Aircraft/Day)

- AAI Office, Ahmedabad
- Airport Terminal 1(45,000 sq.mt.) & 2(52,000 sq.mt)

Garden/Landscape Area – 1.35 Lakh sq.mt.

TTP(In operation from 2010)

- Spatial Study Technical Details(TTP at Airport)

Fresh water Consumption/Day:5–6Lakh Lit. . Source- AMC supply Applications of Freshwater- Flushing, Drinking, Cleaning, Primary water for chilling Plant of AC.

Total amount of Wastewater Generated/Day: 4 - 4.5 Lakh Lit.

Treatment Capacity:0.5MLD Treatment Level: Tertiary Treatment O & M Cost - 1.5 to 2 Lakhs/Month (Including Electricity, Staff, Chlorine Cylinder)

Applications for treated Wastewater:

- Maintaining Landscape of 1.35 Lakh sq.mt. (Usage: 3 Lakh Lit./Day)
- Cooling tower purpose (AC system of 2 terminals) (Usage: 1.5- 2 Lakh Lit./Day)

(Source: AAI Office, Ahmedabad)

Technical Details(Applications & Future Provision)

Future Provision

Installation of two **0.75 MLD TTP** with higher efficiency & treatment level near ATC tower (By Dec,2018).

Following MBBL for Climate Resilient Construction-**Environmental Clearances** it ask for, Sewage Treatment Plant with 100% efficiency shall be installed.

(Source: Model Building Bye Laws-2016 & AAI Office, Ahmedabad)

Intervention

- Use of WSUD concept for existing infrastructure on both terminals.(Reuse of Greywater for flushing).
- Layout of Dual Plumbing system from 2 new 0.75 MLD TTPs to new development & expansion near Terminal 2.

Parameters defining best Reuse Practices

— Inferences from best Reuse Practices in India

WWM

Institutional	Technical	Financial	Stakeholders
Bangalore Case Study	Delhi's Initiative	Chennai's Reuse Model	Surat's PPP model
 First city to initiate wastewater reuse in municipal sector by 1990. 	 Delhi Jal Board installed dual water pipeline system in new development. 	 Chennai Municipal corporation charges Rs.100/month irrespective of usage. 	 As a part of ADB-Gol & GoG initiative, preparation of strategic business model.
 Preparation of Technological & Manual Guidance for Reuse/disposal Wastewater. 	 Use Specific installation of treatment plant. 	 City's economic resource(Sewage) is sold to Chennai Petroleum Company Limited(CPCL). 	 To involve industrial sector, implementation of rational pricing for water to incentivize wastewater.
 Guidelines for supplying through Dual Water Pipeline to new developments. 	 At present, Delhi Jal Board retrieves 40 to 50 MCD by tertiary treatment. 	 CPCL uses Advanced TTP to filter sewage reclaims 41 MLD of water for reuse. 	 As per Water Meter policy,- SMC,2008 all religious, commercial, non-residential connections are
 Integrated Domestic WSUD concepts in residential units/small scale treatment plant in Resi.Townships(150 KLD-1 MLD). 	 Application: GW recharging, household, Irrigation, Fire Stations, Water cannon, etc. 	 CPCL pays Rs.12 crore per annum to Chennai Metropolitan Water supply & Sewerage Board. 	 metered. Online Payment Security by SMC, creation of payment reserve account.
 Application : Residential, Gardens, International Airport. 			 Proposed- Recovering at least O&M cost from potential users, limiting ground water abstraction.
 International Case study: Japan Greywater Reuse. 	 International case study: NEWater, Singapore 	 International case study: Ghana, West Africa 	 International case study: Beijing, China

(Source: Water Recycle & Reuse- Workshop, MoUD)

Suitable Regulatory Framework Assessment

Three forces that influence Reuse

- Water Security

 Treatment level of treated wastewater
- Sustainable use of natural resources

Utilization of Treated wastewater in India is influenced by Certain factors

Direct Factors

- Policy Framework/ Regulations/Bye-Laws, etc.

Indirect Factors

- Availability of fresh water at very Low Rates
- > Preparation of India specific Recycle & Reuse guidelines which accommodates **STPs** in policy to encourage the reuse factor.
- > Setting up mandatory targets for Re-use in specific sectors such as irrigation, industrial & commercial.
- Capacity building for institutions(ULBs) to improve collection efficiency, Supervision & Efficient Enforcement for the existing regulations/bye-laws.
- Inter ministry cooperation between different hierarchy-Local body, Ministry of Industries, MoA, MoUD.(Clarity in roles & responsibility, contract structuring).
- Involvement of private sector with strategic business model/subsidizing on capital investment for treatment plant.
- Stakeholders(Potential users, NGOs, CSOs, etc.) engagement at formulation stage for WW management & FSSM strategies while considering WW treatment cost v/s providing fresh water.
- > Indicators to be developed to track the efficiency & accountability for service delivery, O&M contract through PPPs.

Comprehensive Plan

Agriculture Reuse

- Direct Treated 341 MLD
- Indirect Reuse in periphery villages

INTERVENTION

Industrial Reuse

30 MLD TTP, Vinzol Cost-58.95 Crore

Residential/Commercial Reuse

- Residential Townships Reuse- 4.0 MLD Cost-5.85 Crore
- Major Projects 3.5 to 4 MLD Cost- 16 Crore

Public Domain Reuse

Parks/Gardens Reuse- 13.48 MLD Cost- 60.66 Crore

Total Cost – 150 Crore

Overall Reuse Benefits Dec,2018 Overall Reuse – 51.48 MLD 3.81 Lakhs 5.85% By 2021 Overall Reuse - 170 MLD 12.50 Lakhs **18.72**%

(Source: CPHEEO Manual_2013)

Faecal Sludge Management (FSM)

Source: Primary Survey, Infrastructure Studio - 2017 276 /15

City Assessment: Issues(gaps) and Potentials

277 /15

Dependency of OSS facilities in AMC Zones

Continue of site visits

100%

Dependency on Sewerage system

Outer areas like Lambha, Vatva have sewer lines not existing or non – functional sewers.

Presence of slums with OSS is practised

Reducing dependency on OSS system new TP schemes implemented after 2011 and presence of more private players in NW7 area.

New secondary sewerage Network in Eastern, Southern, Western Ahmedabad 100% coverage in 2018 & completed in 2020.*

Construction of Sludge Hygeination plant & New Sewage Treatment Plant for South and North Zone in AMC limit.*

Uncovered areas getting covered by sewerage network : Lambha and Vatva till ring road*

Source: SLIP Ahmedbad, Amrut* and AMC**

278 /15

Project: Aim and Objectives

Vision: Wastewater as a resource

Aim : To develop a project on Faecal Sludge Management (FSM) for Ahmedabad City and its Peripheries.

Objective 1: Develop an efficient FSM service chain

Objective 2: Performance Monitoring and Improvement

FSM Proposal : AMC & Peripheries with OSS

WWM

Areas outside AMC dependent OSS

Lack of service provided by AUDA or GP leading to private players overcharging as high as 500 Rs against 30 Rs within

Unsafe disposal of faecal sludge by these private players is done into open field or water body

8 Villages (GP) Urban Municipality ward : Sanathal (Sanand) 3 areas – TPS is proposed SIR – Changodhar

Source: Primary Survey, Infrastructure Studio - 2017 280 /15

FSM Proposal : AMC & Peripheries with OSS

Institutional Arrangement : AMC + AUDA + GP (8 Villages) for extension of Zonal Contracts to peripheries

Contract Area	No. of Septic tanks	Faecal Sludge generated (cu.m./day)	WW generated (MLD)
SZ + Peripheries	23159	174	12
NWZ + Peripheries	5536	42	3
NZ + Peripheries	1872	14	1
TOTAL	30567	270	16
Design Year 203 Add. no. of Septic t	1: tank = 1832	Treatment is	required
AMC Boundar	Dra	ft TPS Sanctione	d
Zone Boundar	y PRC) Posed Stp (NZ)	
Water Bodies	180	MLD STP LOCAT	ION
Roads	Source:	Primary Survey, Infras	tructure Studio - 20
			281/1

– Existing Scenario: 3 cases

Sewered area in AMC

 Inefficient performance of sewerage network due to congested roads
 High Sewerage Connection Charges

Non - Sewered area in AMC

Monsoon GWT – 20-25 ft.

 > Water body being polluted by improper disposal of WW & haphazard installation of network
 E.g. Vatva – Non functional Sewers

Non - Sewered area in AUDA

Monsoon GWT- 20-25 ft. > Less distance b/w bore well & ST > Scum disposed off in water body or open field > Lack of enforcement by AUDA

Need to realize high degree of complexities to arrive at context specific solutions

Develop GDCR to insist on a range of on-site sanitation options as mandatory depending on location & groundwater table.

Source: Primary Survey, Infrastructure Studio - 2017 285 /15

	Existing Scenario:	3 cases —			
Se	wered area in AMC	Non - Sewe	red area in AMC	Non - Sewered are	a in AUDA
A State of the sta		Chandan Party Plot			
	Parameter	Conventional sewers	Settled Sewers	Septic tank	Effect
1	Excavation	Deeper	Shallow	Depends on groundwater level	+ve for Settled Sewers
2	Water Supply	More w/s (125-135 lpcd)	Less w/s (40 lpcd)	-	+ve for Settled Sewers
3	Separation of black water & grey water	No	Yes	Yes	
4	Capital cost	77 – 171 lakhs/km	8 to 15 lakhs/km	0.9 – 1 lakhs	+ve for Septic tanks
5	Individual Septic tank	Not required	Required	Required	+ve for conventional
6	O and M cost	Very high	Very low	High	+ve for Settled Sewers
7	People's perception	More preferred	Not Available	Less preferred	+ve for conventional
8	AMC	More preferred	Not Available	Less preferred	+ve for conventional
	hours -			Source: Pr	rimary Survey, Infrastructure Studio - 20

Source: Primary Survey, Infrastructure Studio - 2017 286 /15

Objective 1: Develop a efficient FSM service chain Solar Septic Tank

Heat transf Disinfection equipment chamber

Cost = 0.4 lakhs

Cost = 1.6 lakhs Life = 10 years Desluding period = 5 to 6 years OR Septic tank with chamber Vacuum suction emptier Septic tank If a septic tank based collection and treatment system is used Collection but there no capacity for onsite chamber for infiltration or transportation effluent offsite, the effluent is collected

Interventions : Schedule Cleaning of 2 years Enforce type of ST design in GDCR Remuneration of zonal contract linked to trips per day at STP

Image source: Sanitation value chain options, UMC and PAS

287 / 15

WWM

into a chamber and

transported using vacuum emptier trucks.

Options for treatment of Faecal Sludge

Treatment – Objectives

Intervention – Co-treatment of FS with STP

- **Basis for Intervention**
- 1. Recommended for Class 1 City**
- 2. Add. Design Capacity
- 3. Monitoring SCADA at STP can be used measure physical parameters

Source: *CPHEE0,2013 , **Advisory on Septage Management, MoUD,2013

Objective 2: Performance Monitoring and Improvement

WWM

Image Source: Advisory of Setpage Management, MoUD, 2013, Poster Do's and Don't of Septic tank, PAS 290 /15

— Fecal Sludge Management – Business Model

Proposed Model

			I					
	Cleaning Frequency	Once in 2 years	(Zone + Nearest settlements)	No of				
				Households	<u>6 cu.m.</u>	<u>3 cu.m.</u>	<u>Trucks</u>	<u>Admin</u>
	Number of Trips	6 per day	<u>South Zone</u>	23159	8	1	21	5
	Disposal	180 MLD STP	North Zone	1872	1	3	12	5
R	New Service Charge	Rs. 325 per cleaning	<u>NW Zone</u>	5536	3	1	12	5
	Removal	Both Sludge & Wastewater	<u>Trucks O</u> 6 cu m : 1	wned by AMC 2 3 cu m : 5	<u>Tot</u> 6 c	<u>al Trucks</u> u m : 12	<mark>; require</mark> 3 cu m : !	<u>d</u> 5

i T Fecal Sludge Management – Business and Financial Model

GAP: 80 lakhs

Expenditures : 138 lakhs Salary : 70.20 lakhs Diesel : 52.45 lakhs Repairs : 15.74 Total Income : 58.50 lakhs

Expenditures : 97 lakhs Salary : 70.20 lakhs Diesel : 20.2 lakhs Repairs : 6.06 lakhs Total Revenue : 58.50 lakhs Current Spending Salary : 466 lakhs Diesel : 37 lakhs Total : 503 lakhs Budgeted Income 25 _{lakhs} Gap 473 _{lakhs}

New charge collected : Rs 325 per cleaning Previous charge – Rs 30 Improper cleaning resulting in increased frequency Approximate money spent : 30*2*12 *2 = Rs. 1440 Or 30*1*12*2 = Rs. 720

Cost Recovery - Wastewater Sector

Current Cost recovery : 50% (2016-2017)

Financial Year	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30
Cost Recovery to be met	50%	51%	51%	52%	52%	53%	54%	55%	56%	57%	58%	59%	60%

Sewage Charges....????

Collected as **15%** of base Property Tax

Efficiency of Collection is **70%**

FINANCE

<u>Case 1</u>

"All expected expenditures to be met by property tax only with **current collection efficiency**"

<u>Case 2</u>

"All expected expenditures to be met by property tax by improving collection efficiency to 100%"

Cost Recovery – Water Metering

<u>Case 3</u> 🔌

"All expected expenditures to be met by property tax and water metering"

CONCLUSION

Vision | "Wastewater as a Resource"

2

Vision | "Wastewater as a Resource"

Vision | "Wastewater as a Resource"

Vision | "Wastewater as a Resource"

Effective service deliverance by FSM

Resource

Service

Revenue Income So

Defining Revenue Income Sources Sewage Charges Revenue sale of Treated water

Savings of 1500+ lakhs in annual expenditure

301 / 10

Swachh Amdavad

Public Sanitation

" Improve quality of life of people by having access to hygienic public sanitation facilities in Ahmedabad"

So key to clean and healthy urban environment is to focus on :

- ➤ adequate and efficient infrastructure provision
- ➤ robust operation and maintenance mechanism

≻awareness among public

Scope:

Study on access to toilets:

Community Toilets and Public Toilets

PUBLIC SANITATION IN AHMEDABAD

— DIFFERENT PUBLIC SANITATION SERVICE MODELS in CITY

	COMMUNITY TOILETS	FREE PUBLIC TOILETS	PAY & USE PUBLIC TOILETS	PUBLIC URINALS
USERS	COMMUNITY ONLY	NEAR BY COMMUNITY + FLOATING POPULATION	FLOATING POPULATION	FLOATING POPULATION(men)
LAND		AMC	AMC (to private body on lease for 10-30 yrs.)	
TOILET BLOCK CONSTRUCTION		AMC/PRIVATE BODY		
OPERATION	AMC	PRIVATE BODY (₹25000/month by AMC)	PRIVATE BODY (revenue from user fees fixed by AMC)	AMC
MAINTENANCE		AMC		
SUPERVISION		AMC	AMC	
OWNERSHIP		AMC SWACHH	AMC after concession period	305 / 1

- FIELD SURVEY

				۶	The	The second		
	•188 p maj	oublic convenience oped out of 1500	es			N X	The	
		• 50 visited		20			1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Туре	No. Visited	Constructed by AMC	Constructed Organisation ncy etc	l by n/age AMC	O & Mrby Organisation 7agency etc	Gender separated	Child, Differently abled friendly	User charges (₹)
СТ	2	1	1	2		2.	0	0
PT	33	18	25	A	29	33	17	Toilet:2-5
				~ (Bathing: 10-15
PU	15	15	-	15		8	0	0
				I			Source: AMC Seva App	, Google Maps

Indrapuri Ward Profile

- citizens and officials are engaged and dedicated towards making their Indrapuri Swachh
- Area: 9.4 sq km
- Households: 20104

PUBLIC SANITATION IN INDRAPURI

COMMUNITY TOILET in INDRAPURI

127

Location: Rakt pitya nagar/Leprosy colony (run by Gandhi Seva Sangh Trust)

Every House has an individual toilet.

COMMUNITY TOILET BLOCK	MALE (seats)	FEMALE (seats)
1 st	3	3
Constructed and m	aintained ³ by AMC	3

Observations

- toilets with stains
- rusted doors
- broken floor tiles
- no water in taps
- no soap for hand-washing
- no bins were kept inside and as well as outside the block
- no separate entry for men and women
- no provision differently abled people and not age friendly

Community engaged in Swachh campaign every Sunday

Major Issue: Infrastructure provision present, but lacking in O&M

COMMUNITY MANAGED TOILETS

AMC

Bear the water supply and electricity cost since these are major expenses

Provide the cleaning materials at subsidised rate

Under-take the major repair work

Regular Monitoring

Gandhi Seva Sangh Trust

Act as a facilitator

Assist in forming SSGs

Train the SSG members to adopt SOP SAFAI SHAKTI GROUP (SSG)

Operate and Maintain the CT.

Collect monthly cleaning fee^{*} from HHs. (utilised in purchasing consumables and equipments)

Spread awareness of hygienic practices.

*The fee shall jointly finalised by the community dwellers after taking into account all the recurring expenses needed in maintaining the toilet blocks.

Based on Trichy Community Toilet Model

Raktpityanagar or Leprosy Colony Community

- No. of toilet blocks: 2(each with 2-male, 2-female)
- No. of SSGs: 3 (SSGs selected on annual basis.)
- No. of members in each SSG: 10(with at least 5 female members)
- Rotation cycle:
 - Option 1: one month cycle
 1 SSG- 30 days
 1 SSG member 3 days
 Option 2: 10 days cycle
 1 SSG member 2 days

Community Managed Toilet Project(CMTP) Scaling up

- Based on Leprosy Colony model, CMTP shall be framed.
- Community classification:
- Project Phases:4

Type Phase 1	Com activ av	nmu ve 8 ware	nity k/or e	Existing NGO Phasupport
• Community Inventory crea	ation	Yes	• Imp C1	lementation in Yes
C2	ion	Yes	• Eng	aging NOOs in
 Bringing poter NGOS on boar 	ntial d.	No		No
			dwe	ellers

a un			
framed.	Туре	Communit y active &/or aware	Existing NGO support
	C1	Yes	Yes
	C2	Yes	No
	C3	No	No
Phase	3	Phas	e 4
Implementat C2	ion in	 Implemen C3 	tation in
Implementat C2 Sensitize C3 dwellers	ion in	• Implemen C3	tation in
Implementat C2 Sensitize C3 dwellers	ion in	• Implemen C3	tation in
Implementat C2 Sensitize C3 dwellers	ion in	• Implemen C3	tation in

PUBLIC URINAL in INDRAPURI

Public Urinal: 5

- For male users
- Constructed and maintained by AMC
- Mostly the surrounding areas had bad odour
- Hand washing facility was not observed.

- Due to irregular cleaning and lack of proper monitoring has resulted into:
 - \succ insanitary condition of public urinals and mobile toilets

≻disturbing experience for the passer bys, specially pedestrians and vendors in the vicinity.

- The reasons behind such issues:
 - ≻Lack of man power
 - ≻Lack of finance
 - ► Lack of due importance/involvement
- Public urinals only for male users, no provision for female users.

Intervention

- Converting the existing one into waterless urinal either by:
 - Retrofitting
 Replacement
- Various technologies:

DESCRIPTION	MEMBRANE TYPE	SEALANT LIQUID	BIOLOGICAL BLOCKS	ZERODOR TYPE
Odour control	Good	Good	Good	Good
Retrofitting possibility	Yes	No	Yes	Yes
Replacement of parts	Membrane to replaced annually	Sealant liquid (apprx 1000 users) Cartridge replacement –once a year	Bio blocks once in 2- 3 days based on usage	Not required
Cost of system	Trap cost-₹1200	Entire system-₹6500 to 14000	One Bio-block-₹ 20	₹2000 to 3000 for converting existing one
Maintenance of pan & Trap	High	Medium	Low(only pan)	Low(only pan)
Spece http://web.iitd.ac.i	ns chanigraf WLLIRespurces 2020	BeckFillal of Cartridge	Supply of bio block	Nil 317 / 10

PUBLIC TOILET in INDRAPURI

SWACHH

Observations at mobile toilet located opp. to vegetable market

- Irregular cleaning by AMC sweepers .
- Regular water supply into overhead tank by AMC but no water by afternoon because of the broken water pipeline.
- People are urinating or defecating in the open space behind the mobile toilet.

Solution

- Installing e-toilets which are:
 - automated and do not require manpower for cleaning
 - remotely monitored with the help of GPRS technology.
- There are different e-toilet models available for men and women users (provision of MHM facility).
- The basic model of the toilet costs ₹2 lakh, while the advanced stainless steel version costs ₹ 4-5 lakh.(as of 2016)
- After installation, the operation costs are covered through the small usage charge and the income derived from the advertisement area on its interior and exterior walls.

Free PUBLIC TOILET in INDRAPURI

Free Public toilet (Niti nagar)

- Operated by Maha Gujarat
 Foundation
- Mostly used by nearby
 Valmiki Samaj community
- (500-1000 users daily)
- Open Timing: 24*7
- Caretaker unable to
- maintain regularly due to monetary issues.
- Handing over materials from agency to caretaker in presence of AMC official every 1st of the month.

- Stricter supervision by the AMC officials
- Stronger actions against the sweepers failing their duty
- height of the compound wall isolating toilet blocks from the road can be reduced upto the extent where road activities or the passer bys are visible

Free Public toilet (Tusharbhai Deshmukh Municipal garden)

- Lack of regular cleaning.
- Two blocks out of only one is opened for public.
- No separate toilets for men and women.
- Design not women friendly

Sanitation in Municipal school

SWACHH

MAJOR ISSUES

- Daily cleaning
- Regular maintenance
- No water supply within toilet for hand washing
- Lack of Facilities: (1) soap/sanitizer for handwashing (2) MHM
- No separate toilet for CWSN

Intervention

- AMC should sign the annual School Sanitation Contract, wherein the contractor shall have to:
 - follow the SOP guidelines laid out by AMC for cleaning and maintenance of the toilets
 - report to PHS of ward about water or electricity related issues
 - provide facilities and instructions on how to use them like- liquid soap for handwashing, necessary accessories for girls
 - spread awareness about importance of hygienic practices through posters.
- Performance based contract.
- The same contractor shall be appointed to clean fixed number of schools in one particular zone considering the shifts in the schools assigned and the student strength.

Thank You

Heritage Through the lens of Water and Sanitation

Prepared by :

Ghata Radia Palak Panchal Yash Sugandhi

Living Heritage of Ahmedabad

HERITAGE

Teen Darwaja

Jama Masjid

WATER HERITAGE

Sarkhej Roza Tank

Manek Chowk

Pols

Our Understandings WHAT WE IDENTIFIED IS !!!

- Our Understandings

Institutional Framework

— Profile

AUDA AMC Old City 200 m Buffer ASI 100 m Buffer ASI	1878.0-sq.km. 449.0 sq.km. 5.4 sq.km. 2.1 sq.km. 0.7 sq.km.	3 % -2% 8 % 3 % 7	2		ATI RIVER	Shahpur 1 Shahpur 2	11 Dariapur 91 Dahi	12 CRakla toPrem barwaya Dariapur 1	27
Level of Institution	Institutions	Fort	Stepwe Ils	Pols	Mosque	Temples	Lake	Gates	Pol Houses
National Level	Archaeological Survey of India, GOI	2	3		37		2	10	
State Level	State Department of Archaeology, GOG		1				1		
Urban Local Body	Heritage Department, AMC		15	600			5	3	2244
Community/Trust	WAQF, Sarkhej Roza Committee, Hindu & Jain Community, Trust, Vahivatkarta, pol panchayat				10	2			

Reconnaissance Survey

14 INVENTORY FOR INTANGIBLE SURROUNDING

HERITAGE

332 / 70

Issues Identified at First Glance

SEWERAGE

Open Drains in Pols

Open Drainages near Astodia Gate

Manual Process of Cleaning Old Drainages

URBAN PRESSURE

Encroachment in front of Entrance

WATER

Dried up Step-Wells

SOLID WASTE

Uncleaned Public Toilet and Littering near Amrutvarshini Vav

Solid Waste inside Dried Step-Well

Ancient Water Systems in Ruins

MULTIPLE STAKEHOLDER

for management of infrastructure services

61% Littering Present **40%** Dustbin Present **6** out of **14** Heritage Precincts have Public Toilet

Why Intervention is necessity ??

41st session of the World Heritage Committee Krakow, Poland 2-12 July 2017 City of Ahmedabad was inscribed into UNESCO World Heritage City

Criteria considered for Inscription of City of Ahmedabad as Heritage City

(ii) to exhibit an important interchange of human values, over a span of time or within a cultural area of the world, on **developments in architecture or technology**, monumental arts, **town-planning** or landscape design;

(v) to be an outstanding example of a traditional human settlement, **land-use**, or sea-use which is representative of a culture (or cultures), or **human interaction with the environment** especially when it has become vulnerable under the impact of irreversible change;

(vi) to be directly or tangibly associated with events or living traditions, with ideas, or with beliefs, with artistic and **literary works of outstanding universal significance**.

UNESCO Requests the State Party to submit to the World Heritage Centre, by 1 December 2019, a report on the **implementation of the recommendations**, for examination by the World Heritage Committee at its 44th session in 2020.

Source: http://whc.unesco.org/en/decisions/6889

For Detailed list of <u>Recommendation</u>

- Vision

VISION

To create a consensus by preserving the *fragile intangible*

heritage precincts in Ahmedabad focusing on its Clean

Surrounding and Management of Water as a Resource.

OBJECTIVE : WATER AS RESOURCE IN WATER BASED HERITAGE MONUMNETS

- To identify and preserve built-heritage which were associated with practices of water such as preserving natural watershed, rain water harvesting system, tankas as storages.
- To create a consensus among stakeholder about the idea of Water-Heritage by restoring Water System and Network, which are vulnerable to be forgotten.

OBJECTIVE : SWACHH SURROUNDING

 To sanitize heritage city of Ahmedabad by inclusion of component like Solid Waste Management and Sanitation in Integrated Management Plan (Heritage)

Detailed Study Area

Our Pilot Study Areas is limited to 100 m buffer area:

Area 1 : Cluster of 3 monument near Jama Mosque Area 2 : Cluster of 3 monument near Amrutvarshini Step Well Area 3 : Cluster of 3 monument near Delhi Darwaja Area 4 : Sarkhej Roja

Heritage Solid Waste Management

- Solid Waste Management WHAT WE SAW AT FIRST GLANCE IN HERITAGE PREMISES AND PRECINTS !!!!

14

Unhygienic condition of collection points in Old City

n Old City

Generic Issues

- Maintenance of monument premises
- Solid Waste dumping in Step Wells
- Segregation by Rag Pickers
- Cattle feeding from Waste Dumps
- Dumping of Kitchen Waste
- Unhygienic Collection Points

Sanitation Ranking of Ahmedabad Swachh Survekshan – 2017

Spatial Analysis of Solid Waste ISSUES

2. Type of Waste*

3. Frequency of Collection of Waste

Stakeholder Consultation

We all shopkeepers are tired of Food Waste which is spilled over during night time in Manek Chowk

Food Waste near Jama Masjid

Laur of Waste at source

Manek Chowk lacks dustbin availability leading to road side littering

Rani no Haziro

HERITAGE

Twice in a Day

339 / 70

Area 1 Assessment

Characteristic of waste: Organic, Paper & Plastic Nuisance Point: 6 No. of Official Collection Points: 3 No of waste pickers involved in area:15-17

- 80-90% coverage is present for vegetable market but collection frequency is only one time in a day.
- Wholesale Fruit market has no collection point they throw their waste in community bin. They have private sweeper
- Vendors & shopkeepers do not have a dustbins.
- In night time 90% waste is organic due to Manek Chowk
- Handcarts are provided for these markets for 2 times collection in a day.
- Street sweeping is done only one time in a day early morning

Manek Chowk till morning hours

3 Tons Capacity Trucks

Barrels are moved to the Collection Trucks

- Spillover of food waste while transporting and dumping in truck.
- Dustbin without wheels make them drag barrel to 600 m distance
- Rough way to handle barrels is being observed

Rag Picking

- No monitoring on quality of sweeping and on whether mentioned number of sweeper in contract present or not
- Rag Picker collects Plastic, Glass and Paper from rotten leftover.

- Un-availability of proper equipmed dry waste
- Dogs and Cows feeding on leftor

Generic Issues

- Maintenance of monument premises
- Solid Waste dumping in Step Wells
- Segregation by Rag Pickers
- Cattle feeding from Waste Dumps
- Dumping of Kitchen Waste
- Unhygienic Collection Points

Area 1 Specific Issues

- Un-availability of proper equipment's with workers
- Absence of monitoring on quality of sweeping and cleaning.
- Excessive littering during business hours in manek chowk
- Organic waste is not segregated (kitchen, fruits and vegetable)
- Rough handling and unhygienic condition of barrels/dustbins
- Parking at collection points in day time
- Dumping of un-sold food at collection points

Best Practices

कचरे से बनी बिजली से रोशन हुआ बिट्टन मार्केट का हाट बाजार

भोपाल । बिट्टन मार्केट का हाट बाजार अब कचरे से बनी बिजली से रोशन हो रहा है । यहां 1 करोड़ पांच लाख रुपए से बनकर तैयार हुआ बॉयोमिथेनाइजेशन प्लांट पर कचरे से बिजली बनाने का काम शुरू हो गया। छह महीने पहले प्लांट की शुरुआत हुई थी, पहले इसमें मीथेन गैस बनाई गई, इसके बाद गैस को परिवर्तित कर मार्केट में लगी स्ट्रीट लाइट को बिजली सप्लाई की जा रही है। निगम अधिकारियों ने बताया कि प्लांट में मार्केट से निकलने वाली सब्जियों को ग्रीन वेस्ट और एमपी

नगर के होटलों से आने वाले किचिन वेस्ट का निष्पादन किया जा रहा है। शहर का यह पहला प्लांट है, जहां कचरे से बिजली बनाई जा रही है।

Intervention

AWARENESS DRIVE THROUGH IEC

Loudspeaker on Waste Picking Truck Installation of loudspeaker on Waste Picker trucks for creating awareness to keep the heritage precincts Swachh

CSR

Community

Committee

Community

Committee

Trust

NGO

AMC

Trust

NGO

Launching of monthly Heritage Newsletter AMC

Local newspaper and AMC can initiate newsletter to promote cleanliness and Clean Precincts competition in Heritage Area

Spot Fixing Cleaning Drive

A group of people can come together to clean nuisance point on weekly basis. AMC should provide full resources for successful delivery.

Swachh Heritage Ambassador

His role is to promote and build capacity and promote segregation of waste to other shopkeeper, rag pickers and make them aware about the UNESCO Heritage status.

AMC should give separate Dustbins

AMC should provide separate dustbins to Shopkeeper in Manek Chowk so that waste can be segregated at source.

CONTRACTS

Contract : MIS System for Cleanliness Worker

 Development of Management Information System for monitoring and maintaining records of staff attendance and performance, fee collection directly from Ahmedabad Municipal Corporation

Performance Based Contract

- For those working in Heritage Precincts, 2 day mandatory capacity building workshop.
- Proper Equipment for Worker
- Direct transfer of salary based on Bio-metric System

DESIGN SOLUTIONS

Nuisance Points Competition for students and professionals

TECHNICAL SOLUTIONS

Segregation and Reuse of Organic & Kitchen Waste to Energy

Ahmedabad Municipal Corporation can in with coordination with APMC Market can install Waste to Energy Plant. Capital Cost: 2 Crores Capacity: 5 Tons/D Total energy generation: 5 MW

For Details

Heritage Public Toilets

Spatial Analysis of Public Toilet in Heritage Precincts

State of Public Toilets within 100 m of ASI preserved Heritage Precincts

Existing condition of Public Toilets/Urinals surrounding heritage Precincts

State of Public Toilets within 100 m of ASI preserved Heritage Precincts

Existing condition of PT/CT

Encroachment in front of

Waste dumping near PT

Assessment of PT/PU

Types of Toilet	No.of Toilets	Average No. of Users	Managed By AMC	managed by Private agency	Gender seperated	Paid_Unpaid
Public Toilet	6	1000	3	3	6	Paid
Community toilet	2	300	1	1	1	Unpaid
Public Urinal	7	1200	7	0	0	Unpaid
Mobile Toilet	1	150	1	0	1	Unpaid

Intervention : Retrofitting of PT/PU

CSR through Private companies like NTPC, Godrej, Amul

Mobilize funds for advertisement rights through involving private sectors.

Jan skti sewa(Local trust) BOT Maintaining

Tri-partite agreement for maintaining of public toilets (TPA) between AMC+ Private compony+Local trust(NGO/CBO)

The revenue from the user fees should contribute to pay for Maintenance of PT

359 / 70

To exploit the advertising potential, the private contractor entered into a contract with a public outdoor advertising

HERITAGE

Bétere

Retrofitting of PT : Operation & Maintenance : Toilet Maintenance policy should encourage corporates to provide funds for the O & M of toilets through their CSR funds.

(\$)

Heritage Water as Heritage | Sarkhej Lake

Sarkhej Roza : Context

Area: **Total Area: 24 Acres** Roza Tank: 17 Acres Events at Sarkhej Roza: Sarkhej Roza Lighting Heritage Day Sufi Festival **Award Ceremony** Concerts Mushairas Rajab festival celebration Celebration of Janmashtami Round table meets **Tree Plantation**

1. High rate of excavation from the lake has lowered the level of Makarba talaav

2.Upcoming New development has disturbed watershed of Makarba lake

DEC,2000

FEB,**2001**

FEB,2017

ISSUES:

Natural Flow Obstructions & Drying Of lake •

ISSUES MONUMENT PRECINCTS : SARKHEJ ROZA (Water Based)

ISSUES:

• Natural Flow Obstructions & Drying Of lake

Sarkhej Roza Watershed

Source : Elevation points from zomus.com

ISSUES MONUMENT PRECINCTS : SARKHEJ ROZA (Water Based)

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake

Issues

Eutrophication in Makarba lake

Eutrophication in Roza lake

HERITAGE

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..

Issues

Sweeping and maintenance:

Tomb:

- Sweeping is done by housekeeping staff and the rituals are performed by Maulana.
- Steps: ASI allocates 12-15 people 1 times on yearly basis for its maintenance.

Toilets:

 Total 20 gents toilet and 10 ladies toilets 16 WC and 4 urinals in gents toilet.

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..
- No cleaning of stairs surrounding Roza lake

ssues

- No Proper Maintenance
- No. of staff is decreased from 10 to 4
- Very less people are coming due to lack of maintenance

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..
- No cleaning of stairs surrounding Roza lake
- AMC garden just within Sarkhej Property is not being maintained properly.

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..
- No cleaning of stairs surrounding Roza lake
- AMC garden just within Sarkhej Property is not being maintained properly.
- Obstruction in the way of paths for inlets of water from surrounding area.

800 Feet Tube well –AMC

- Used for water supply without any treatment except chlorination
- Contaminated water supply.

80 Feet well – -No water -Used for throwing Religious books

HERITAGE

ISSUES:

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..
- No cleaning of stairs surrounding Roza lake
- AMC garden just within Sarkhej Property is not being maintained properly.
- Obstruction in the way of paths for inlets of water from surrounding area.
- Poor quality of water being extracted from Bore wells just beside Roza lake Depth = 1000feet, 800 feet

369 / 70

Activities	Implementing Agencies	Approvals	Funding
Watersupply	SRC	SRC	SRC
Drainage	SRC	ASI	ASI
Electricity	SRC	SRC	SRC
Accessibility	ASI	ASI	ASI
Marketing	SRC	SRC	SRC
Land Use	SRC	ASI	SRC

"The Archaeological Survey of India (ASI) was renovating the monuments around the lake, but they did not stop the illegal excavation because they are "only supposed to take care of the monument and not the water body adjacent to it", says an ASI official."

ISSUES:

- Natural Flow Obstructions & Drying Of lake
- Black water is draining into Makarba lake
- Eutrophication Within Makarba lake
- Solid Waste Dumping
- Silting and sludge are contaminating Makarba lake and depleting rate of water recharge..
- No cleaning of stairs surrounding Roza lake
- AMC garden just within Sarkhej Property is not being maintained properly.
- Obstruction in the way of paths for inlets of water from surrounding area.
- Poor quality of water being extracted from Bore wells just beside Roza lake Depth = 1000feet, 800 feet
- Governance

Best Practices:

Udaipur Lake conservation System: JHEEL SANRAKSHAN SAMITI

- silt removal Programs
- Developing Reservoir operation policy

To maintain Minimum conservation pool level of at least 10% of total storage capacity of lakes at all times.

Revenue generation : No water no Tourism

transferring the surplus water of nearby Sabarmati basin.

Water Augmentation and Governance

As helper: Image: Constrained of the second of th	<image/> <text></text>
Management role	Awareness

Source: Citizens Role in Ecological, Limnological, Hydrological Conservation of Udaipur Lake System.

Proposals

1. Makarba Lake

- Clean Lake from Eutrophication
- De silting of lake

)

- Seal openings of all sewage lines into lake
- Provision Of foot path along lake to Prevent OD
 - Provision Of signages that can aware people if there is any pollution in waterbody

	સૂચના
શેવાળ છે?	પાણી પીવા યોગ્ય નથી
મચ્છર હાજર છે?	સ્થાનિક સંસ્થાઓને જંતુનાશક છંટકાવ માટે પૂછો
આંગુ સીવેજ નિકાલ થાય છે?	સ્થાનિક સંસ્થાઓ પાસે ફરિયાદ કરવી
ક્લોટિંગ ડિબ્રીસ અને કાદવ નિકાલનું પ્રમાણ વધુ છે?	ઓગળેલા ધન કચરા દ્વારા દૂષણ
પશુ સ્નાન થઈ રહ્યું છે?	લોકોને તેમના ઢોરોને સ્નાન લેવા દેવા અટકાવો

If any of Above present then contact management Agency

Proposals

Water supply

- Barrier free Water inlets.
- Provide Treatment Facilities to the water before supply to people
 - 1.Alum Treatment2.Chlorination3.Primary settling of solids
- Planned growth of surrounding land such that it can not disturb natural drain and watershed
- Use Religious Well as a recharge well from roof top rain water harvesting purpose.

Solid Waste

- Clean steps surrounding Roza at least once in month by ASI
- Use Ancient religious well as a recharge pit for R.W.H.

Helping Agencies And their Roles

ASI	Sarkhej Roza Committee	Waqf Boards	
 Research and protection of the cultural heritage Maintenance 	 Maintenance Seeking permission from ASI regarding any construction, repair and renovation Organizing events Rent collection Staff recruitment 	 Litigations Tracking Management Properties Registration Management Funds Management to Mosques, Durgah, Kabristan, Imams ,etc 	
National Monuments Authority (NMA)	Amdavad Municipal Corporation (AMC)	ASI AUDA	Funding :
 Protection and preservation Statutory provision Seeking permission for construction/repair/renovation Grading and classification 	 Creating awareness Providing basic utilities Initiating restoration efforts 	AMC Gujarat Tourism House of M.G. INTECH – Gujarat Chapter	Rs.9 crore AMC spent on storm water drainage lines in Vejalpur and Makarba village
3		H.N. Safai Navneet Publication Parsoli Motors	6.84 crore worth of projects
		The Craft of Art	by AMC under JNNURM

— Costing

Work	Length / Area	Per Unit Cost	Total cost	Operation cost	Total cost
Clean Lake from Eutrophication	100000	45	4500000	225000	4.73
De silting of lake	100000	65	6500000	325000	6.83
Foot path provision	2250	600	1350000		1.35
Provision Of signages					0.03
Railing surrounding lake	2250 sq.m	700	1575000		1.58
Maintenance of AMC garden					0.20
Barrier free water inlets					0.20
Use Ancient religious well as a recharge pit for R.W.H					0.15
					0.20
				Total cost of	15.25

Crore

Heritage Stepwell

Step wells- A traditional water Harvesting systems

Amrit varshini vav -----Step wells **Depth = 25 m.** Location: Nr. Panchkua Gate. **State Protected Monument** Dada Hari ni vav Ancient practices to use water from step wells Built area below ground level enhances Beauty Amrit varshini vav

HERITAGE

377 / 70

Step wells- A community level traditional water systems MONUMENT PRECINCTS : Issues

ISSUES:

No water present
 Solid waste dumping
 Urban pressure

Lowering of G.W.T from 25 m to 100 m within central zone of Ahmedabad

Source: Water Group

Interventions MONUMENT PRECINCTS: Step wells

DCR based Interventions

Enforcement to people for compulsory water recharge according to Aquifer of that Stepwell.

recharge wells- structures 3 to 5 feet in diameter and 10 to 30 feet deep are being dug and rooftop rainwater filtered and led into it.

Management Intervention

There is a provision of Fine of Rs. 5000/- over throwing garbage inside it. But monitoring should be strict for this rule.

Urban pressure should be removed as nobody can actually identify location of the step wells.

Considering One criteria of narrowed streets and lack of spaces within old city to provide recharge wells. In order to solve this problem we can Directly recharge into stepwell within its catchment area. **3.84 lakh** litre within step well itself and cost for one step well is approx. **1.5lakhs.**

Interventions: MONUMENT PRECINCTS :2 Scenarios State Protected monument Scenarios Implementation / Impact Output

PPP or CSR based Small scale business, Revenue generation, Cleanliness also maintained by them

HERITAGE

5% of their profit or

minimum token amount whichever is less will be taken by government as a part of contract. CSR can also possible.

380 / 70

Involve local community and bring them together to explain importance of this older system to tourists and they can promote it.

Heritage Tankas and Rainwater Harvesting

Traditional Rain water harvesting system

Tankas as a 'Living Heritage'

'Unique underground structure has immense potential to solve the water crisis '

First flush system Average Volume of tanka: 58cub.mt which contains 58000 liters/tanka Harvested water /HH/ Da:148

liters

Reasons For dying tankas:

- Availability of Municipal tap water
- Lack of maintenance
- No strict regulations for tankas in DCR
- Lack of awareness towards importance & function of tankas

HERITAGE

Existing Tankas: **55** Tankas in Use: **17-18**

Current Practices

Tankas and Pol House of Ahmedabad

Catchment area: 32sq mt Harvesting potential: 20,400 Capacity: 1,03,000 liters

Principal: The basic principle of water used in tankas was collected of direct rainwater from rooftops and diverting it to underground storage tanks through gravity.

Usage

Drainage:firstflush system,overflow pipe,both connected to a storm water drain, which leads to the outside.once the tank is filled excess water is diverted directlyto the storm water drain.

Well Recharge, Pol House of Ahmedabad

AMC:1,65,000

harvesting Tank

Possible Solutions for reviving the Tankas:

Make it incentivize:

Give subsidy or Tax relaxation in retrofitting of tankas Like property tax rebate.

TDR shall be provided to unnotified buildings through improvement in the grade for revival of tankas.

Involve database monitoring system for tankas in each pols

Heritage building shall be classified on the basis of its traditional water heritage system.

Give tradable floor space:

Heritage structure	Possible Tradable FSI	Grade				
Tankas in Use	50% of utilized FSI	Grade-1				
Tankas with AMC supply	30% of utilized FSI	Grade-2				
Tankas exist but not in Use	10% of utilized FSI	Grade-3				

Benefits:

- Traditionally it has 24*7 efficiency of water
- It can reduce the potable water demand during monsoon

Promote water heritage through Living Heritage Museum:

AMC should prepare nominations for that museum so that traditional water practices can get a boost & international recognition for water heritage precincts of Ahmedabad [engage technical experts, water professionals and the creative arts community through a networked-approach]

Revival of Traditional wisdom for stringing of rain water: a unique water heritage walk

Generating Awareness through: A unique water heritage walk **Jain Temple** Amritvarshi ni Vav Suthar ni Pol Jethabhai ni Pol Sabarmati Lagoon Diwanji ni Haveli Talia ni Pol Dhobi ni Pol Google 2 types of traditional water conservation practices **Community participation approach:** Advertisement hording in pols/wall Tanka of Haveli & Pols posters Pamphlet distribution Stepwell puppet shows through this walk

HERITAGE

385 / 70

Heritage Institutional Framework

Issues in Governance

Role of Department of Archaeology, GoG & Archaeology Survey of India, Gol

ASI and SDA recommend two buffer zones (100 meters and 300 meters) around the national and state heritage sites and structures for regulating and controlling development in the surrounding areas.

ASI has assigned Guard cum Sweeper to clean premises only

Role of Heritage Department, Ahmedabad Municipal Corporation

To deal with conservation and inclusion of Notified Heritage Houses. Their role is to manage TDR incentives and to enforce regulation made for heritage building under AMC.

Role of Health Department, Ahmedabad Municipal Corporation

Looks after Management of Solid Waste and Public Toilets

Cleanliness Responsibility Distribution

AMC managed Area*

ASI managed Area

- First UNESCO World Heritage City of India with multiple stakeholder and jurisdiction area with limited roles. Lack of Power and integration is absence.
- ASI sweeper works only into premises of monuments
- Heritage Department cannot initiate any cleanliness process on its own.
- No extra efforts for upgrading quality of space in terms of cleanliness made by Health Department.
- Public Toilet contracts are dealt by health department. Hence Heritage Department has no power to upgrade it for tourist.
- Heritage Department has no power to control encroachment by Hawker and on Parking.

HERITAGE

Private Owner

Roles of Different governing agency

Intervention in Governance Proposal 1

Development of Special Purpose Vehicle for efficient working towards betterment of Heritage

- Inclusion of multiple Stakeholder like ASI, State Archaeology Department, Heritage Department and various trust who owns and manage Monuments
- Strengthening the role of SPV in conserving, preserving monuments and most importantly by inclusion of responsibility of managing services (Solid Waste Management) and amenities (Public Toilet), to remove visual imbalance and nuisance in heritage precincts
- Officers from different department of AMC should be part of it and act as representative for mobilizing the decision.

- First UNESCO World Heritage City of India with multiple stakeholder and jurisdiction area with limited roles. Lack of Power and integration is absence.
- ASI sweeper works only into premises of monuments
- Heritage Department cannot initiate any cleanliness process on its own.
- No extra efforts for upgrading quality of space in terms of cleanliness made by Health Department.
- Public Toilet contracts are dealt by health department. Hence Heritage Department has no power to upgrade it for tourist.
- Heritage Department has no power to control encroachment by Hawker and on Parking.

Intervention in Governance Proposal 2

Implement UNESCO Recommendation that the state party give consideration to the following:

- Conduct **comprehensive and accurate documentation** of the historic buildings of the property, particularly the privately owned timber houses, according to accepted international standards of documentation of historic buildings for conservation and management purposes,
- Conduct a detailed assessment of the extent and impact of the new constructions and development projects on the western section of the property and its buffer zone,
- Ensure the effective **implementation of the Heritage Management Plan** and the finalization, ratification and implementation of the modification and additions to the development control regulations,
- Complete and implement the Local Area Heritage Plan as a part of the Heritage Conservation Plan, with a special focus on conservation of wooden historic houses.
- Prepare, approve and implement a visitor management plan for the property to complement the Heritage Management Plan and ensure an **informed and sensitive development of tourism** for the site,
- Enrich the Heritage Department at Ahmedabad Municipal Corporation with capacity building and technical capacity relevant to the challenging size and extent of responsibilities of the documentation, conservation and monitoring of the property and its buffer zone;

Requests the State Party to submit to the World Heritage Centre, by 1 December 2019, a report on the implementation of the abovementioned recommendations, for examination by the World Heritage Committee at its 44th session in 2020.

- First UNESCO World Heritage City of India with multiple stakeholder and jurisdiction area with limited roles. Lack of Power and integration is absence.
- ASI sweeper works only into premises of monuments
- Heritage Department cannot initiate any cleanliness process on its own.
- No extra efforts for upgrading quality of space in terms of cleanliness made by Health Department.
- Public Toilet contracts are dealt by health department. Hence Heritage Department has no power to upgrade it for tourist.
- Heritage Department has no power to control encroachment by Hawker and on Parking.

Source: http://whc.unesco.org/en/decisions/6889

Heritage Phasing and Financing

/70

393

Phasing and Financing

Project	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
Awareness Campaign for promoting Clean Heritage Precincts															10 Lakhs
Segregation and Reuse of Organic/Kitchen Waste to Energy/Compost															200 Lakhs
Design Intervention for Unhygienic Nuisance points Heritage Precincts															0.2 Lakhs
Performance based Contract and Monitoring															
Rainwater Harvesting in Step Wells															7.5 Lakhs
Lake Water Rejuvenation for Monuments with Waterbody															1600 Lakhs
Promotion and Branding of Stepwells as Water Heritage															
Revival of Tankas as Water Heritage															10 Lakhs
Retrofitting of Public Toilet in Heritage Precincts															
Water Heritage Walk in Old City															1.5 Lakhs
										[0]	ta	1	8.	3	Crore

Funding Agencies

ASI SBM AUDA AMC

WAKF Board Khadia Itihas Samiti Sarkhej Roja Committee

Thank You

WE WOULD LIKE TO THANKS

Shri P.K. Ghosh, Retd. IAS

Chairman of the Heritage Conservation Committee Ex-Commissioner, AMC

Mr P K Vasudevan Nair Dy General Manager Heritage Department, AMC

Shri Gunjan V. Patel Asst. Engineer, Heritage Department, AMC

Prof. Jigna Desai Faculty of Architecture, CEPT University

Mr. and Mrs. Bhatt Khadia Itihas Samiti

Sarkhej Roja Committee WAKF Board

Finance & Governance

Overall Budget

— Revenue Account – Actuals ——

Particulars	2011-12(A)	2012-13 (A)	2013-14 (A)	2014-15 (A)	2015-16 (A)	2016-17 (A)	2017-18(BE)					
Opening Balance	11	17	17	11	13	11	11					
Revenue Account												
WSS												
Revenue Income	1,986	1,819	1,809	1,976	2,043	2,645	3,040					
Revenue Expenditure	38,159	49,254	53,021	62,932	67,371	77,250	81,900					
Surplus/Deficit	-36,173	-47,435	-51,211	-60,956	-65,327	-74,605	-78,860					
Non-WSS												
Revenue Income	212,234	209,897	252,007	287,091	341,157	443,855	490,360					
Revenue Expenditure	118,223	126,801	139,351	147,398	164,181	209,550	242,200					
Surplus/Deficit	94,011	83,096	112,655	139,693	176,975	234,305	248,160					
Total Surplus	57,838	35,661	61,444	78,737	111,648	159,700	169,300					

*All the values above are in Rs. lakh

Revenue Account - Projected

Particulars	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28				
	Revenue Account													
WSS														
Revenue Income	3,263	3,503	3,761	4,037	4,334	4,653	4,995	5,362	5,756	6,180				
Revenue Expenditure	93,017	1,05,644	1,19,984	1,36,271	1,54,769	1,75,778	1,99,639	2,26,738	2,57,516	2,92,473				
Surplus/Deficit	-89,754	-1,02,140	-1,16,223	-1,32,234	-1,50,435	-1,71,125	-1,94,644	-2,21,376	-2,51,760	-2,86,293				
	-0.96	-0.97	-0.97	-0.97	-0.97	-0.97	-0.97	-0.98	-0.98	-0.98				
Non-WSS														
Revenue Income	5,63,809	6,48,259	7,45,359	8,57,002	9,85,369	11,32,962	13,02,663	14,97,783	17,22,128	19,80,078				
Revenue Expenditure	2,72,952	3,07,609	3,46,666	3,90,682	4,40,287	4,96,191	5,59,192	6,30,192	7,10,208	8,00,383				
Surplus/Deficit	2,90,856	3,40,650	3,98,692	4,66,320	5,45,081	6,36,772	7,43,471	8,67,590	10,11,921	11,79,695				

*All the values above are in Rs. lakh

*the formula used for above projections - **CAGR**

FINANCE

— Revenue Account – Actuals ——

Particulars	2011-12(A)	2012-13 (A)	2013-14 (A)	2014-15 (A)	2015-16 (A)	2016-17 (A)	2017-18(BE)					
Opening Balance	11	17	17	11	13	11	11					
Revenue Account												
WSS												
Revenue Income	1,986	1,819	1,809	1,976	2,043	2,645	3,040					
Revenue Expenditure	38,159	49,254	53,021	62,932	67,371	77,250	81,900					
Surplus/Deficit	-36,173	-47,435	-51,211	-60,956	-65,327	-74,605	-78,860					
Non-WSS												
Revenue Income	212,234	209,897	252,007	287,091	341,157	443,855	490,360					
Revenue Expenditure	118,223	126,801	139,351	147,398	164,181	209,550	242,200					
Surplus/Deficit	94,011	83,096	112,655	139,693	176,975	234,305	248,160					
Total Surplus	57,838	35,661	61,444	78,737	111,648	159,700	169,300					

*All the values above are in Rs. lakh

Projections – Scenario 2 – Collection Efficiency Improvement

FINANCE

Revenue Account - Projected

Particulars	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28
					Revenue Accour	ıt				
WSS										
Revenue Income	35,535	37,763	40,130	42,647	45,320	48,162	51,182	54,391	57,801	61,425
Revenue Expenditure	91,341	101,871	113,614	126,711	141,318	157,609	175,778	196,041	218,640	243,845
Surplus/Deficit	-55,806	-64,108	-73,484	-84,065	-95,998	-109,447	-124,596	-141,651	-160,840	-182,420
	-0.61	-0.63	-0.65	-0.66	-0.68	-0.69	-0.71	-0.72	-0.74	-0.75
Non-WSS										
Revenue Income	552,678	622,916	702,080	791,305	891,869	1,005,213	1,132,962	1,276,946	1,439,229	1,622,135
Revenue Expenditure	268,331	297,281	329,354	364,888	404,256	447,870	496,191	549,724	609,033	674,741
Surplus/Deficit	284,347	325,635	372,726	426,417	487,613	557,343	636,772	727,222	830,195	947,393

So, along with the improvement in the collection efficiency of Property Tax, Increase in the Non Revenue Tax Income and other Interventions can contribute on reduction of the Revenue Expenditure.

*the formula used for above projections - **CAGR**

FINANCE

— Revenue Account – Actuals ——

Particulars	2011-12(A)	2012-13 (A)	2013-14 (A)	2014-15 (A)	2015-16 (A)	2016-17 (A)	2017-18(BE)					
Opening Balance	11	17	17	11	13	11	11					
Revenue Account												
WSS												
Revenue Income	1,986	1,819	1,809	1,976	2,043	2,645	3,040					
Revenue Expenditure	38,159	49,254	53,021	62,932	67,371	77,250	81,900					
Surplus/Deficit	-36,173	-47,435	-51,211	-60,956	-65,327	-74,605	-78,860					
Non-WSS												
Revenue Income	212,234	209,897	252,007	287,091	341,157	443,855	490,360					
Revenue Expenditure	118,223	126,801	139,351	147,398	164,181	209,550	242,200					
Surplus/Deficit	94,011	83,096	112,655	139,693	176,975	234,305	248,160					
Total Surplus	57,838	35,661	61,444	78,737	111,648	159,700	169,300					

*All the values above are in Rs. lakh

Projections – Scenario 3 – Reduction in the Expenditure

— Revenue Account - Projected -

Particulars	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28		
Revenue Account												
WSS												
Revenue Income	3,263	3,503	3,761	4,037	4,334	4,653	4,995	5,362	5,756	6,180		
Revenue Expenditure	74,414	84,515	95,987	1,09,017	1,23,815	1,05,467	1,19,783	1,36,043	1,54,510	1,75,484		
Surplus/Deficit	-71,150	-81,012	-92,226	-1,04,979	-1,19,481	-1,00,814	-1,14,788	-1,30,681	-1,48,753	-1,69,304		
	-0.96	-0.96	-0.96	-0.96	-0.96	-0.96	-0.96	-0.96	-0.96	-0.96		
Non-WSS												
Revenue Income	5,63,809	6,48,259	7,45,359	8,57,002	9,85,369	11,32,962	13,02,663	14,97,783	17,22,128	19,80,078		
Revenue Expenditure	2,72,952	3,07,609	3,46,666	3,90,682	4,40,287	4,96,191	5,59,192	6,30,192	7,10,208	8,00,383		
Surplus/Deficit	2,90,856	3,40,650	3,98,692	4,66,320	5,45,081	6,36,772	7,43,471	8,67,590	10,11,921	11,79,695		

*All the values above are in Rs. lakh

*the formula used for above projections - **CAGR**

FINANCE

— Revenue Account – Actuals ——

Particulars	2011-12(A)	2012-13 (A)	2013-14 (A)	2014-15 (A)	2015-16 (A)	2016-17 (A)	2017-18(BE)					
Opening Balance	11	17	17	11	13	11	11					
Revenue Account												
WSS												
Revenue Income	1,986	1,819	1,809	1,976	2,043	2,645	3,040					
Revenue Expenditure	38,159	49,254	53,021	62,932	67,371	77,250	81,900					
Surplus/Deficit	-36,173	-47,435	-51,211	-60,956	-65,327	-74,605	-78,860					
Non-WSS												
Revenue Income	212,234	209,897	252,007	287,091	341,157	443,855	490,360					
Revenue Expenditure	118,223	126,801	139,351	147,398	164,181	209,550	242,200					
Surplus/Deficit	94,011	83,096	112,655	139,693	176,975	234,305	248,160					
Total Surplus	57,838	35,661	61,444	78,737	111,648	159,700	169,300					

*All the values above are in Rs. lakh

Projections – Scenario 4 – CE Improvement + Reduction in Expenditure

411 / 10

— Revenue Account - Projected -

Particulars	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	2024-25	2025-26	2026-27	2027-28
				Re	venue Account					
WSS										
Revenue Income	35,535	37,763	40,130	42,647	45,320	48,162	51,182	54,39 ⁻	57,801	61,425
Revenue Expenditure	74,414	84,515	95,987	1,09,017	1,23,815	1,05,467	1,19,783	1,36,043	1,54,510	1,75,484
Surplus/Deficit	-38,879	-46,752	-55,857	-66,370	-78,495	-57,305	-68,602	-81,652	-96,709	-1,14,059
	-0.52	-0.55	-0.58	-0.61	-0.63	-0.54	-0.57	-0.60	-0.63	-0.65
Non-WSS										
Revenue Income	5,63,809	6,48,259	7,45,359	8,57,002	9,85,369	11,32,962	13,02,663	14,97,783	17,22,128	19,80,078
Revenue Expenditure	2,72,952	3,07,609	3,46,666	3,90,682	4,40,287	4,96,191	5,59,192	6,30,192	7,10,208	8,00,383
Surplus/Deficit	2,90,856	3,40,650	3,98,692	4,66,320	5,45,081	6,36,772	7,43,471	8,67,590	10,11,921	11,79,695

*All the values above are in Rs. lakh

*the formula used for above projections - **CAGR**

FINANCE

Financial Mechanisms

Funding vs. Financing

Project Phasing and Cost

WATER	COST (INR)
Automation of Water Treatment Plant	18 Cr.
Rain Water Harvesting Structures	0.408 Cr.
Recharge Wells in lakes	0.781 Cr.
Recharge Wells in parks	0.592 Cr.
RWH in Townships, Commercials and Industries	6 Cr.
Automation of Water Distribution Stations	3.74 Cr.
24*7 Water Supply and Metering	14 Cr.

Ð

CSR + Ahmedabad Janmarg Ltd
CSR
CSR
Central + AMC
AMC
AMC (VGF) + Private

前

₹ 43.5 Cr.

FUNDING

WASTEWATER

P

Two 1.5 MLD Treatment Plant at Sabarmati Riverfront	12 Cr.
0.5 MLD Treatment Plant at SP Stadium, Navrangpura	4 Cr.
Tertiary Treatment Plant at Vinzol STP	58.95 Cr.
Parks/Gardens- Ten 1 MLD STP & Seven 0.5 MLD STP	60.66 Cr.
Automation of SCADA in SPS	0.52 Cr
Retrofitting trunk lines in Central Zone	97 Cr.

AMC + O&M contract (Private Player)	
AMC + PPP	
PPP	
AMC + PPP	
AMC	
AMC	

— Project Phasing and Cost		
WATER	TYPE	PHASING
Automation of Water Treatment Plant	PHYSICAL	
Rain Water Harvesting Structures	POLICY, PHYSICAL	
Recharge Wells in lakes	POLICY, PHYSICAL	
Recharge Wells in parks	POLICY, PHYSICAL	
RWH in Townships, Commercials and Industries	POLICY, PHYSICAL	
Automation of Water Distribution Stations	PHYSICAL	
24*7 Water Supply and Metering	POLICY, PHYSICAL	
WASTEWATER		$\frac{2026}{2030}$
Two 1.5 MLD Treatment Plant at Sabarmati Riverfront	POLICY, PHYSICAL	
0.5 MLD Treatment Plant at SP Stadium, Navrangpura	POLICY, PHYSICAL	
Tertiary Treatment Plant at Vinzol STP	PHYSICAL	
Parks/Gardens- Ten 1 MLD STP & Seven 0.5 MLD STP	POLICY, PHYSICAL	
Automation of SCADA in SPS	PHYSICAL	
Retrofitting trunk lines in Central Zone	PHYSICAL	

Project Phasing and Cost

WASTEWATER	₹ COST	FUNDING	
0.5 MLD DEWATs packaged plant at Satyagrah Chhavani	1.65 Cr.	Bank + Private Player	
1 MLD DEWATs civil Plant at GHB Housing Shahstri Nagar	2.2 Cr.	Gujarat Housing Board	く り.00
2.5 MLD Soil Bio-Technology Plant at Bopal-2 TP Scheme	2 Cr.	AMC + State + Central	Cr
FSM Project	1.05 Cr.	AMC	

SOLIDWASTE

齓

Zero Waste Management	1.25 Cr	ULB, SBM, Beneficiaries, Royalty	
Pirana Dumpsite Closure	355 Cr.	AMC, SBM (VGF) , Green Climate Fund	
Community based Sanitation System – Ramapir No Tekro		SBM, ULB, Beneficiaries, NGO (Donor)	₹ 201
SWM at Community level- Ramapir No Tekro	1.39 Cr.	AMC, Beneficiaries	२ ७० 4
Community based Water Kiosks - Ramapir no tekro		AMC, Beneficiaries, NGO (Donor)	Cr
Community Managed Toilet		Beneficiaries, NGO (Donor)	
ICT based Monitoring of Public Toilet	14 Cr.	SBM	
E-toilet and Waterless Urinal Installations	12 Cr.	MGSM, SJMSVY	

418 / 15

— Project Phasing and Cost

WASTEWATER	TYPE			PHASIN
0.5 MLD DEWATs packaged plant at Satyagrah Chhavani	PHYSICAL			
1 MLD DEWATs civil Plant at GHB Housing Shahstri Nagar	PHYSICAL			
2.5 MLD Soil Bio-Technology Plant at Bopal-2 TP Scheme	PHYSICAL			
FSM Project	POLICY, PHYSICAL			
SOLIDWASTE		2018	 2026	2030
Zero Waste Management	POLICY, PHYSICAL			
Pirana Dumpsite Closure	PHYSICAL			
Community based Sanitation System – Ramapir No Tekro	POLICY, PHYSICAL			
SWM at Community level- Ramapir No Tekro	POLICY, PHYSICAL			
Community based Water Kiosks - Ramapir no tekro	POLICY, PHYSICAL			
Community Managed Toilet	POLICY, PHYSICAL			
ICT based Monitoring of Public Toilet	PHYSICAL			
E-toilet and Waterless Urinal Installations	PHYSICAL			

419 / 15

Project Phasing and Cost

HERITAGE

籯

Awareness Campaign for Clean Heritage Precincts	.10 Cr.	ASI, AMC, SBM, Community, CSR, Trust/Board	
Segregation and Reuse of Organic/Kitchen Waste	2 Cr.	AMC, Private, Community	
Design Intervention for Unhygienic Nuisance points in Heritage Precincts	.002 Cr.	Competition Based Funded by AMC, Private, CSR	
Performance based Contract and Monitoring		AMC, Private	
Rainwater Harvesting in StepWells	.075 Cr.	ASI, AMC, Community	₹ 18.3
Lake Water Rejuvenation for Monuments with Waterbody	16 Cr.	ASI, AMC, Sarkhej Roja Committee	Cr
Promotion and Branding of Stepwells as Water Heritage		ASI, AMC, CSR, Private, Trust/Boards	
Revival of Tankas as Water Heritage	.10 Cr.	AMC, Community, Trust/Boards	
Retrofitting of Public Toilet in Heritage Precincts		CSR, AMC (PPP)	
Water Heritage Walk in Old City	.015 Cr.	AMC, Community, Trust/Board, MG Group	

₹

m

COST

FINANCE

AGENCIES

Project Phasing and Cost

-

Total C	net of a	II Intorvontion	10
Performance based Contract Inducation	υσισια		12
Rainwater Harvesting in 2018 Lake Water Rejuvenatio Waterboo Promotion and Branding of Stepwells as Water	684	175 Cr ₹ 20	
	2022)LICY, PHYSICAL		2030

Financial Mechanisms

Funding vs. Financing

Service Improvement

અમારુ અમદાવાદ

Water Sensitive and Sanitised Ahmedabad

Thank You

- Integrate the interventions into the financial plan.
- Identification of Innovative Funding Mechanisms.
- Check the Projections for other scenario and other possibilities.