

WATER TREATMENT PLANT

4 Nos. in Dudheshwar, Kotarpur, Jaspur & Raska.

WATER TREATMENT PLANT

4 Nos. in Dudheshwar, Kotarpur, Jaspur & Raska.

LAKES / WATER BODIES

Ţ

1411 Lakes totally in AUDA & 59 in AMC

-

AMC - 464 Sqkm

Source : AUDA DP 2021, CSP 2012

PARKS/GARDENS Nearly 201 Municipal parks and gardens

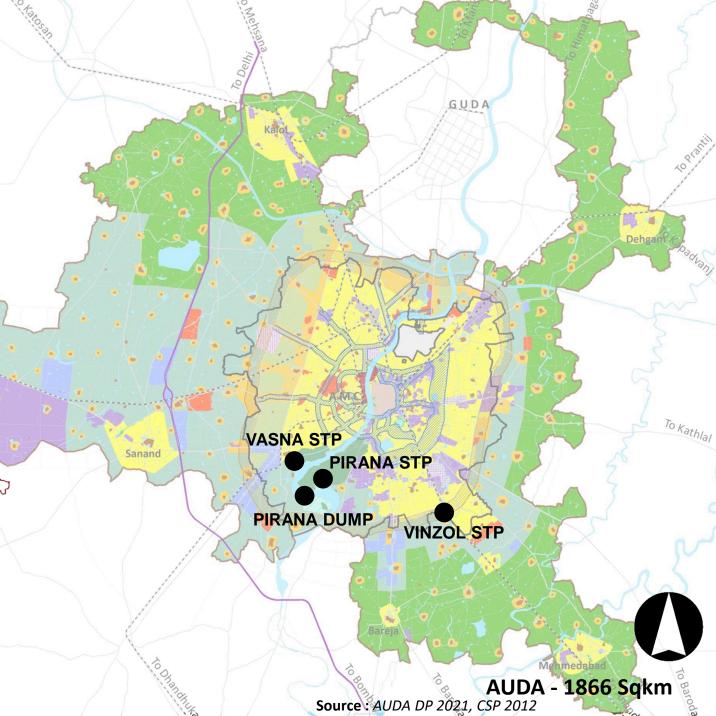
WATER TREATMENT PLANT

4 Nos. in Dudheshwar, Kotarpur, Jaspur & Raska

LAKES / WATER BODIES

1411 Lakes totally in AUDA & 59 in AMC

PARKS/GARDENS Nearly 201 Municipal parks and gardens


o Viramgam

AGRICULTURAL LANDS 30.5% of the total AUDA area is agricultural area which is about 570 SqKm.

INDUSTRIES

4 Nos. of major industrial clusters **STP** 9 STP in Pirana, Vasana & Vinzol

DUMP SITE Pirana Dump site

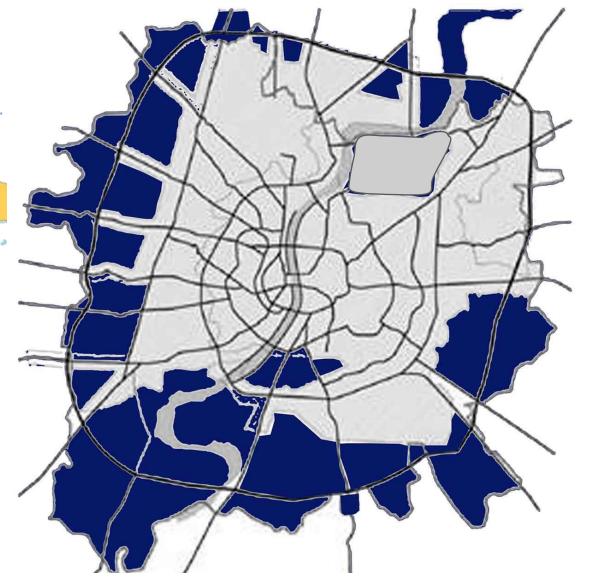
WATER TREATMENT PLANT

4 Nos. in Dudheshwar, Kotarpur, Jaspur & Raska.

LAKES / WATER BODIES

1411 Lakes totally in AUDA & 59 in AMC

PARKS/GARDENS Nearly 201 Municipal parks and gardens


INDUSTRIES 4 Nos. of major industrial clusters

AGRICULTURAL LANDS 30.5% of the total AUDA area is agricultural area which is about 570 SqKm. STP 9 STP in Pirana, Vasana & Vinzol

DUMP SITE Pirana Dump site

Open Defecation

Total 28300 House Holds are defecating in open **Sewerage system** 88.6% Households have access to sewerage system

		CDP	C SP	DP 2021
AUGMENTATION C SUPPLY NETWORK COVERAGE		~	-	✓
UPGRADATION of I & WTP	NEW ESR	✓	-	✓
RAIN WATER HARV	/ESTING	\checkmark	-	\checkmark
NON REVENUE WA	TER	\checkmark	-	\checkmark
24*7 WATER SUPP	LY	\checkmark	-	\checkmark
GI <mark>S BASED MODEL</mark>			_	\checkmark

	CDP	CS <mark>P</mark>	DP 2021
AUGMENTATION OF THE NETWORK	√	~	✓
NEW SEWAGE PUMPING STATIONS	\checkmark	~	\checkmark
UPGRADATION OF NEW STPS	\checkmark	~	\checkmark
REFURBISHMENT OF THE EXISTING NETWORK	\checkmark	~	\checkmark
SEWGAE RECYCLING AND REUSE PLANTS		~	

	CDP	CSP	DP 2021
100% COLLECTION EFFICIENCY IN SEGREGATED MANNER	✓	√	\checkmark
SOLID WASTE MASTER PLAN 2031	✓	\checkmark	\checkmark
PREPERATION OF SWM BYELAWS	√	\checkmark	\checkmark
CAPPING OF OPEN DUMP SITE AT PIRANAN	\checkmark	\checkmark	\checkmark
PROPOSAL OF SIX TRANSFER STATIONS		\checkmark	
WEALTH OUT OF WASTE		\checkmark	
GREEN WASTE PROCESSING	\checkmark	~	\checkmark
UPGRADATION OF LANDFILL SITE		~	\checkmark
SWM WORKSHOPS		\checkmark	\checkmark

Source : *AUDA DP 2021, CSP 2012, CDP 2006*

SWACCHA BHARAT ABHIYAAN

Generate AWARENESS about sanitation and its linkage with PUBLIC HEALTH

Enabling environment for PRIVATE SECTOR PARTICIPATION

BEHAVIOURAL change regarding healthy **SANITATION** practices

MODERN and SCIENTIFIC Municipal SOLID WASTE MANAGEMENT

Elimination of **OPEN DEFECATION**

SMART METER and management for WATER

PAN city initiative promote WASTE WATER RECYCLING

WASTE MANAGEMENT

Augmentation of existing WATER SUPPLY

Recharging of **GROUND WATER**

FAECAL SLUDGE MANAGEMENT

RECYCLING of water for beneficial purposes and **REUSE OF WASTEWATER**

ROLE OF AUDA

To Guide, Direct And Assist The Local Authority Or Authorities And Other Statutory Authorities For The Functioning Of Water Supply And Sanitation.

The State Government Shall Pay As Contribution, Either In One Lump-sum Or In Such Installments For The Sanitation Plan Towards The Expenses Incurred By The Urban Development Authority In The Discharge Of Its Functions.

Any Operational Construction Related To Water And Sanitation

Any Work For The Purpose Of **Inspecting, Repairing Or Renewing Any Drains**, Sewers, Mains, Pipes Cables, Telephone Or Other Apparatus Or The Breaking Open Of Any Street .

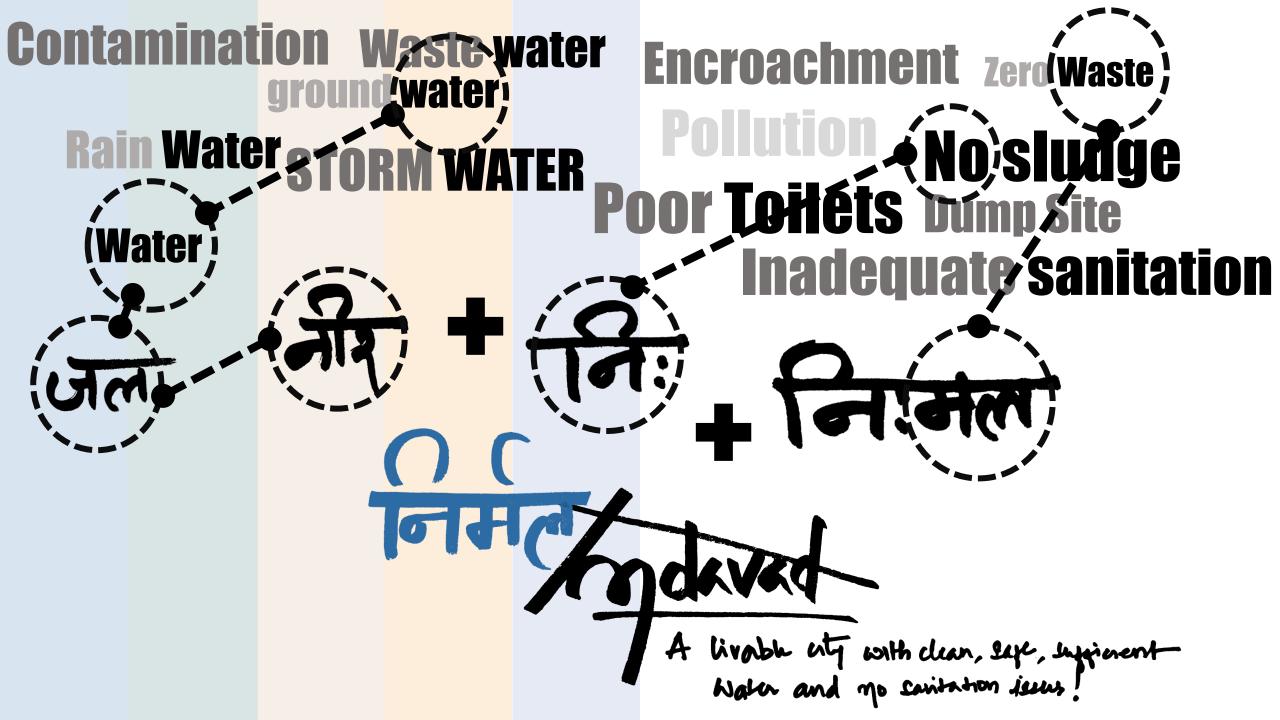
The Urban Development Authority With The **Approval Of The State Government, Delegate Its Power To The Local** Authorities Related To Water Supply And Sanitation .

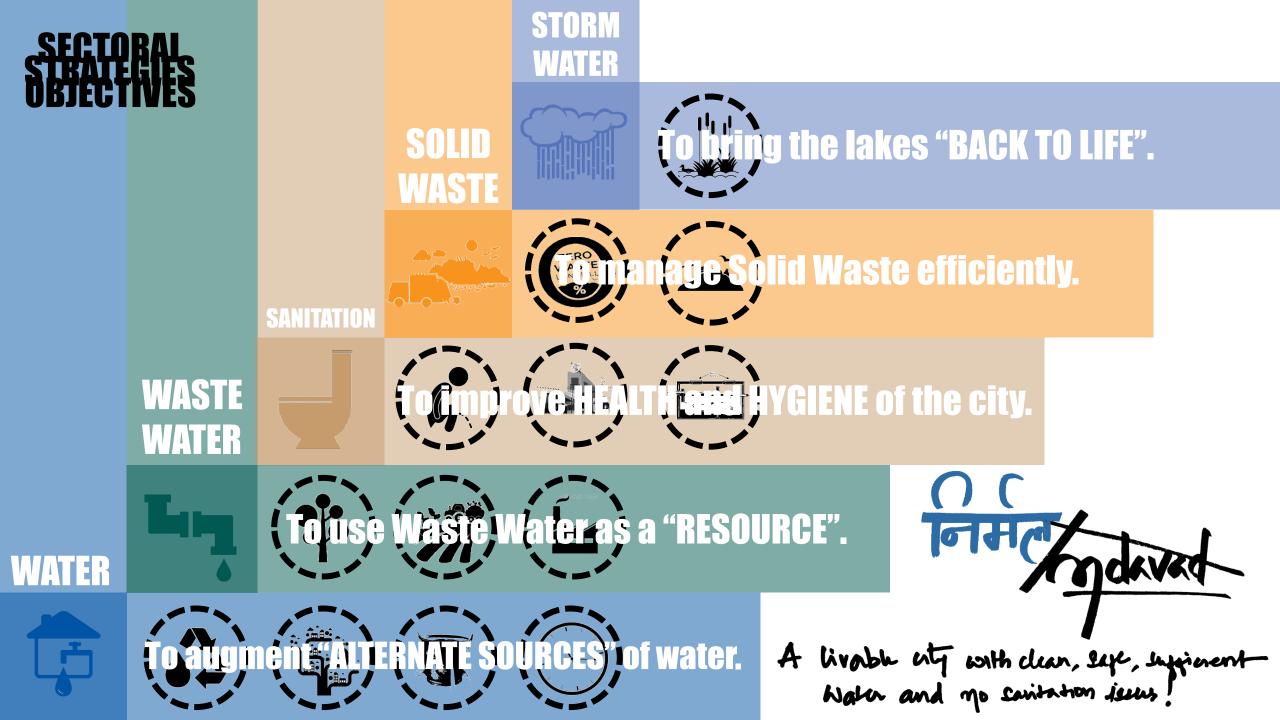
An Appropriate Authority Shall Have To **Maintain Its Own Fund** For The Sanitation Plan Of The Area.

ROLE OF AMC

To Execute Works Related To Water And Sanitation.

To Levy And Collect Fees For The Execution Of Works


Carry Out Surveys In The Urban Development Area.


To Enter Into Contracts, Agreements Or Arrangements, With Any Local Authority, Person Or Organization For Water Supply And Sanitation For Performing Its Functions

To Control The Development Activities Related To Water Supply And Sanitation In The Urban Development Area

To Carry Any Development Works Of Water Supply And Sanitation In The Urban Development Area

Source : Gujarat Town Planning & Urban Development Act, 1976, AUDA DP 2021

Studied Case studies relevant to Ahmedabad context STU Looked closely at project executing agencies ORK PLAN Understanding the Institutional Framework Analyse the problems in Ahmedabad Came up with appropriate Solutions From where will the money come? Working on innovative techniques. Looked at Cost-Benefit analysis Take a stand on one/two strategies. Preparing a Final list of strategies. DETAILING OF THE PROJECTS Develop Business models Justifying the strategies. Site v/s sector Study. Best Practices around the world. Policies/Programs that emerged. Looking at Ahmedabad context. Listing Problems - Solutions TERM **Consolidation Phase Divided into SECTORAL GROUPS** Time to own a Project Field visits. **Overall Sectoral Analysis.** Surveys. • WEEK 3 **WEEK 4** WEEK 8 WEEK 1 T E R M M D

WEEK 16

INTRODUCTION TO WATER SECTOR (जल ही जीवन है)

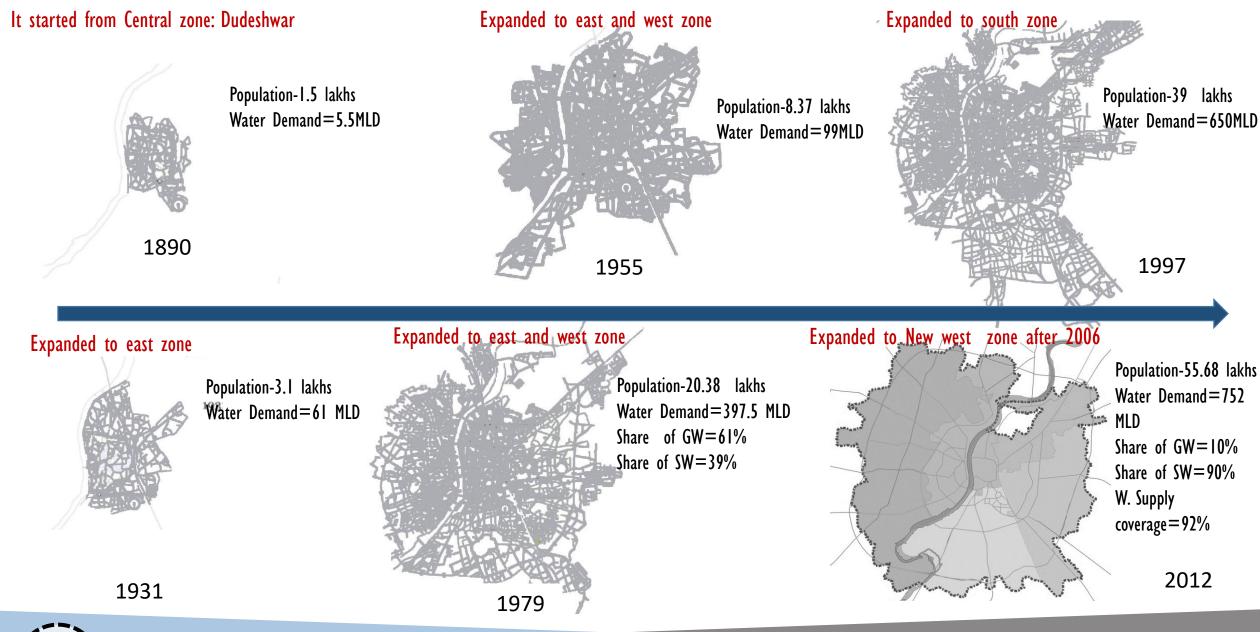
Population of Ahmedabad

Major Water Source

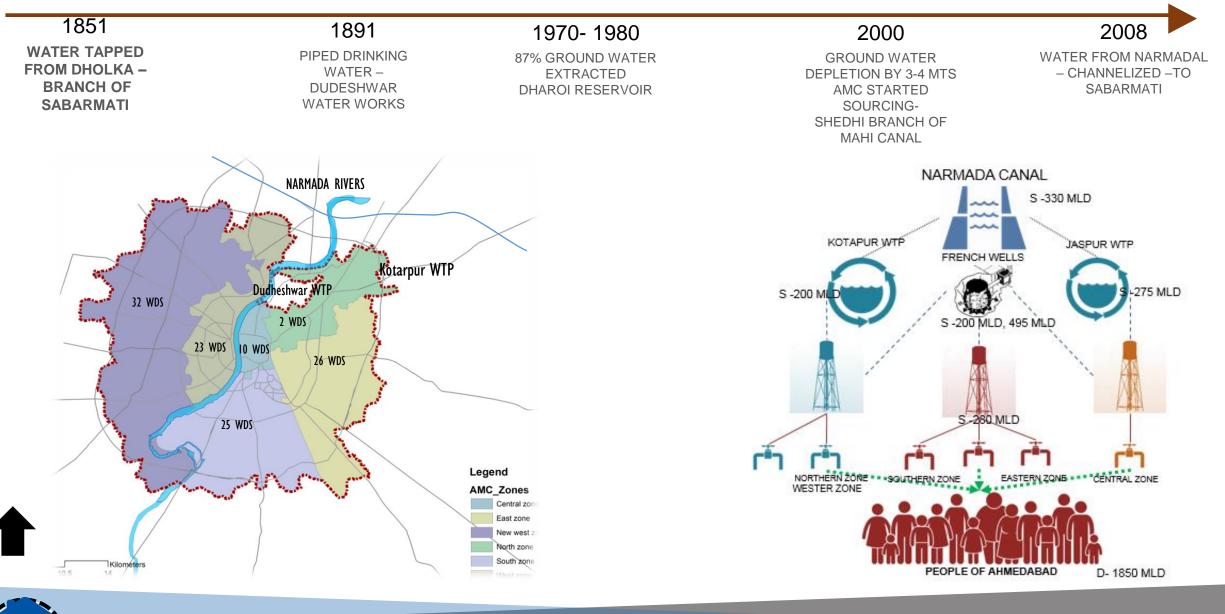
Water tariff structure

Water quality

Water related policies



Adequate Water supply


Water Treatment Plants

Number of water connections

Water distribution Network

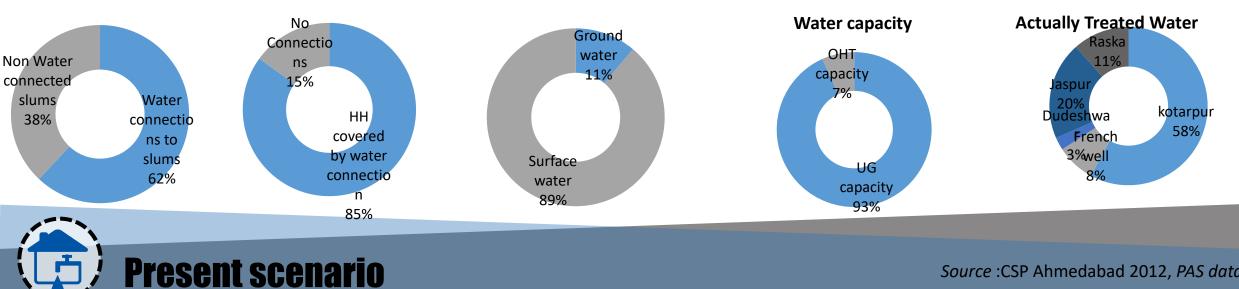
Number of WDS= **139**

Daily supply duration= **2.25 hours**

The distribution network of **3500 km** covers entire city.

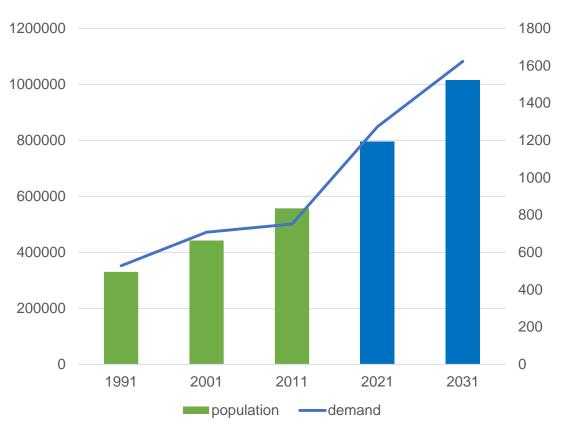
The length of trunk main line is about **230 km**.

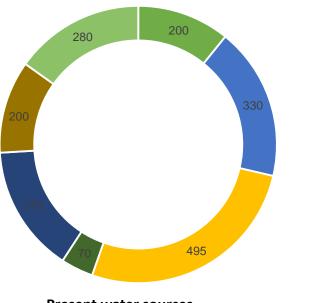
The average daily supply of water is around **1030 MLD**


Water connections to slums Water connections in Ahmedabad

Coverage of water supply connections- 92%

```
•Total water produced (MLD)= 1,215 MLD
•Ground water(MLD)= 135 MLD
```


•Surface water(MLD)=1,080 MLD


Out of overall 1620 MLD capacity 950 MLD is actually treated

Water Source

Source :CSP Ahmedabad 2012, PAS data

Present water sources

Year		Population	Demand
	1991	330000	528
	2001	442000	708
	2011	557000	752
	2021	796000	1273
	2031	1014000	1623

Current average daily supply of water = **1030 MLD** Forecasted water requirement- **1623 MLD**

Source – PAS DATA, ICRIER PREPARING FOR THE URBAN CHALLENGES OF 21ST CENTURY CSP Ahmedabad (2011-2012), AMC AUDA Development plan 2022 * national disaster report 2012, Ministry of home affairs, http://www.rainwaterharvesting.org/rainfall_index.htm

National water policy 2012

- Adaptation to climate change
- Enhancing water available for use
- management and water Demand use efficiency
- Water pricing
- Conservation of river corridors, water
- bodies and infrastructure
- Water supply- Need to remove disparity in rural and urban water supply

for drinking water supply and recharging

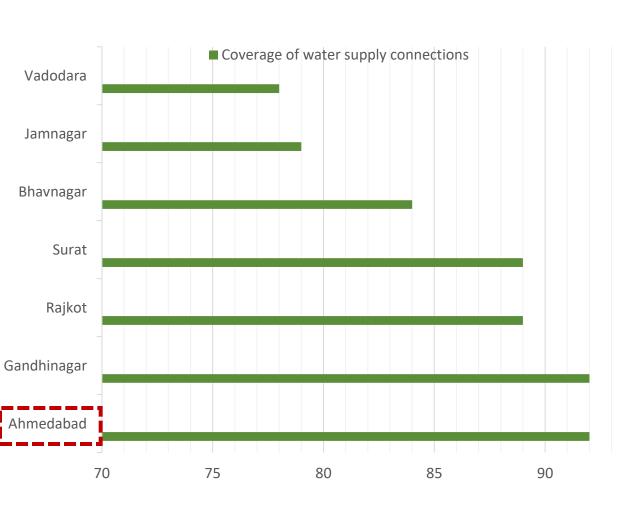
AMRUT

of ground water.

MRUT	Smart city
Augmentation of existing water supply,	•Adequate water supply
water treatment plants and universal	• Smart metering and management
metering.	• Leakage identification and prevention
Rehabilitation of old water supply systems,	measures
including treatment plants.	• Water quality monitoring
Rejuvenation of water bodies specifically	

IEW- POLICIES

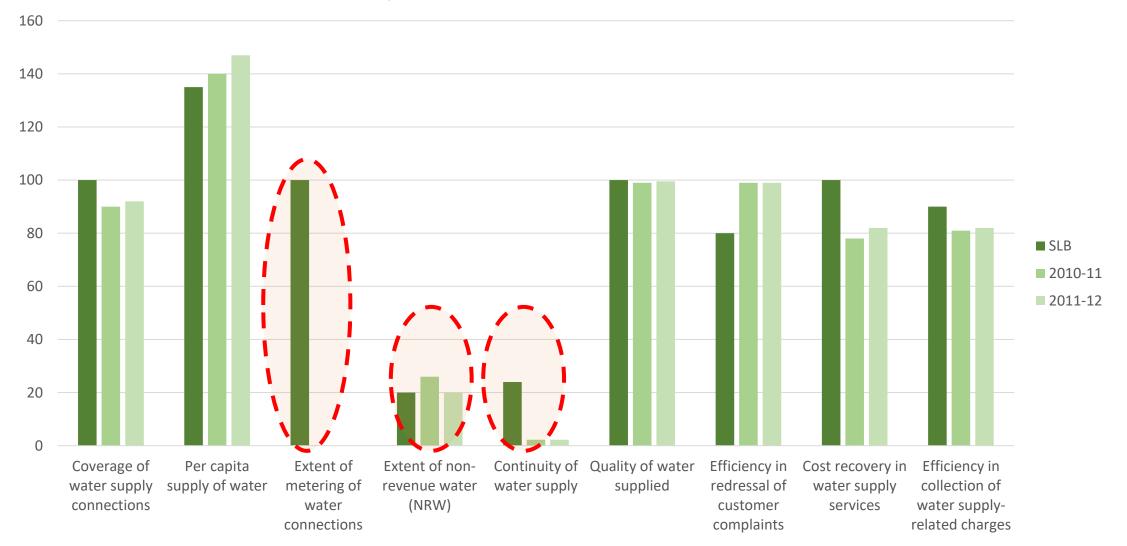
Source :National water policy 2012, AMRUT and SMART city guidelines


COST SANCTIONED UNDER JNNURM IN AHMEDABAD

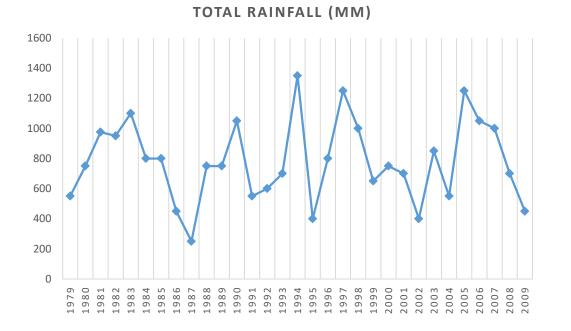
Projects sanctioned	Cost (in crores)	Cost for other projects Cost for water related projects
24 * 7 water supply in Jodhpur, new west zone , Ahmedabad	40	SHARES GOG GOI UL
24 * 7 water supply at Navrangpura, Stadium, Juna Vadaj	13.58	91%
Automation (SCADA based) of the Water Supply System	33.3	50%

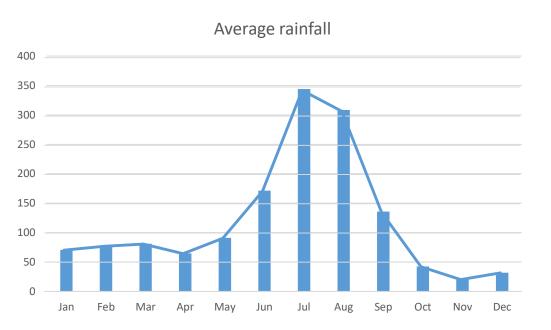
Overall Expenses on water sector of Ahmedabad=Nearly **86 Crores**

Source: CSEindia.org



Source :CSP Ahmedabad 2012,PAS data


Comparison with Service level bench marks



source :CSP Ahmedabad 2012

- The average annual rainfall is of the order of 300 mm. Most of the rain is in the months of June, July, August and September. The average annual rainfall is of the order of 300 mm. Most of the rain is in the months of June, July, August and September
- We need to emphasize more on the conservation of rain water by introducing better technologies for rainwater harvesting.

Useful for Augmenting New alternatives of Rainwater Harvesting

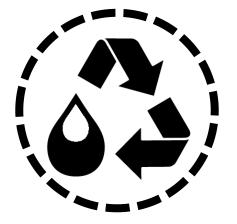
Source – PAS DATA, ICRIER PREPARING FOR THE URBAN CHALLENGES OF 21ST CENTURY CSP Ahmedabad (2011-2012), AMC AUDA Development plan 2022 * national disaster report 2012, Ministry of home affairs, http://www.rainwaterharvesting.org/rainfall_index.htm

Major projects under water sector

Lake Rejuvenation	WSUD	Rain water harvesting	NRW	24 * 7 water supply
lssues Degrading quality of available natural sources eg, Lakes, River basin etc	Issues Water Scarcity in future Inequity	Issues Water Scarcity in future	lssues Present NRW is 26% which is more than SLB	Issues: Water supply varies between 1-2.5 hours

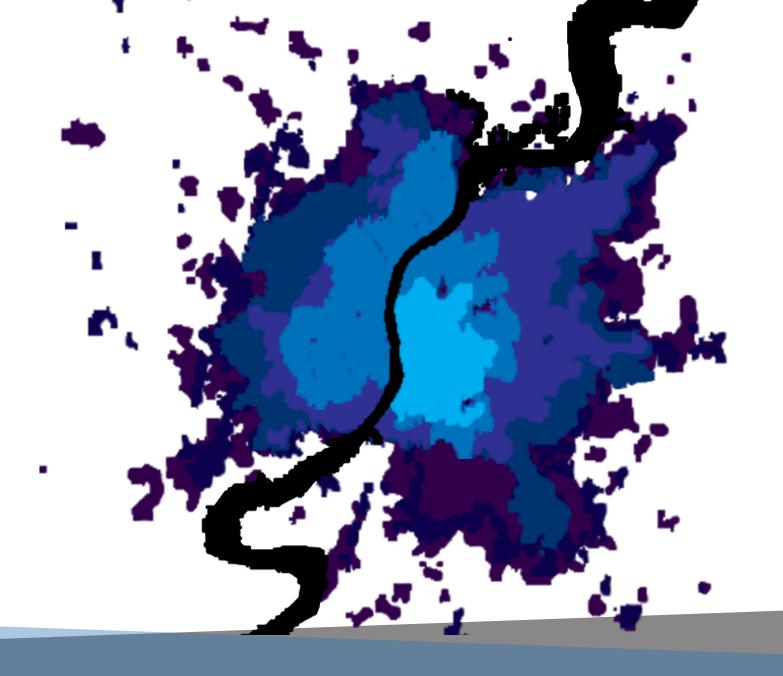
Rain Water Harvesting In Ahmedabad

Why are we doing this?


Why has it not been done yet?

What has been Where happening in India?

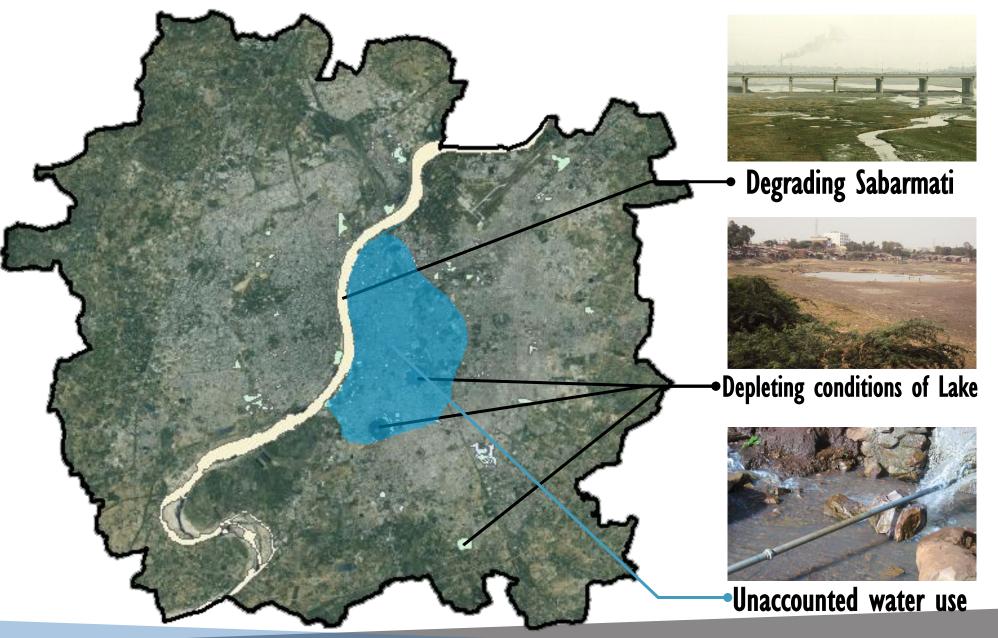
Where are we going to do it?



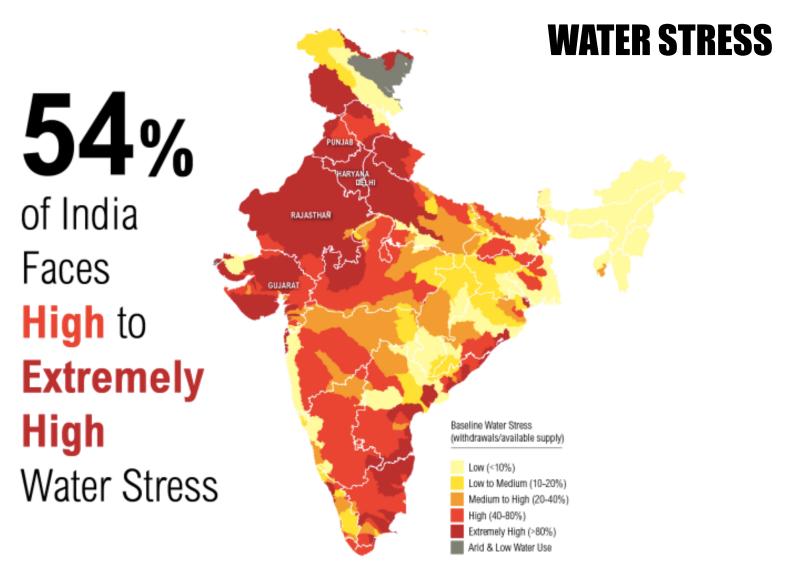

WHY

Why are we doing this?

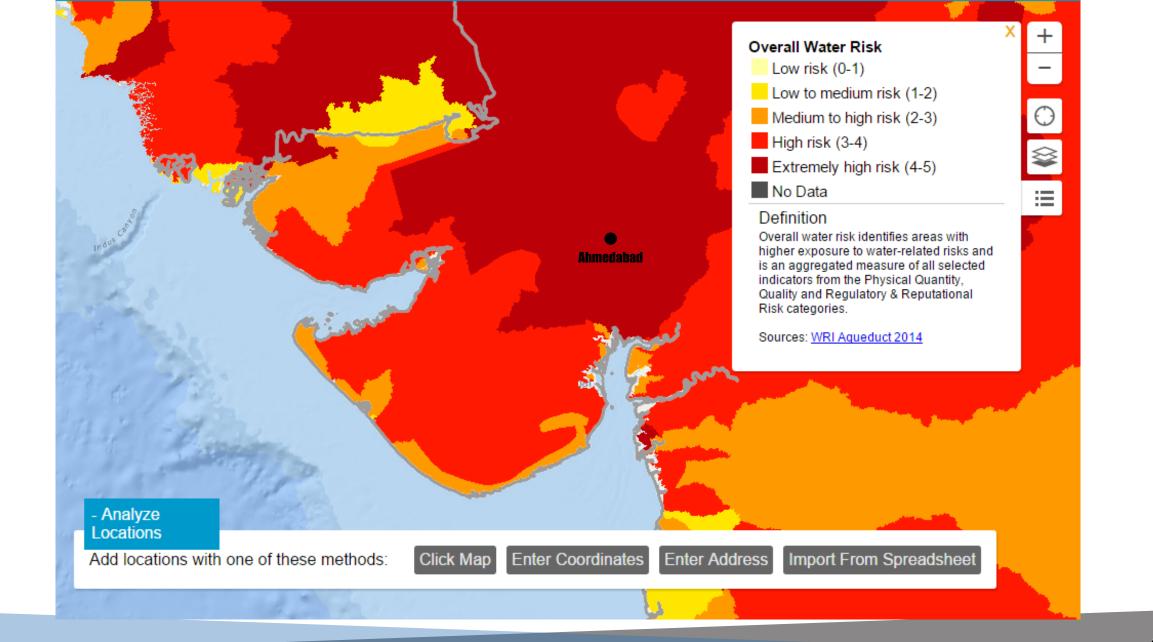
GROWTH OF **A H M E D A B A D**


Exploitation of Ground water

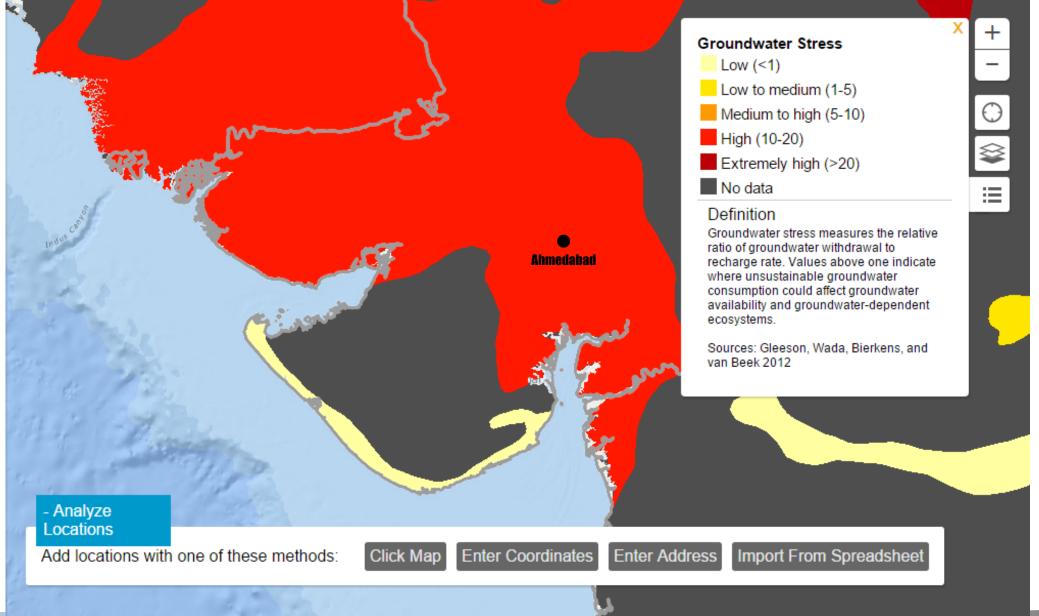
Water stress



Clogged Drains



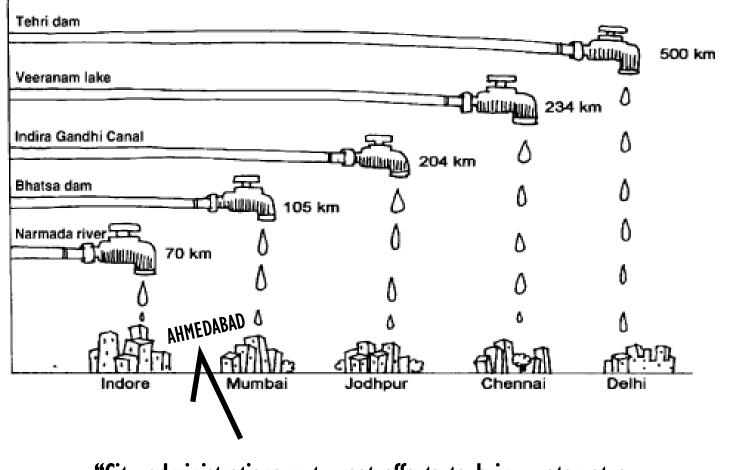
<u>Source :</u> Google , Sabarmati Riverfront Development, Integrated Environmental Improvement and Urban Revitalization, India Urban Conference, Mysore, November 2011



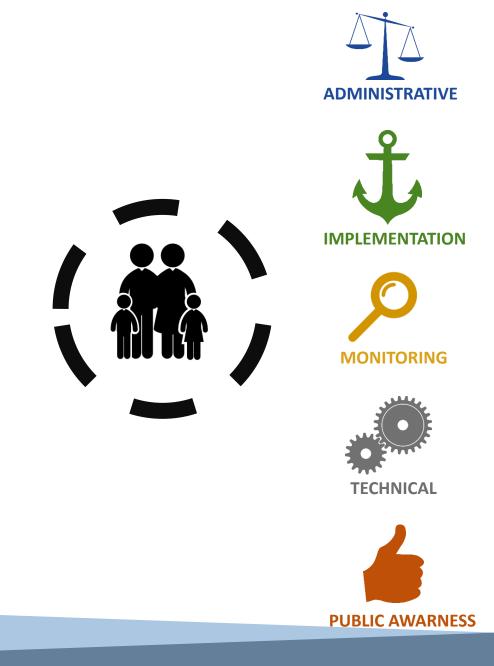
www.indiawatertool.in

🔅 WORLD RESOURCES INSTITUTE

WHY


WHY

WHY NOT


Why has it not been done yet?

"Desperate times call for desperate measures"

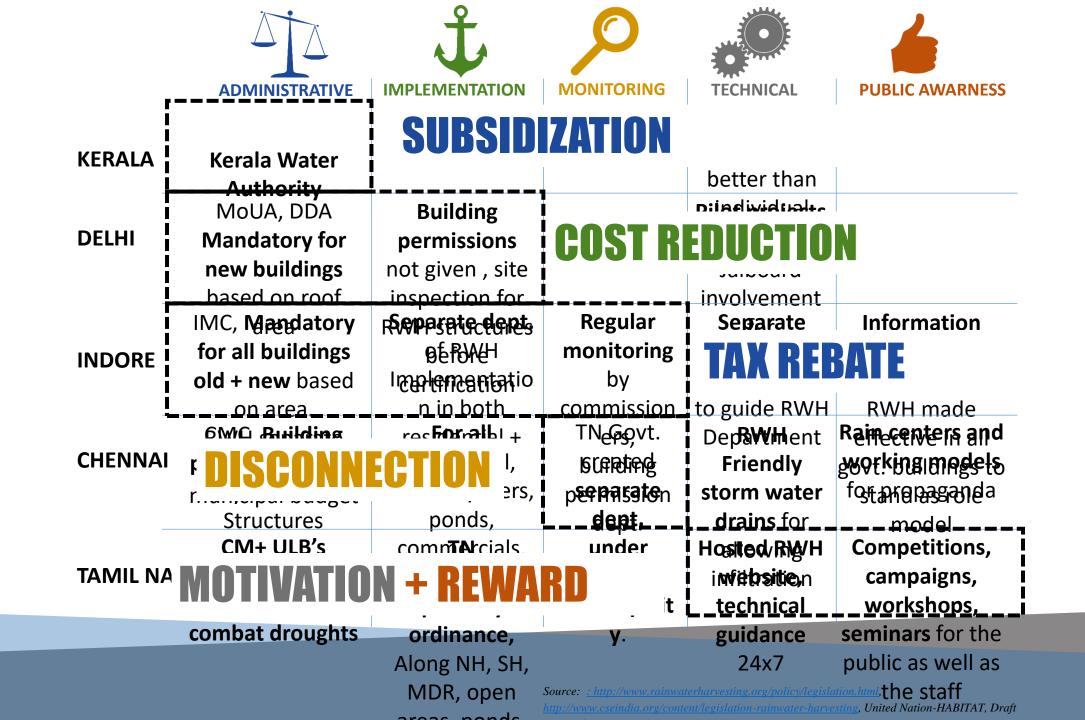
"City administrations put great efforts to bring water at a huge cost through pipes and tankers."

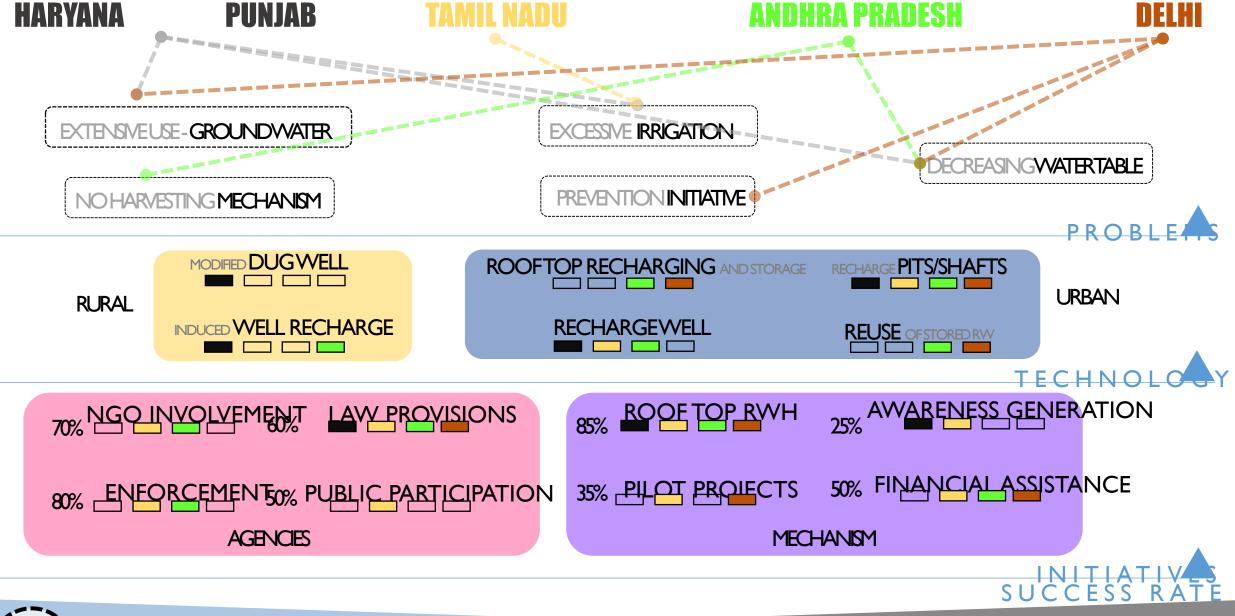
AUDA had made rainwater harvesting mandatory for all buildings covering an area of over, 500 square meters. GDCR – post 2002 Cover area- 1,500sqm.-one percolation well 4,000sqm.- + another well

AMC sanctions building use permission only if they are provided with **RWH** structures as per rule.

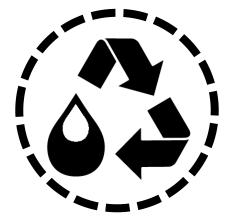
NO other strict **REGULATIONS** for check on monitoring harvesting rain water. (monthly auditing for commercial buildings, nothing for residential buildings)

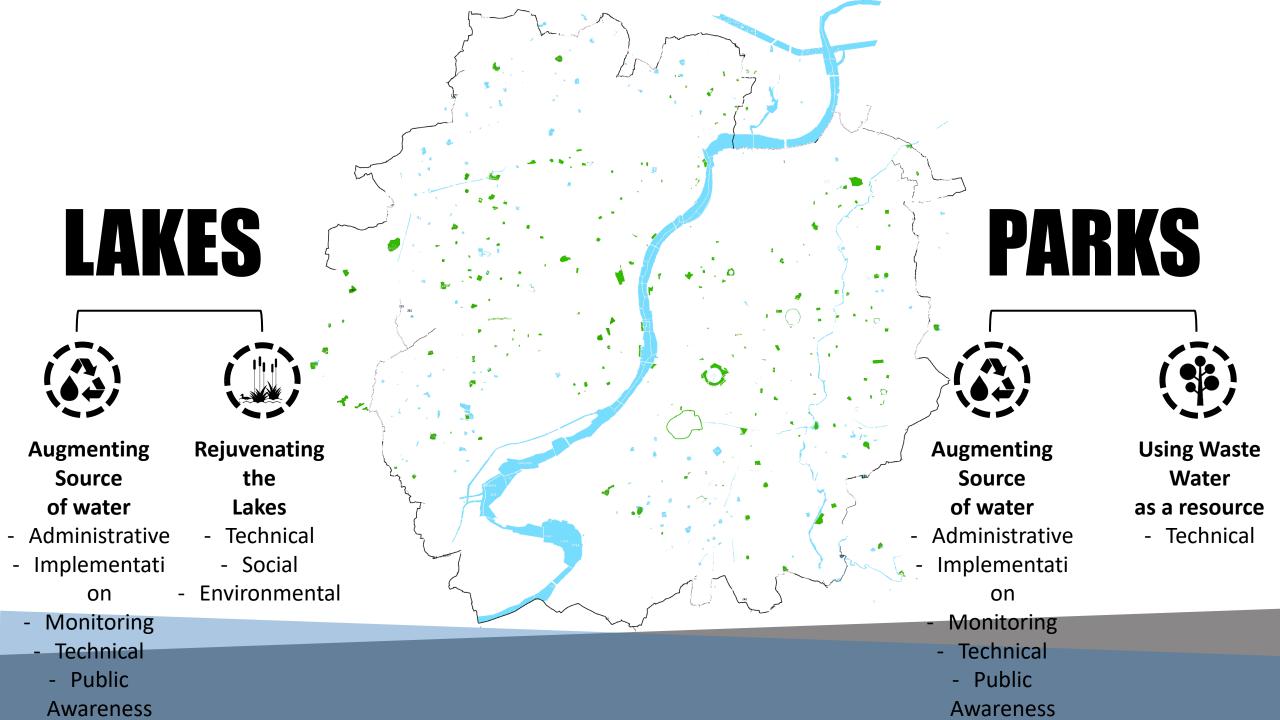
No technical innovations , new mechanisms found its way apart from the **TRADITIONAL** system of filtration beds, channelizing and percolation

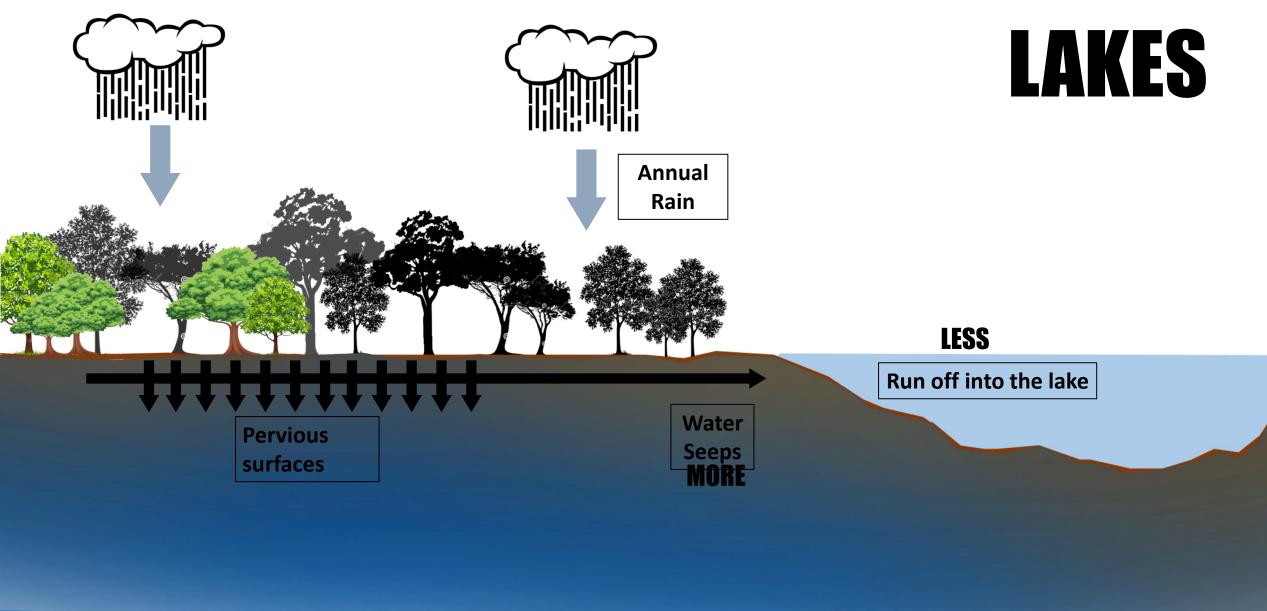

No promotions, awareness or initiatives have been taken forward to make people know it is for them , their benefit **NOT JUST FOR THE SAKE** of having it but using it to its fullest



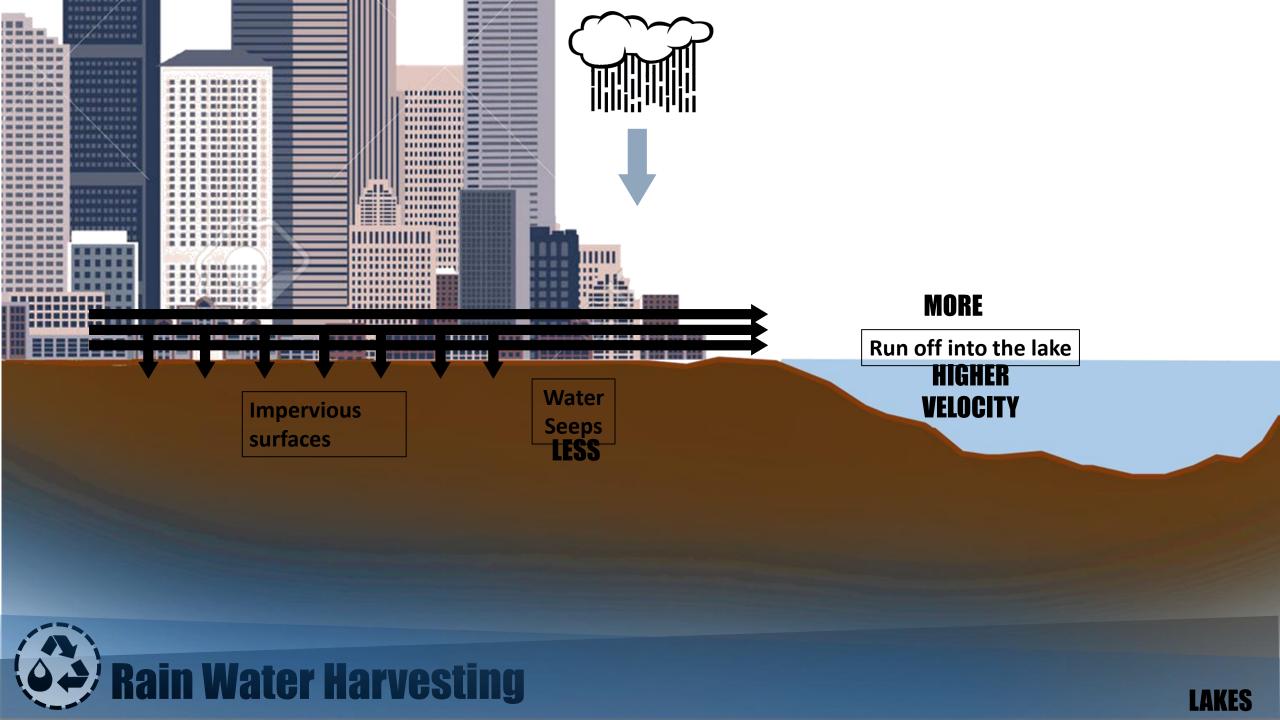
WHAT

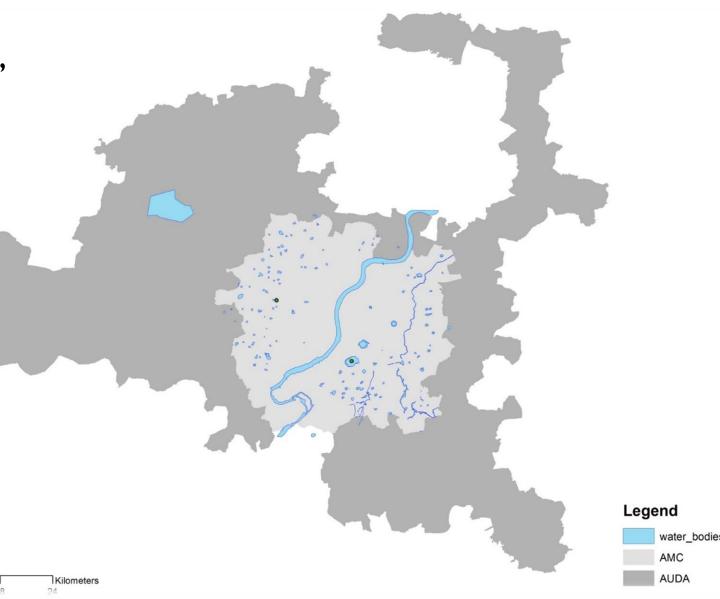

What has been happening in India?

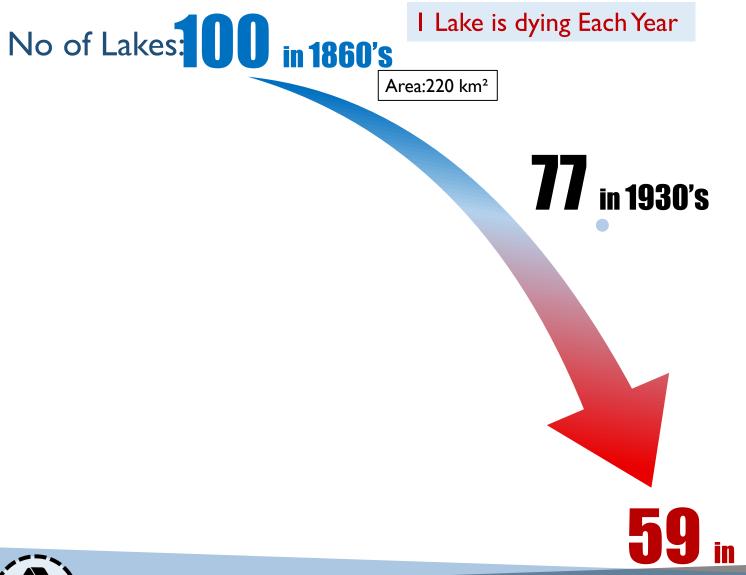




HOW


How are we going to do it?





- Sabarmati river runs through the city, i.e.,
 22km of river bank.
- 1411 no of small and large lakes in AUDA
- **59** lakes in **AMC**

Sr. No.		Total no of Lake with(area less than 50,000 Sq. mt.)	Total no of Lakes (area 50,000 to 75,000 Sq. mt.)	Total no of Lakes (area 75,000 to 1,00,000 Sq. mt.)	Total no of Lakes with (area more than 1,00,000 Sq. mt.)
1	New West AUDA area (69 Villages)	677	15	14	30
2	West AUDA area (including 68 Villages)	84	5	1	1
3	South AUDA area	237	5	2	6
4	East AUDA area	231	6	2	
5	North AUDA area	135	5	2	2
6	AMC	47	6	1	5
TOTAL		1411	42	22	44
				N	

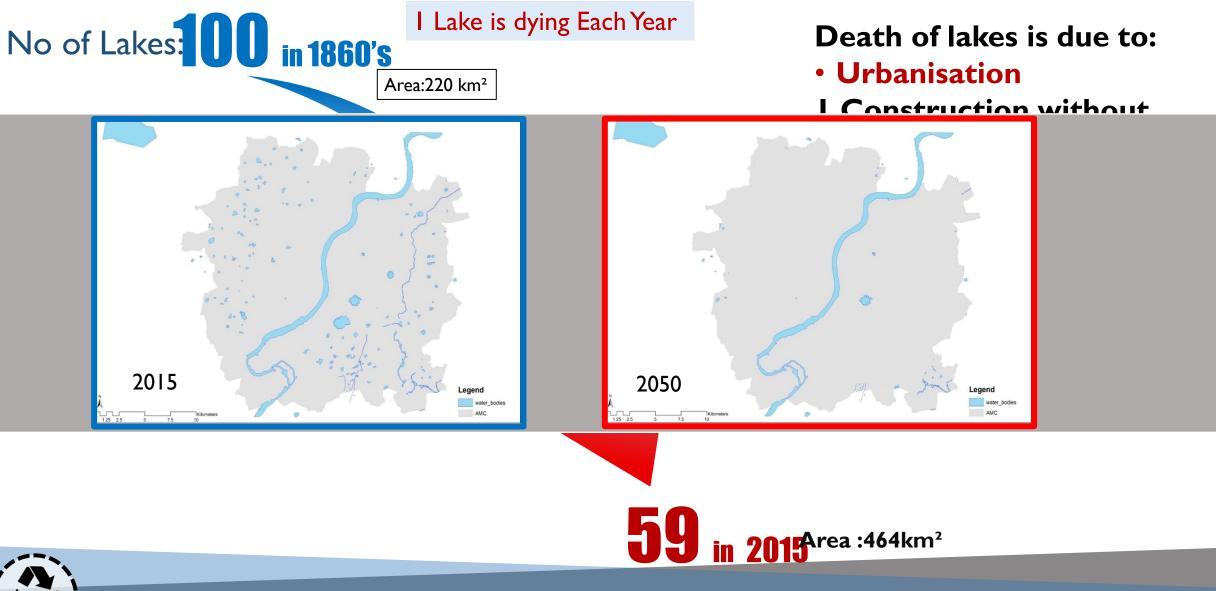
Death of lakes is due to:
Urbanisation
I.Construction without

consideration of natural waterways of lakes

2.Encroachment on the lakes periphery

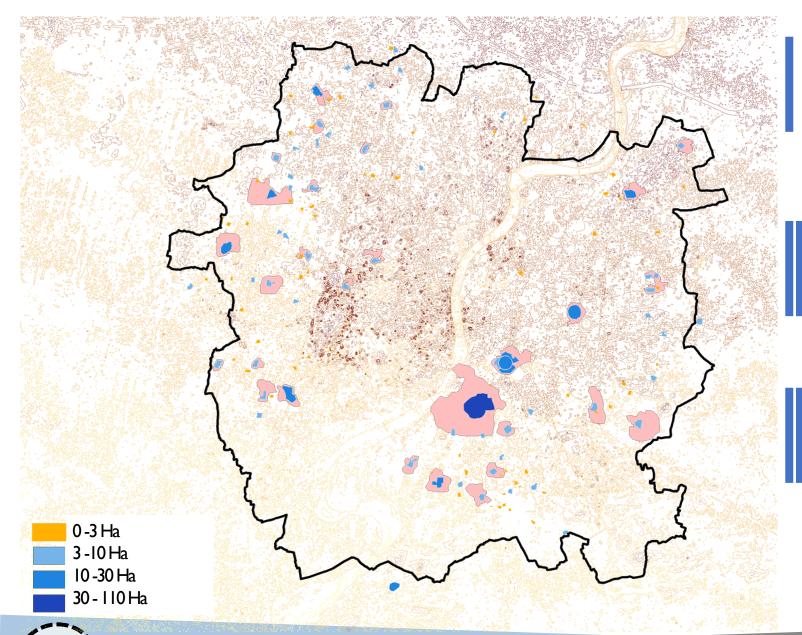
3.Pollution of lakes due to solid waste and sewage.

Solid waste and sewage


4. Over exploitation

5. Eutrophication

59 in 2015^{Area} :464km²



Source: http://sindicatum.com/meteosystems/global-water-facts-and-figures/global-water-shortage/ Strategies for Lake Management in Urban Context: A Case of Ahmedabad, Diana Pancholi , Faculty Of Planning, CEPT

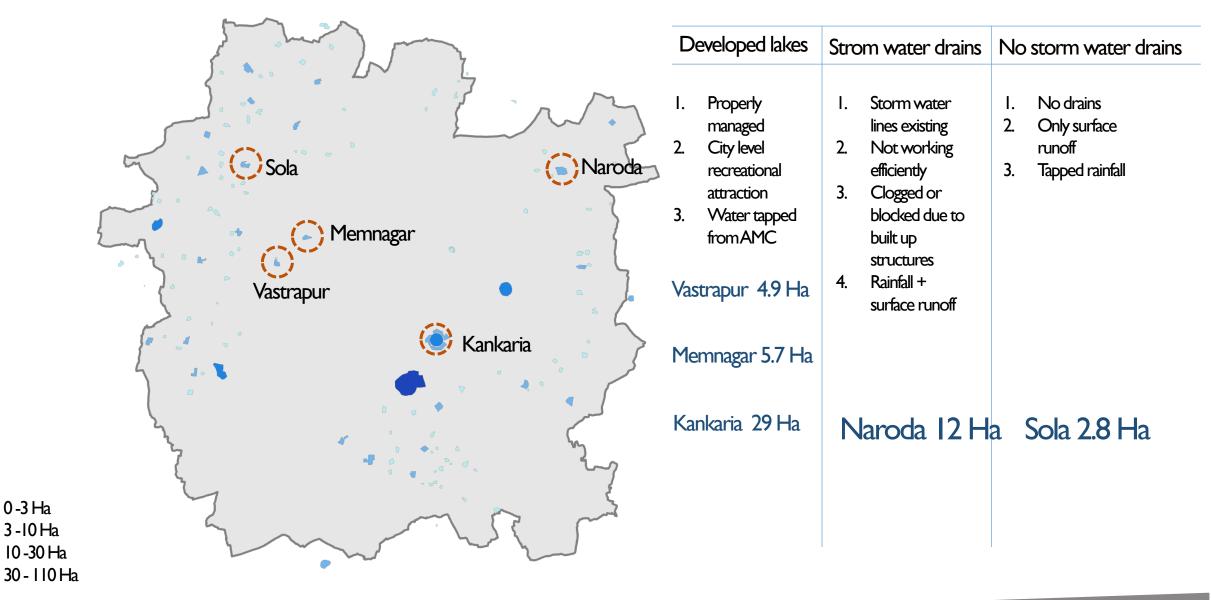
Rain Water Harvesting

Source: http://sindicatum.com/meteosystems/global-water-facts-and-figures/global-water-shortage/ Strategies for Lake Management in Urban Context: A Case of Ahmedabad, Diana Pancholi , Faculty Of Planning, CEPT

<u>STEP I</u>

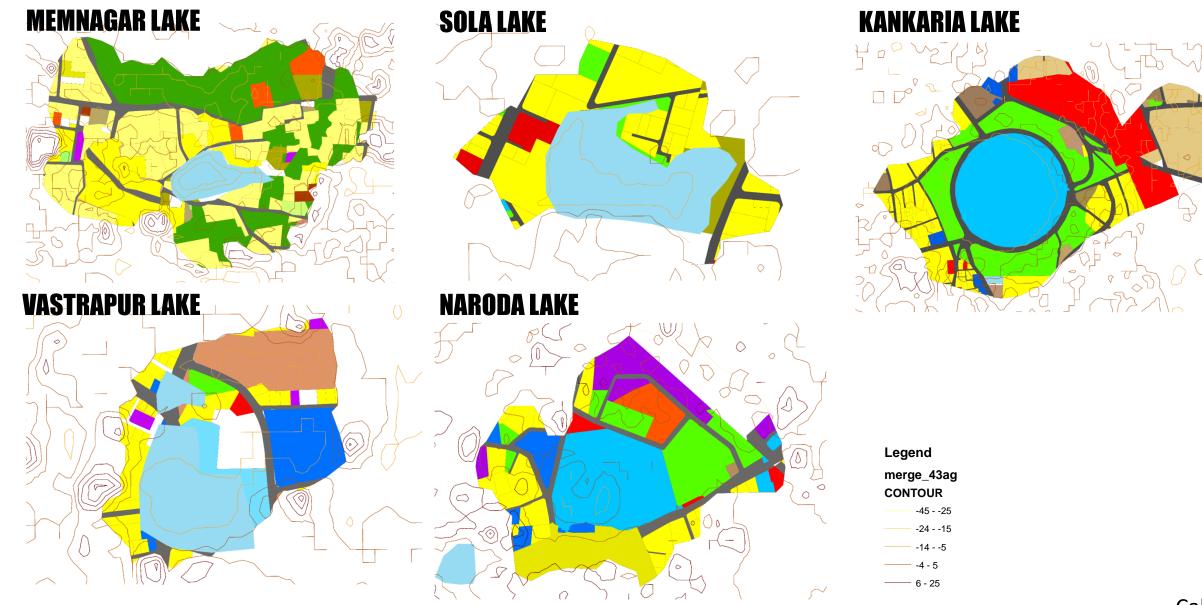
Lakes with area lesser than 3 Ha have been not included based on the theory from NATIONAL LAKE CONSERVATION PLAN, that much potential couldn't be tapped by these in terms of rain water harvesting

<u>STEP 2</u>


Lakes with area between 3 Ha to 30 Ha have been taken up as the medium and large scale. Based on the contours, calculations of the catchments are done.

<u>STEP 3</u>

Total potential of RVVH has been estimated based on the CGVVB, CPVVD manuals



PERCOLATION MANUAL	CPWD	CSE	CGWB	OUR TAKE
Design= Avg annual rainfall, yield capacity Run off = mean annual rainfall – 7" / 100 x total rainfall	Rain water harvesting potential = rain fall (mm) x coefficient (based on surface typology) x area or catchment area	For harvesting = 80% {area x rain full }	Assumptions = 40% annual rainfall in 2-3 hrs (4/5 of cloud burst) Percolation peak intensity = 74hrs (1/10 of rainy days) Yield of runoff = 60%	Identify rainy months Calculate per day rainfall Consider, X Lts/hr/ unit , data for /day is acquired
	Storage potential/ design = area x annual rain fall x runoff coefficient x constant coefficient	Storage = area/size x intensity of rain fall x rate of recharge w.r.t material	Only 30% runoff captured by lakes	Total water which can be percolated = per day data x per day rainfall data x num. of rainy days
	Design = area x run off coefficient x peak rain fall in 15 min time in mm	Design = based on soil type, potential.	Peak intensity = 0.6cm/hr	

ARTIFICIAL RECHARGE TECHNIQUES

Source: Manual by CPWD – for coefficients CGWD – for peak rainfall data

POTENTIAL ASSESSMENT

CATEGORY	No. LAKES	TOTAL CATCHMENT	ANNUAL RAINFALL	CONSTANT COEFFICIENT	ANNUAL POTENTIAL	PEAK RAINFAL (40% ARF)	PEAK POTENTIAL
SMALL	32	3008	0.74	0.5	1,11,29,600	0.29	44,51,840
MEDIUM + LARGE	29	2759	0.74	0.5	1,02,08,300	0.29	40,83,320

2,13,37,900 m3 85,35,160 m3 ANNUAL PEAK

Ahmedabad Water Consumption

Per Day consumption by Ahmedabad = 1030 ML

Annual Consumption = $10300 \times 365 = 37.5 \times 10^{6} \text{ KL}$

Run off would be 56%

Of Ahmedabad's water Consumption

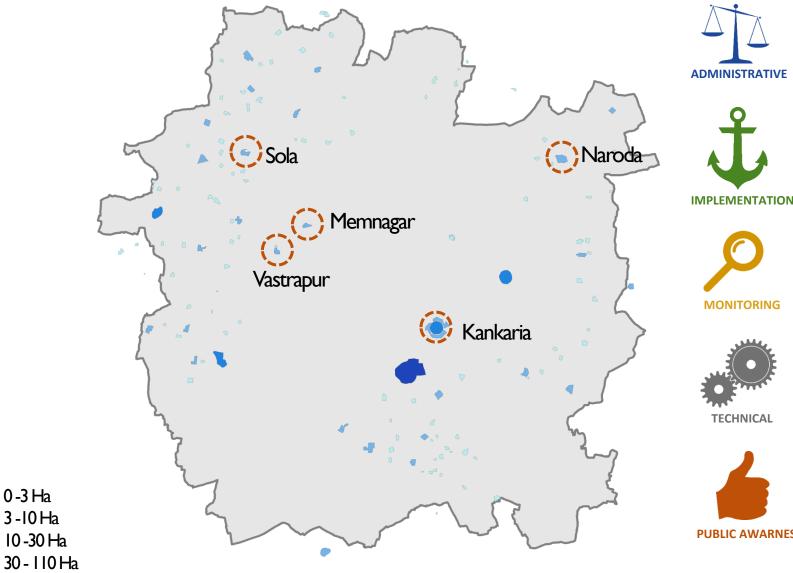
Source: Manual by CPWD – for coefficients CGWD – for peak rainfall data ANNUAL

PEAK

Small Lake Not much built up More water as run off Outskirts		Tentative height increased	Height increased if inflow is 30%	Height increased during peak	Height increased during peak (30% inflow)
	Memnagar	5.97	1.79	2.39	0.72
	Vastrapur	1.59	0.48	0.81	0.24
	Sola	123.38	37.01	49.40	14.82
	Naroda	1.67	0.50	0.79	0.24
	Kankaria	2.01	0.60	0.84	0.25

30%

40%



MAIN CHALLENGE

Source: Manual by CPWD – for coefficients CGWD – for peak rainfall data

80%

60%

GDCR – To include lakes into **RWH guidelines** Lake conservation department to take the initiative Private contractors managing the lakes prove to be managed better

Contracting out the operation and maintenance process

Separate body from the AMC - LAKES DEPARTMENT to monitor the lakes

Financial assistance by mobilizing funds and external funding bodies

GDCR – scale of implementation and **maintenance by AMC** officials, periodic audits

MONITORING

Enhancement of the catchment, improving the percolation **capacity** of lakes, rain water storage facilities. Laying of new storm water lines Clearing the chocked drains

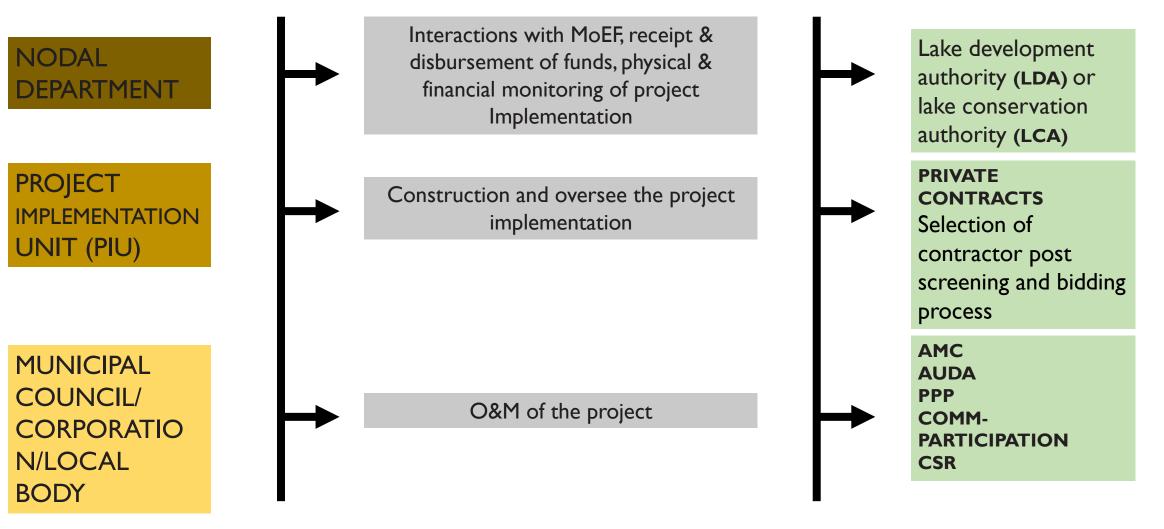
Educating the public about use of lakes as water storage tanks apart from recreational or aesthetics Already in few cases, public has taken initiative and pooled funds for the lake development i.e. people are already PUBLIC AWARNESS sensitized toward it

Proper channeling to be taken up

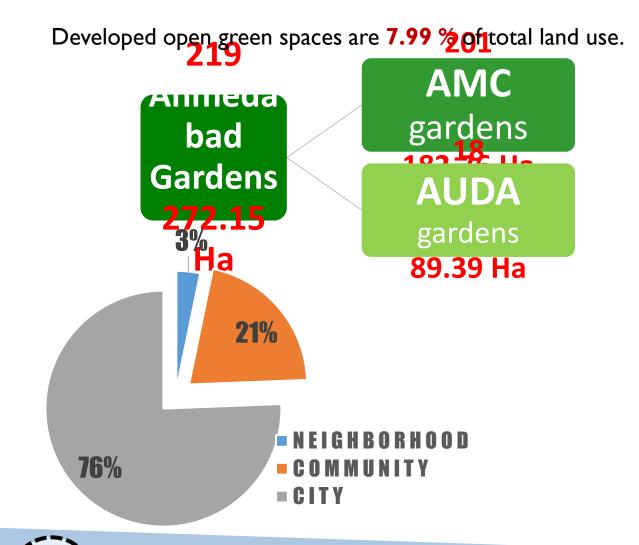
UNPLANNED URBAN DEVEL of th	PROJEC		
Increasing built-up area	Increase in the population residing in the surroundings	 Better urban planning mechanism Regulation within GDCR – control on the percentage of pave surface around lakes and water bodies 	auda Amc
	Increasing pollution SVV dumps	 3. Monitoring of the solid waste management at lakes 4. Water quality check and maintenance 	PUBLICAVVR. CONTRACT
Increased un Negligence o	ed lakes ban flooding f lakes by local prities	 Clearances of the catchment area of the water bodies Construction of the storm water 	CONTRACT
Encroachments by slums	Land allotment for lakes changed to other land uses	drains and clearing of blockages in the current system	AMC/AUDA

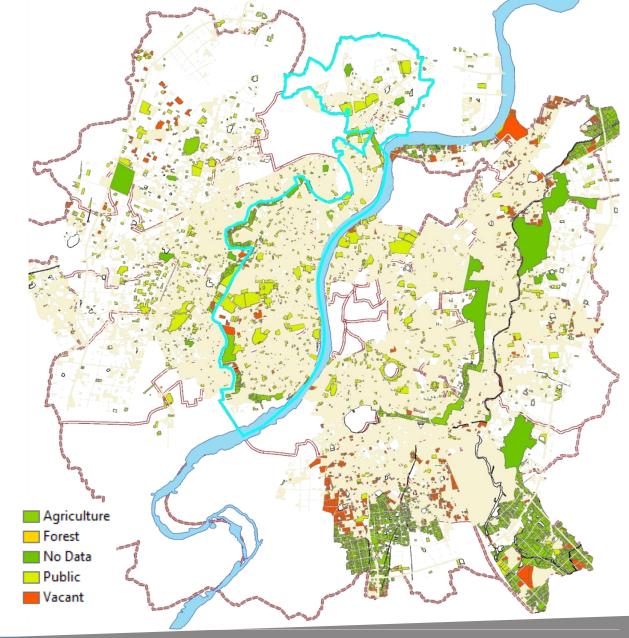
		- } © { © }
10 - 30 Ha		

<u>STAGE I</u>			
IN-SITU			
		Cost for	1300
	50 acres	acres	
Cleaning of the lakes &			
De weeding	120		3120
Solid waste removal	1.5		39
Water quality monitoring	2		52
	123.5		3211
	IN-SITU Cleaning of the lakes & De weeding Solid waste removal	IN-SITU Cost in lakh per 50 acres Cleaning of the lakes & De weeding Solid waste removal Vater quality monitoring 2	IN-SITU Cost in lakh per Cost for 50 acres acres Cleaning of the lakes & De weeding 120 Solid waste removal 1.5


Capital cost = Rs 32.11 Cr

	STAGE 2	1	I
		cost in lakh per 50	
			acres
	Removal of dogs in the current storm		
	water drains	11.5	299
	Pavement of the surrounding with		
	pervious materials	45	1170
		56.5	1469
		Capital cost = Rs	14.69 Cr
	STAGE 3		
	Regulation provisions in GDCR		
la l	Implementation Monitoring		
/~ 10-30 Ha	Total cost = Rs 46.80 Cr		
	Contingencies (2%)= Rs 0.93 Cr Post operative expenses (5%) = Rs 2	2.43 Cr	
() 3-10 Ha	~ Total capital cost = R	Rs 50.16 Cr	•

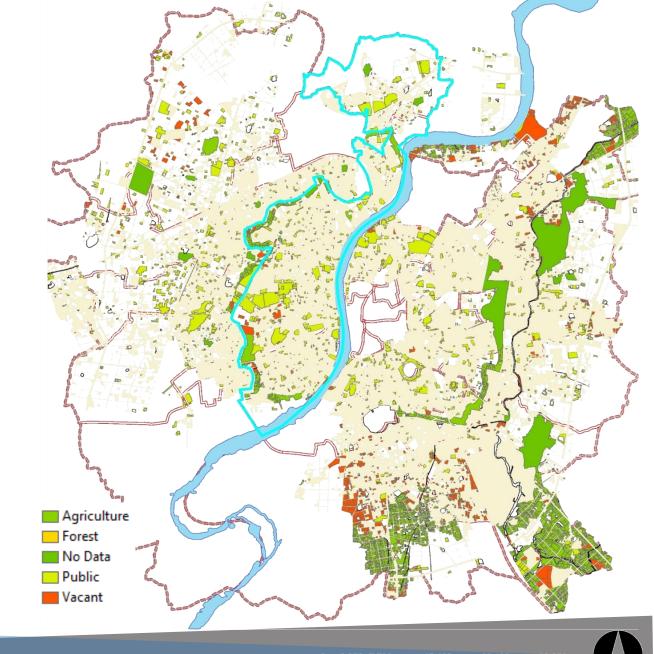



3-TIER INSTITUTIONAL MECHANISM

PARKS

Source : AUDA DP, 2021 and CSP, 2012

PERCOLATING WELLS IN ALL MUNICIPAL GARDENS FOR RWH


- AHMEDABAD MUNICIPAL CORPORATION - TOI, 2010

SAMPLES OF SURVEY

- I. WHO MAINTAINS THE PARKS
- 2. DO THE PARKS HAVE RWH SYSTEMS
- 3. IF YES WHAT IS THE SCALE OF OPERATION
- 4. WHO KEEPS A TRACK ON ITS MAINTENANCE
- 5. WHAT IS THE DIFFERENT BETWEEN PARKS FROM DIFFERENT ZONES OF AHMEDABAD

<u>CONDITION</u>

MAIN PLAYERS AMC & MOTHER DAIRY 5% OF EACH ZONE FOR AMC = 15 5% OF EACH ZONE FOR MOTHER DAIRY PARKS=14 OTHERS =4

PARKS

Source : AUDA, Media archives

Bhairavi Public Park, Visramnagar, Ghatlodia

<u>AGENCY</u>

AMUL

Area of Park = 10,178 Sq.Mts

Annual Rainfall = 740mm

Water Falling on ground , 10178 x 0.74 = 7531M³ (annual) 10178 x 0. 296= 2951M³ (peak) Runoff coefficient = 0.25

Water that can be percolated, $7531 \times 0.25 = 1882 M^3 = 1882750 L$ (annual)

2951 x 0.25 = 737 M^3 = 737750 L (peak)

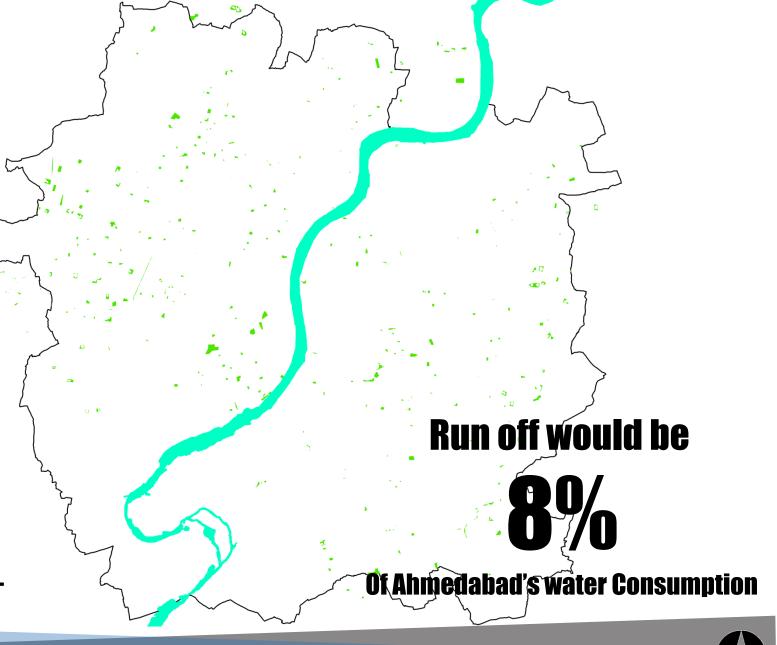
PARKS

Total area Under Parks, 1727296 SQM

Water Falling on ground, $1.7 \times 10^6 \times 0.74 = 1.2 \times 10^6 M^3$

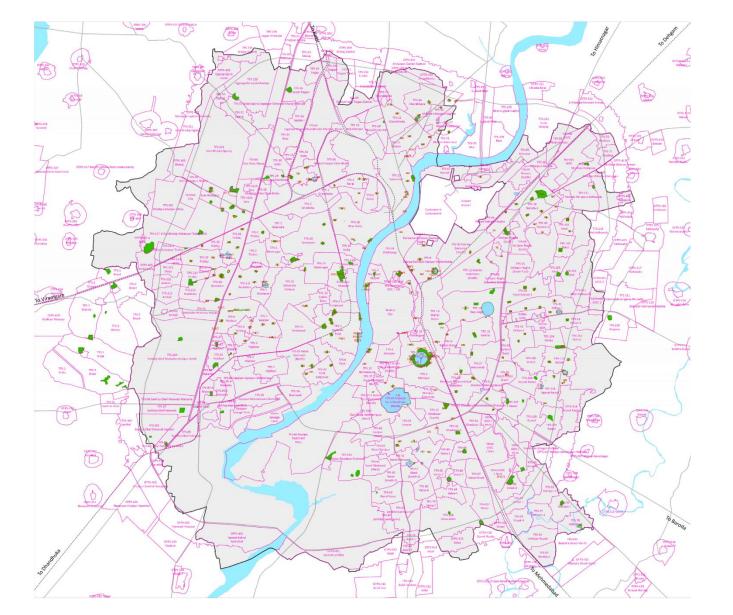
Runoff coefficient = 0.25

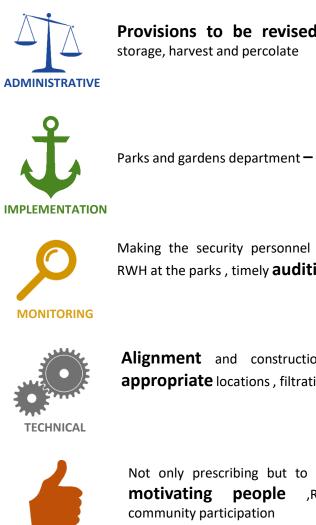
Annual water that can be percolated, 1.2×10^{6} KL = 0.3 x 10^{6} KL


Water percolated at Peak time, 40% of annual run off 0.12 x 10⁶ KL

Ahmedabad Water Consumption

Per Day consumption by Ahmedabad = 1030 ML


Annual Consumption = $10300 \times 365 = 37.5 \times 10^{6} \text{ KL}$


Rain Water Harvesting

23,100

PARKS

Provisions to be revised from only percolation to

Parks and gardens department – AMC

Making the security personnel **aware** of duties towards RWH at the parks , timely **auditing and checking**

Alignment and construction of recharge wells at appropriate locations, filtration, ZERO RUN OFF

Not only prescribing but to stand as a best study for ,Rally's public gatherings,

LAKE

PUBLIC AWARNESS

FINANCE – PARKS

Total area under parks – 16,18,157 sq.m = 161 Ha For 1 Ha of park/ garden = 3 recharge pits Therefore,

Total recharge pits/ trench required for Ahmedabad = $161 \times 3 = 483$ pits

Cost of construction of 1 pit/ trench = Rs 5000 – Rs 10,000/-(average Rs 8000/-) Total cost of construction = 8000×483 = Rs 38,64,000 /-Contingencies (@ 8%) = Rs 309120 /-Operational and maintenance (@10%)= = Rs 3,86,400 /-

Total cost of the project ~ Rs 45,59,520/-

OPTION I

Project contracted out on PPP

- I. Private body constructs the pits/ trenches
 - 2. Operates and maintains
 - 3. Transfers it to AMC (BOT)

OPTION 2

Project contracted out

- I. Private body constructs the pits/ trenches
- Operates and maintains
 Owns it

CONTRACTING – PARKS

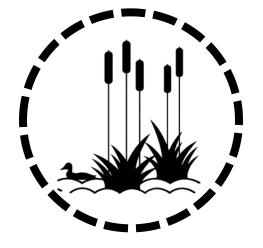
INVITATION FOR BID

Section 1-Preparation of Bids Submission of Bids Bid Opening and Evaluation Award of Contract

Section 2 -Letter of Intent Agreement Form Work Order Section 3-Conditions of Contract General Conditions Time Control Quality Control Cost Control Finishing the Contract Special Conditions Safety Manual

Section 4-Forms of Securities Bid Security

SELECTION OF THE CONTRACTOR


TENDER DRAWINGS

TECHNICAL

SPECIFICATION

SCHEDULING OFTHE QUANTITIES

REJUVENATION OF LAKES

Issues

Open Defecation

Poor Sanitation

PRESENT SCENARIO

Trash Filled

Sewerage

Encroachment of

Slums

Animal

Cleaning

Water Borne Diseases

Water Hyacinth

Source: Primary survey

Policy Time Line For Lake Conservation

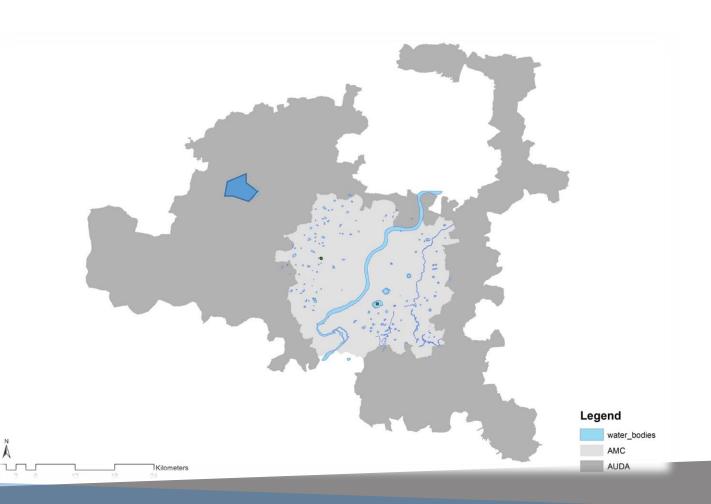
1983 NWCP under MoEF was formed 1992 The National Conservation Strategy and Policy Statement on Environment and Development

2002 conservation of water body 2009National Water Mission under National Action Plan on Climate Change

1987 1st National water policy 2001NLCP was formed

2005 under National Capital Region plan town to protect identified water bodies 2013 NLCP and NWCP combined to form NPCAE

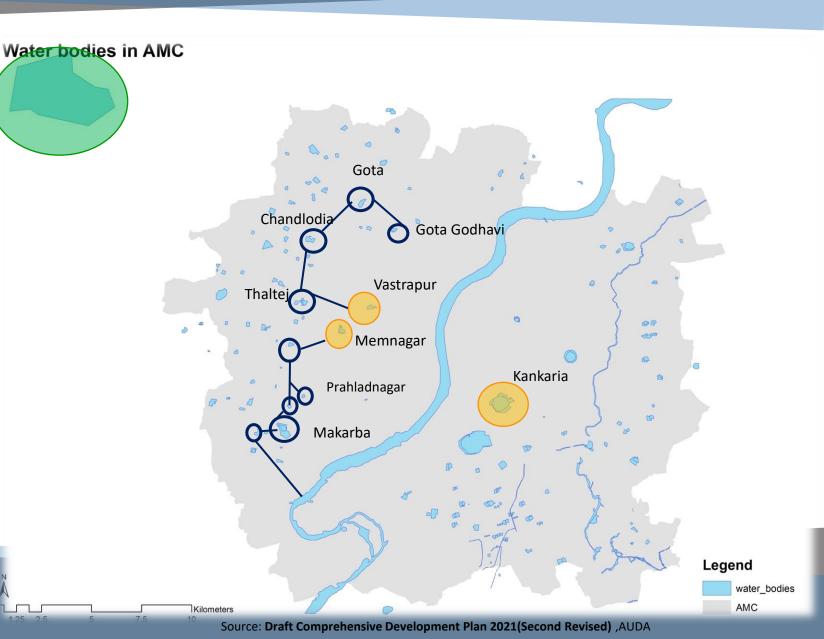
Source: Briefing Paper-Legal institutional and technical framework for lake and wetland protection by CSE



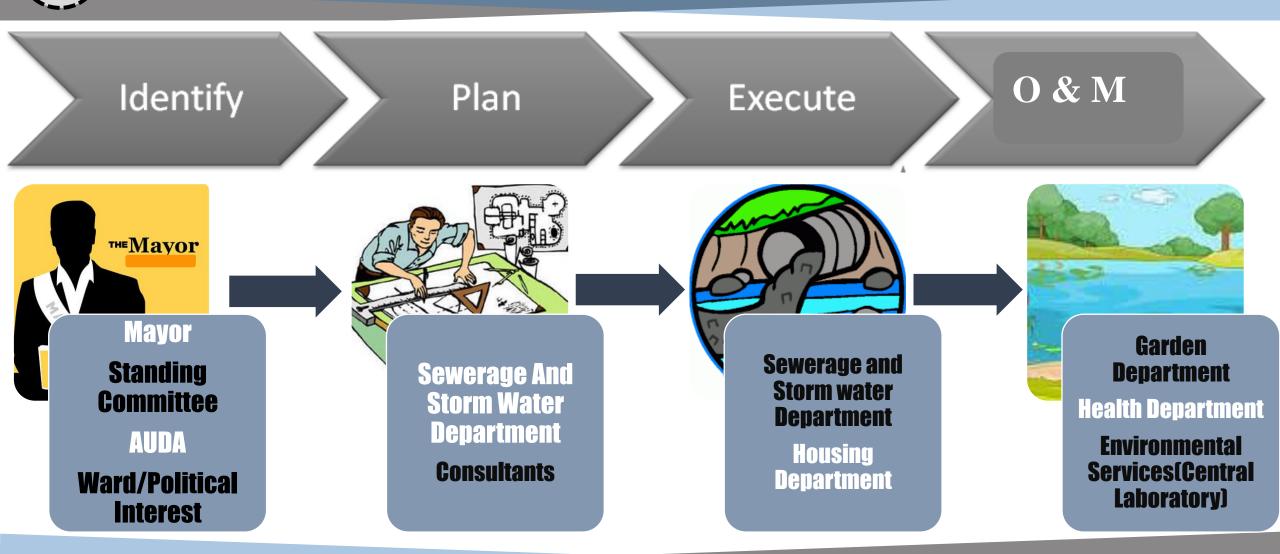
Name of the lake	Jukkur Lake,Banglore (160Acre)	Powai Lake, Mumbai (1800Acre)	Kankaria, Ahmedabad	Lakes Interlinking Project, Ahmedabad	Pushkar lake, Rajasthan (30Acre)
Rejuvenation Methodology & Technology	 Wetland Treatment Technology Silt traps Public Participation 	 Shoreline development Desilting(imported technology) Public Participation(Clean up drive) 	 Aerator(Fountain) Desiltation Lake front development 	 Urban watershed management/Storm water management Lakes interlinking Lake development(44) 	 anaerobic cum facultative stabilization ponds Silt trap Aeration Heritage Tourism
Key Stakeholders	 BDA JalPoshana(Satya Foundation) Citizen groups Fishermen 	 MSAA BMC <i>IIT Bombay</i> NLCP MMRDA 	 AMC AUDA State Govt. 	 AUDA AMC Rejuvenation and Renovation of Urban Water Bodies of Ahmedabad 	GoRPMBMoEF
Finance	 BDA 17Crores(Lake Development Project) 	BMC(6.24 crores)IIT BombayNLCP	 AMC,Govt. of Gujarat 36Crore(recreation and lake development) 	 AMC(575 Crore) Each year (20Crores for lakes development) 	• MoEF(87Crores)
Operation And Maintenance	BBMP JalPoshana	• MSAA	AMC(User fees) <u>3. http://www.iddkarnat</u>	AMC AMC Aka.gov.in/docs/23.Prefea_lake_cons.pd	• PMB

- Sabarmati river runs through the city, i.e., 22km of river bank.
- •1411 no of small and large lakes in AUDA
- **59** lakes in **AMC**

Sr. No.		Total no of Lake with(area less than 50,000 Sq. mt.)	Total no of Lakes (area 50,000 to 75,000 Sq. mt.)	Total no of Lakes (area 75,000 to 1,00,000 Sq. mt.)	Total no of Lakes with (area more than 1,00,000 Sq. mt.)
1	New West AUDA area (69 Villages)	677	15	14	30
2	West AUDA area (including 68 Villages)	84	5	1	1
3	South AUDA area	237	5	2	6
4	East AUDA area	231	6	2	
5	North AUDA area	135	5	2	2
6	AMC	47	6	1	5
TOTAL		1411	42	22	44

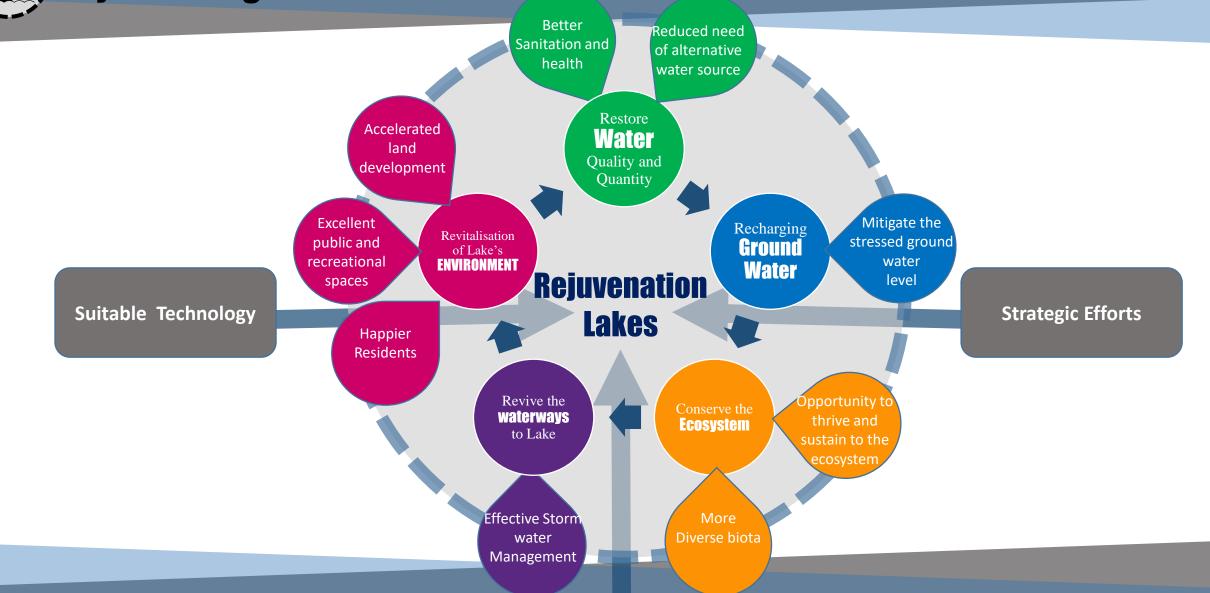


Source: Draft Comprehensive Development Plan 2021(Second Revised) ,AUDA



Rejuvenation interventions in Ahmedabad

- Lakes Interlinking
- 22 Lake Front
 Development And Slum
 Rehabilitation(Kankaria,
 Vastrapur, Memnagar)
- No Urban Development Buffer Around Thol


Current Institutional scenario-Ahmedabad

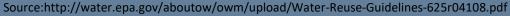
Stand alone development of water bodies without integration of stakeholders and institution

Source: Primary study

Rejuvenating Lakes Of Ahmedabad

Stakeholders Participation And Institutional

- Urbanisation **reduced quantum** of water coming to lakes.
- Shallow Lakes, **High Evapotranspiration (2.3M/ Year)** losses.
- Need of alternative source, fresh water cannot be used in **water scarce scenario**.


"Reclaim The Waste Water to Recharge Lakes Of Ahmedabad"

Source:http://cwc.gov.in/main/downloads/Evaporation%20Control%20in%20reservoirs.pdf

PA 2012 Guidelines for Water Reuse

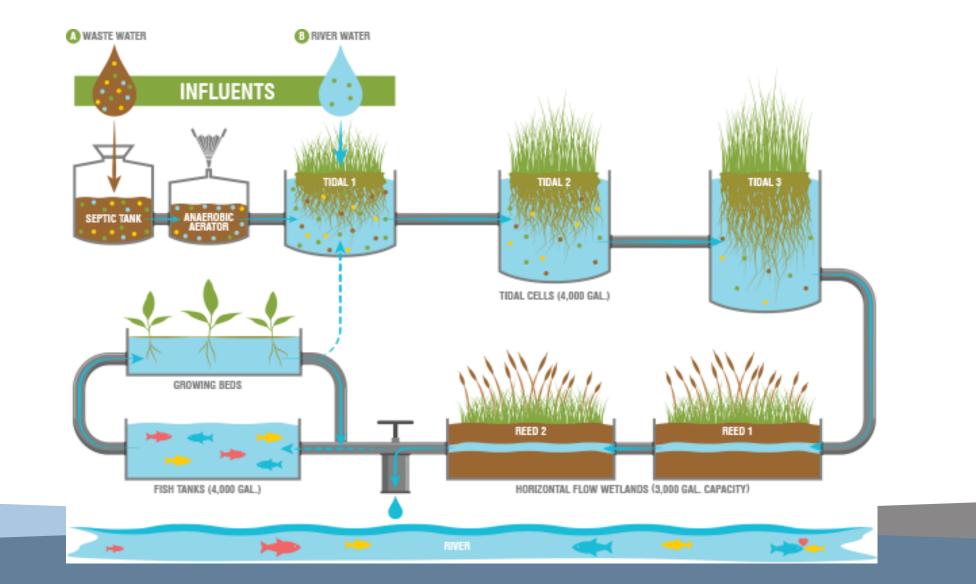
- **Fit for Purpose**: choosing the right level of treatment should be dictated by the end application of the reclaimed water for achieving economic efficiency and environmental sustainability.
- Water Reuse-Impoundment:
- Santee Lakes, San Diego
 - Public Acceptance
 - Reuse of water as recreational impoundment(1960)
- Arizona
 - reclaimed water- recreational impoundments
 - must meet Class A requirements
 - secondary treatment, filtration, and disinfection
 - no detectable faecal coliform organisms
 - body contact is prohibited
- Wetland :
 - flood attenuation,
 - wildlife and waterfowl habitat,
 - food chain support, aquifer recharge
 - water quality enhancement
 - Treatment technologies are available to achieve any desired level of water quality maintenance of wetlands in the landscape mosaic is important for regional hydrologic balance

Tertan teament reament -buonced Reuse econdary treament Water Quality Drinking Reuse Water Reuse* Raw Water Wastewater * Level of treatment depends on the reuse application

Figure 1-3

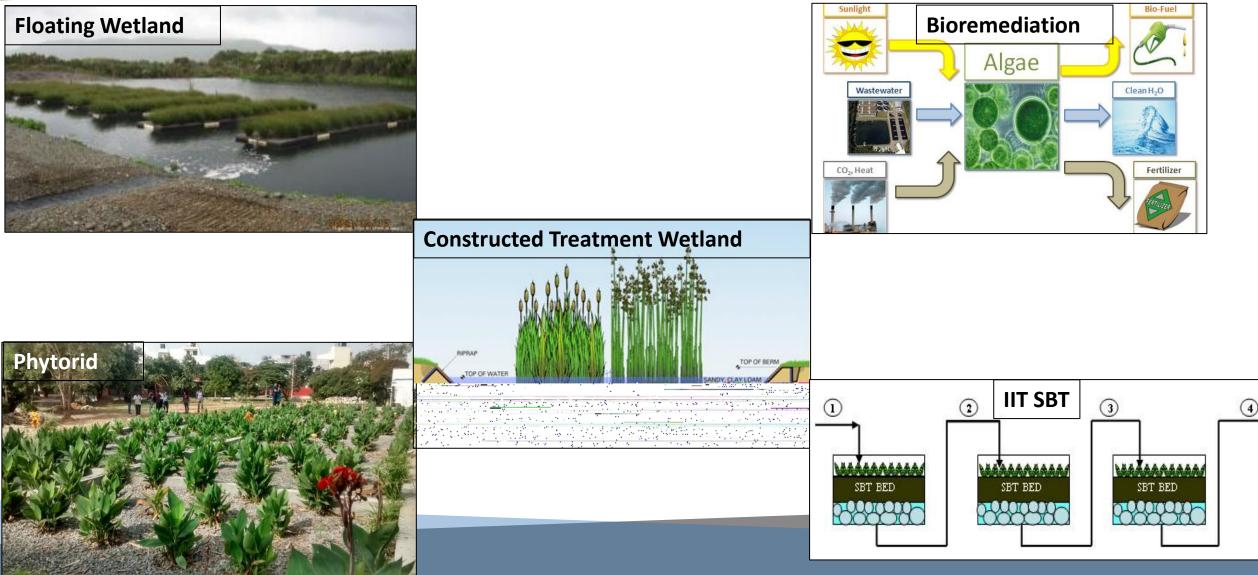
Guidelines for Waste Water Reuse

Guidelines	Recommended Extent Of Treatment
USEPA	Secondary TreatmentFiltrationDisinfection
California Guidelines	Disinfected Tertiary
CPCB Guidelines	Secondary Treatment with Filtration
Environmental Duilding Cuid	lalings for Creator Urdarabad


Environmental Building Guidelines for Greater Hyderabad

- Discharge into lakes/ponds/water bodies Wastewater is full of nutrients, which can directly be used by algae, water plants and lower animals, which then could become fish feed. Hyderabad is famous for its beautiful lakes. In all, there were more than 150 lakes in Hyderabad Metropolitan Area. But due to the development most of the lakes disappeared. In the Draft Master Plan for 2020, it is proposed to increase the area of water bodies to 95.44 sq. km. from the existing 84.3 sq. km. One way of achieving this is by channelling all our treated water, storm water etc. into the closest lake in the vicinity.
- <u>Safe disposal</u> of the treated wastewater into lakes/ponds in the local vicinity would increase its water levels, enhance the recharge potential, nutrient water for growth of aquatic flora & fauna in water bodies, etc.

Source: Source-http://www.ultrawater.co.in/Sewage%20discharge%20standards.pdf http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20140618.pdf


"Restoring Healthy Coexistence With Nature"

Source:http://the-looper.com/bioremediation.html

Techniques to clean water An Ecosystem based approach

Source: http://www.environmentaljournal.org/1-3/ujert-1-3-9.pdf (Wetland) http://www.environmentaljournal.org/1-3/ujert-1-3-9.pdf (Wetland) http://www.neeri.res.in/pdf/Phytorid.pdf (Phytorid)

http://www.aswcd.org/bioremediation_lakes_myths_and_realities.pdf

Techniques to clean water An Ecosystem based approach

Technology	Treatment Quality	Area Required	Cost	Case Studies
Floating Wetlands	Secondary Treatment	-	 Construction Cost:30-40 Lakh Per Acre O&M :30,000 Per Acre Per Year 	 Kotitirtha Kunda, Mahakaleshwar Mandir, Ujjain.
Phytorid	Tertiary Treatment	• Area Requirement: 1.5- 1.75 Per KLD	 Construction Cost:1.20 To 1.30 Lakh per KLD O&M :Rs1000- 2000/KLD/Year 	 CIDCO, Panvel (20 M3/Day) Mumbai University Campus, Kalina (25 M3/Day)
Bioremediation	Tertiary Treatment	-	 2 To 4 Kg Per Acre/Foot Of Water 3000 Per Cubic Meter 	 Yamuna River At Agra Agastya Lake, Badami, Karnataka
Constructed Wetlands	Tertiary Treatment	• 2-3 Sq. M Per KLD	 Construction Cost: Rs 1500-2000 Per M² O & M :Rs 300 Per M² 	• Jukkur Lake, Bangalore, Karnataka
DEWATS	Tertiary Treatment	= f (IITSBT) http://www.enviropmentaliournal.or	Rs 20-25 Per KLD Water	Bandhwa Talav (Raipur)
	ource: http://cseindia.org/userfiles/shankar.pd	f (IITSBT) <u>http://www.environmentaljournal.or</u>	r/1-3/ujert-1-3-9.pdf (Wetland) http://www.ne Construction Cost: 14.000/	• Lake Near Viumbai.

Potential Oriented Categorization Of Lakes

Biodiversity And Ecosystem

(Environmental Group &NGO)

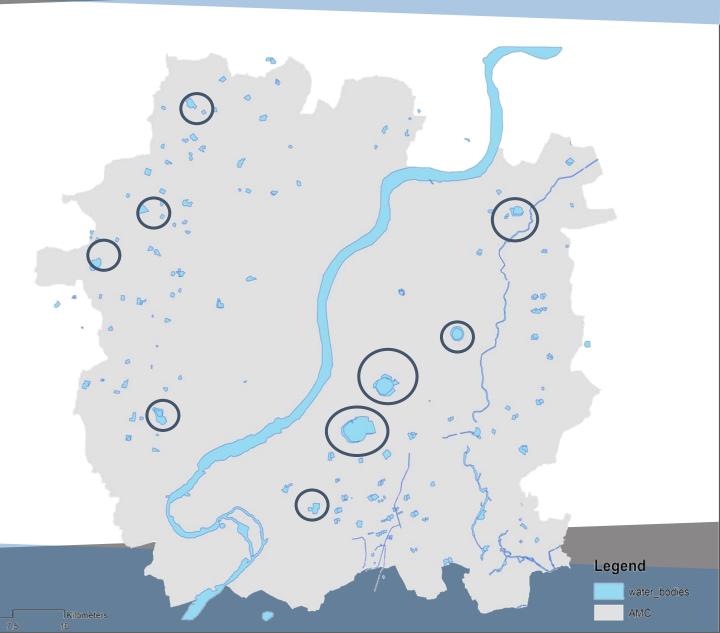
 Ecological Restoration And Conservation With Various Interventions

Historical And Religious Importance

(Associated Institution)

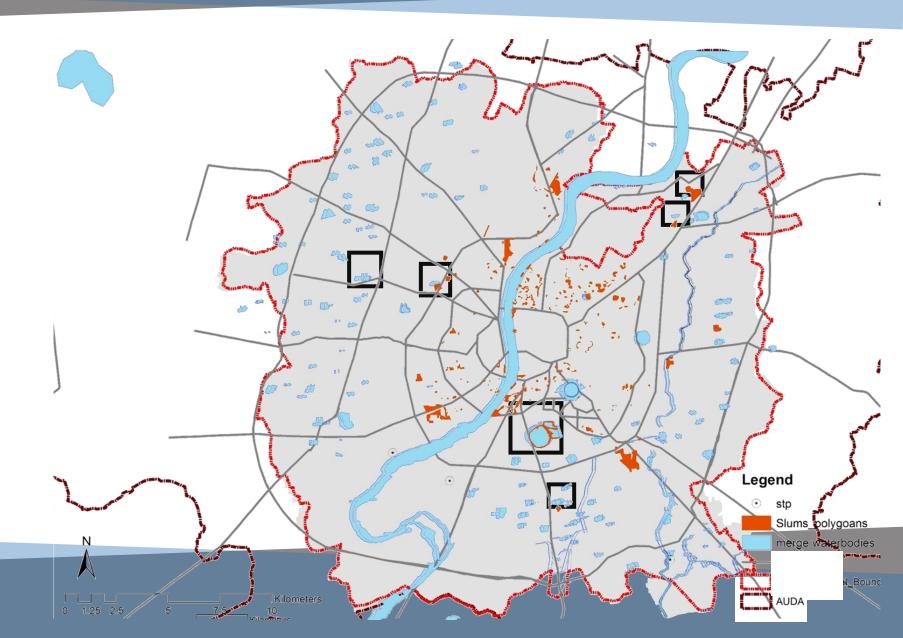
- Heritage Restoration And Conservation
- Demonstration Of Historical Uniqueness And Story Of The Lake.

Recreational And Public Space


(AMC)

- Design Of New And Innovative Recreational Installations
- Water Rides And Sports.

Short listed lakes- According to size


Short listed lakes(>0.1km²)

- Thol lake
- Naroda lake
- Lal Bahdur shastri lake
- Kankaria
- Chandola lake
- Sarkej lake
- Thaltej lake
- Sola lake
- Gota lake

Short listed lakes- According to location of slums

- Naroda lake
- Saijpur lake
- Chandola lake
- Memnagar lake
- Thaltej lake

Potential Oriented Categorization Of Lakes

Name of the Lake	Biodiversity And Ecosystem	Historical And Religious Importance	Recreational And Public space
Thaltej			
Chandola			
Sarkhej			
Thol			
Naroda			

Step by Step Methodology to Lake Rejuvenation

- Chemical Process
- Mechanical Process for (removal of water hyacinth and
- weed)
- Bioremediation(Microbial treatment)

- Deepening of lake without harming natural ecosystem of the lake(Dredging And **Desiltation**)
- Aeration for DO
- Sediment basin
- Cleaning solid waste in the lake and on the shoreline

- Provision of **silt traps**
- Improvising inlet points
- Clearing the natural drainage of storm water to the lake.
- Provision of **recharge well**.

Source: http://www.moef.nic.in/sites/default/files/nlcp/Lake_Conserv-Manage_India.pdf

Design Of Engineering Measure

Cleaning Of

Lake And Shoreline

Treatment

Physical

Treatment

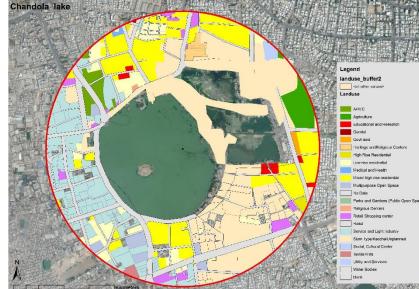
Step by Step Methodology to Lake Rejuvenation

Rules and regulations for protection of lake and its buffer in DPR.
Community toilets
Fencing
Peripheral roads and green belt
Electrification
Promote eco-tourism(small birds sanctuary)
Administrative Office, Security Chamber,
Food Court, Children's Park

- Active participation from local community, citizen groups, conservation organizations, NGOs, and media
- Peoples participation

Roles of

regulatory


• Awareness campaign

- Inter-Agency Regulatory Body- LDA, Pollution Control Board, Forest Dept. City Corp., Development Authority
- Evolve effective wetland programs

est Dept. City Corp., Development Authority Source: http://www.moef.nic.in/sites/default/files/nlcp/Lake_Conserv-Manage


Detailed study of Shortlisted Lakes

Brief History

- Established by wife of Mughal sultan of Ahmedabad **Tajn khan nari ali**
- Manmade lake prepared as water reservoir near To Tomb Of Shah Alam
- The Salt March had also reached Chandola
- Water was used for irrigation purposes.

Area of Intervention:1.44 km² Area under Lakes:1.20 km² Area available for development :0.24 km²

Detailed study of Shortlisted Lakes

- Slum settlements all around lake
- Mosque on the bank
- Vending activities along the road <u>Water quality</u>
- Totally polluted it cannot be used for any purpose
- For past 20 years the water is not used for any purposes

<u>Nuisance</u>

- Waste water from slums and sewer diverted to lake
- Solid waste disposal

Area: 0.12940km²

Perimeter: 2512m

Depth: 0.7m

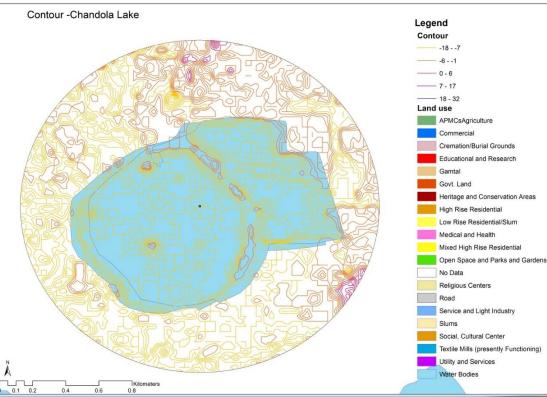
Water Quality	рН	DO(mg/l)	COD(mg/l)	TSS(mg/l)
Chandola	9.1	5.08	84	1224

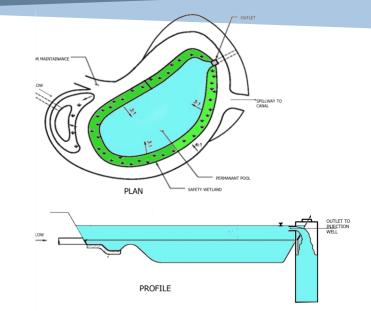
Intervention Needed: The Intervention Will Be In The Context Of Historical And Religious Restoration. Source: Primary study, https://www.itc.nl/library/papers_2014/msc/upm/anand.pdf

LAKE

- Capacity of lake: 129400 m³
- Water losses from surface(4Months Period) :108696 m³
- Losses:84%

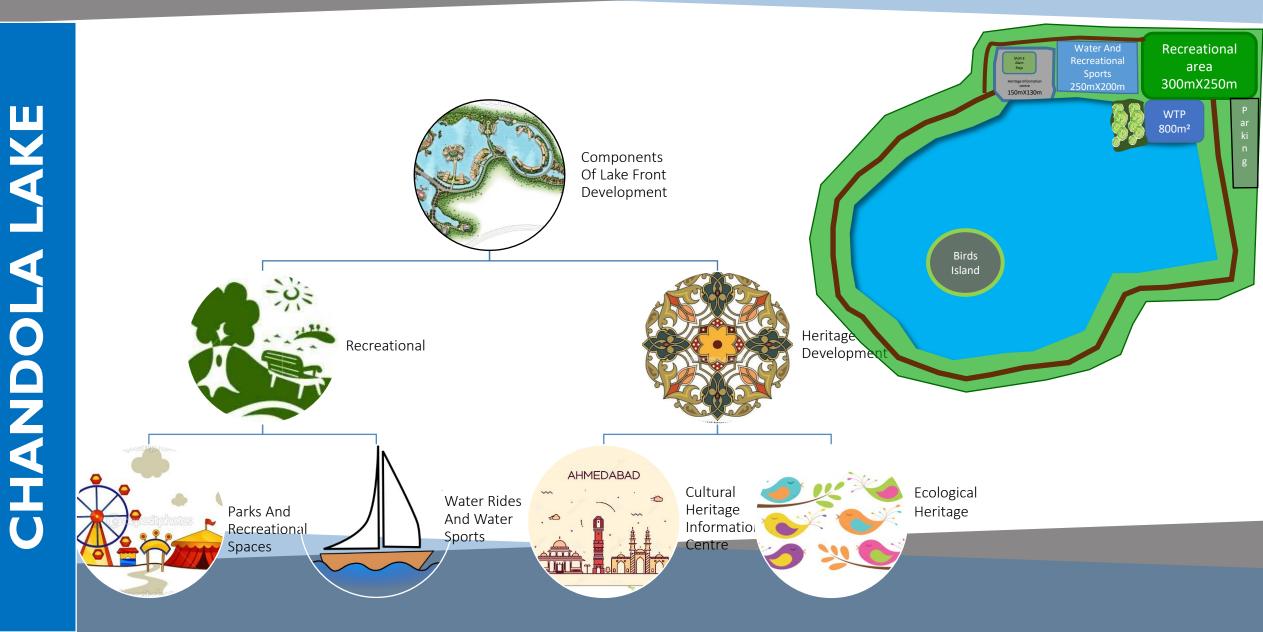
LAKE


CHANDOLA


- Regular Inflow required:905 m³/day=900 KLE
- Technology Used : Wetland treatment
- Area required:1500-2000 Sq. m.
- Cost of Treatment : 2 Crores
- O&M : 2 Lacs per annum

	Characteristi	Inflow	Outflow
d)	CS		
	BOD	155	0.3847
KLD	COD	510	3.325
	TDS	847	15
	TSS	218	10
	Faecal	50x10 ³	55
/	Coliform		
ERY AND NDRY Unit			
Wetl	and zone		
	PROFIL	Chandola Lake	

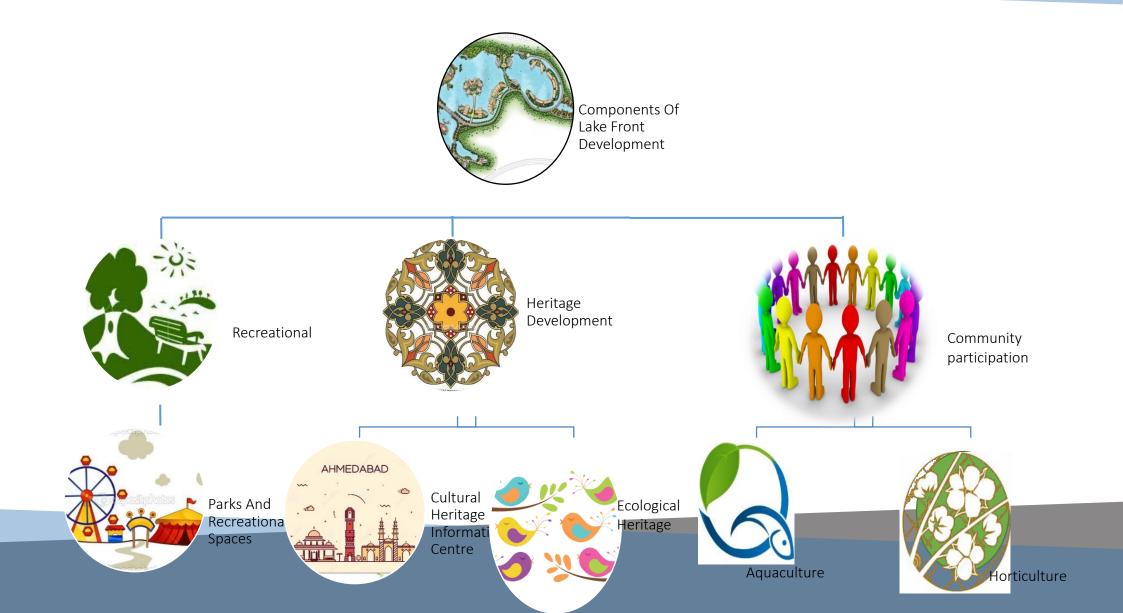
Ground Water Recharge Potential

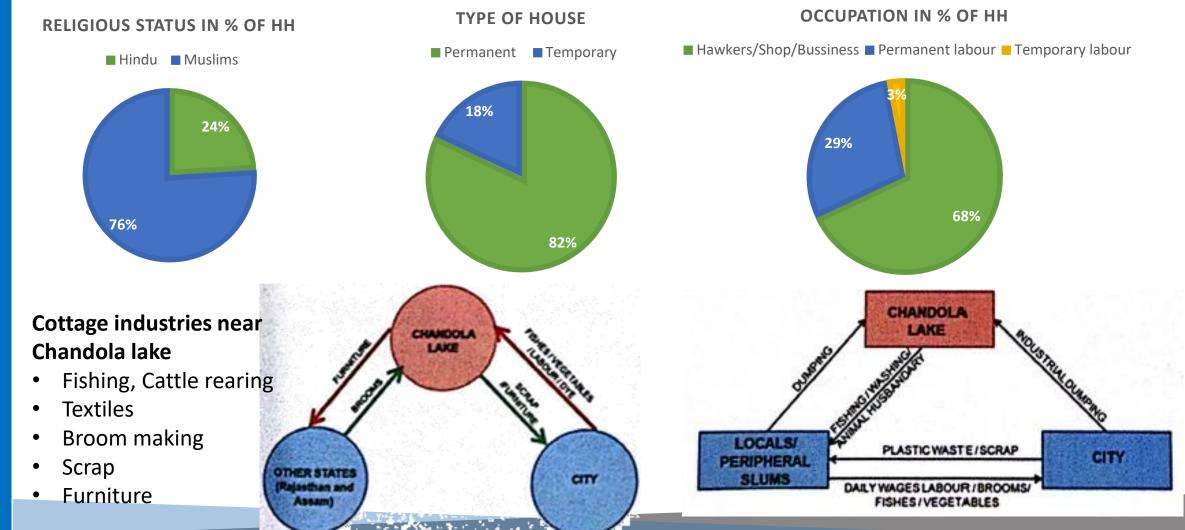

Catchment area of Thaltej:1120.86Acres(4.5km²) Water Recharge of Ground water: $0.4*6.95*10^{3*}10^{3*}0.797$ Water recharge Potential per year = **22.15Lakh m³**

Case study:

Haryana	1	Roof Top Rainwater Harvesting	2350 Cubic meter runoff water recharged in one year
5	1	Combination of Recharge shafts and injection wells	3.50 lakh cubic meter runoff water recharged in one year. Declining rate reduced from 1.175 m/yr to 0.25 m/yr.

Source:http://www.itc.nl/library/papers_2014/msc/upm/anand.pdf





Cost Breakdown

C ivil W orks	355 Acres	Sources of	Amount (Lakhs	Sources of	Amount(Lakhs	
Desilting	219.4	Expenditure	Rs.)	Revenue	Rs./Year)	
Compound Wall	20.5	Lake Front				
Chain Link Fencing	75.1	Development	326	Water sports	51.7	
Culverts and Waste Weir	12.1	Development				
Jogging Track	45.6	STP	200	Entry Fees	322.7	
B Electrical works	187.2			- /		
C Landscaping	387.0	Recreational	C 1 1	Revenue from	222 7	
D Miscellaneous works	0.0	Area	641	shops	322.7	
Water Boat Jetty	22.0	Heritage Site				
Parking	36.2	development	166.7	Parking	113.1	
Heritage S ite development	166.8	uevelopment				
Fountain	97.5	Total	3530.5	Total	810.4	
food kiosks (10 of 10 sqm each)	23.6	0014	204.2		220/	
Project Specifics	2000.0	0&M	304.3	%Profit	33%	
STP	200.0	Lease	235	%Expenses	67%	
Total Hard Cost	3493.1					
Contingency Cost (2% of the hard cost)	29.9	 Payback Period of project is Approximately 10-12 years. 				
Financing Charges (0.5% of the hard cost)	7.5	 Funding can be done by <u>PPP mode.</u> 				
Total Project Cost	3530.5	 Lease Amount: (Rs1.5 per Sq. feet) 2.35 Crore Per year 				

Ш

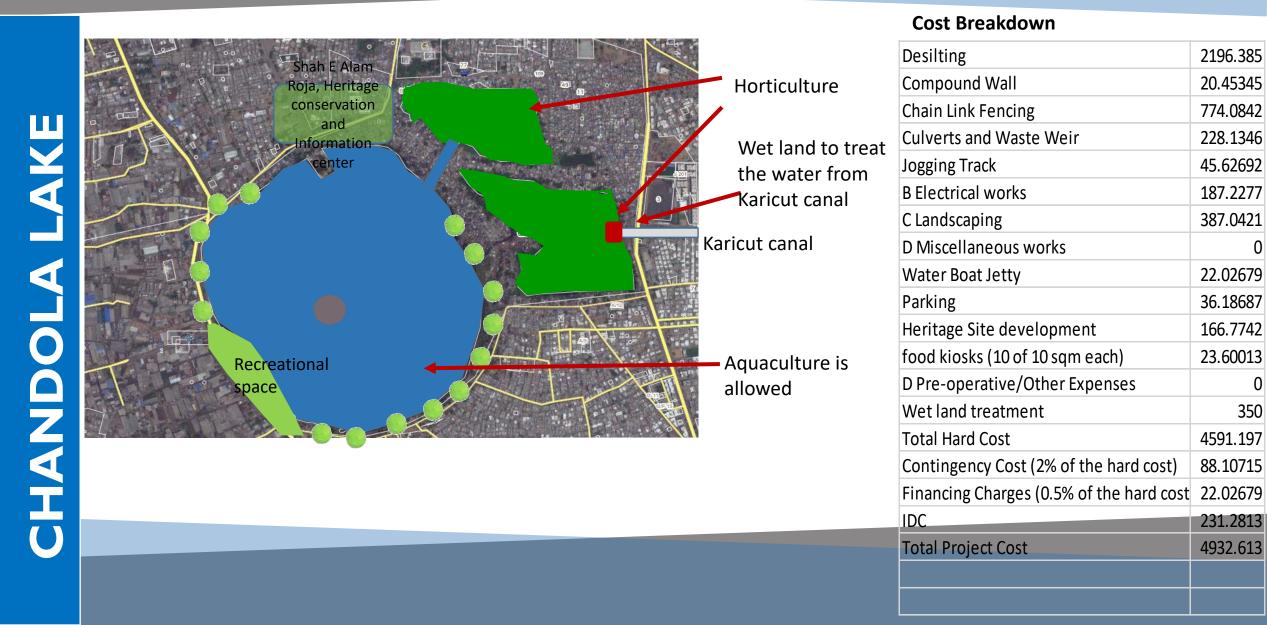
0

CHAN

Water Dependency-Jan- Agriculturewheat Later on during Summer - Chota chandola was used for cattle rearing Monsoon- Fishing etc

2001- August

2015- August



2015- March

Water source-Rain water, storm water, karicut canal

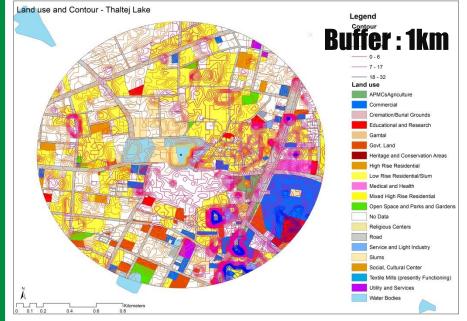
Water dependency-Waste dumping, Fishing, Industrial dumping

> Agriculture Algae Water

Detailed study of Shortlisted Lakes

Location: Thaltej, Near SG highway, New Western part of Ahmedabad.

Area :0.109393 km² Perimeter :1617m Ownership: AMC Storing Capacity : 322Million Litters Landuse(Settlement) : Slum settlement


Water Quality	рН	DO(mg/l)	BOD(mg/l)	Turbidity(mg/l)
Thaltej	8.28	8.10	7.40	38

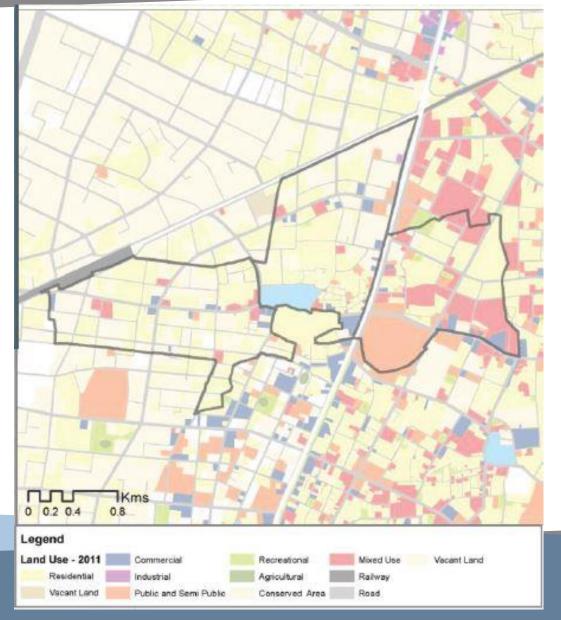
Livelihood of the people: Most of people are working as municipal cleaners and household maids or servants.

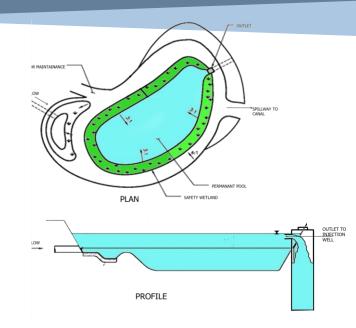
Ecosystem: The lake has rich biodiversity with turtles , fishes and birds.

Present Condition: The water quality of lake is degraded to a higher extent with incoming storm drains water and sewers, which doesn't allow the lake to naturally restore its water quality. **Intervention needed:** The intervention will be in the context of ecological restoration of lake. Source: Primary study, https://www.itc.nl/library/papers_2014/msc/upm/anand.pdf

Area of Intervention:0.14 km² Area under Lakes:0.040 km² Area available for development :0.1 km²

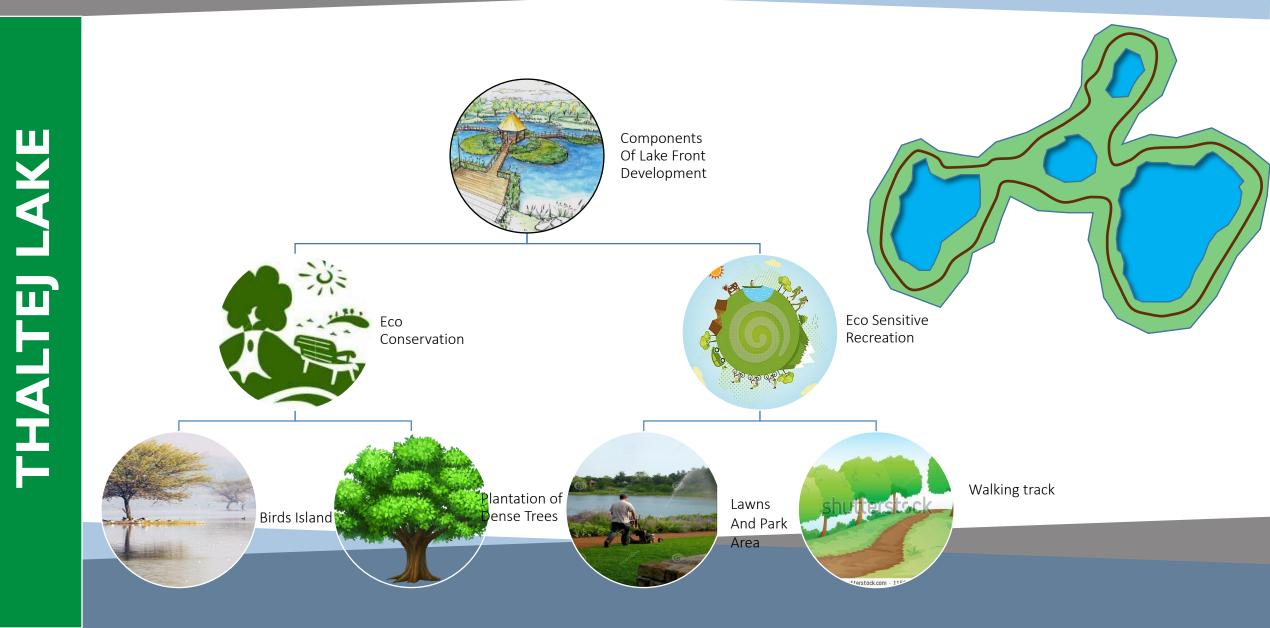
THALTEJ LAKE


- Capacity of lake: 322000 m³
- Water losses from surface(12Months Period) :279499.11 m³
- Losses:86%
- Regular Inflow required:700 KLD
- Technology Used : Phytorid Technology
- Area required:800-1000 sq. m.
- Cost of Treatment : 40 Lakhs
- O&M :10 Lakhs per year


	Characteristi cs	Inflow	Outflow
	BOD	155	0.3847
	COD	510	3.325
	TDS	847	15
	TSS	218	10
)(Faecal	50x10 ³	55
	PR	OFILE	OUTLET TO INJECTION WELL

hhile

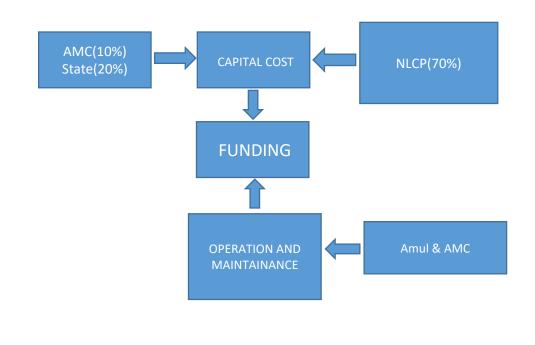
Catchment area of Thaltej:1120.86Acres(4.5km²) Water Recharge of Ground water: $0.4*4.5*10^{3*}10^{3*}0.797$ Water recharge Potential per year = **14.346 Lakh m³**


Case study:

Rai		Roof Top Rainwater Harvesting	2350 Cubic meter runoff water recharged in one year
	1	Combination of Recharge shafts and injection wells	3.50 lakh cubic meter runoff water recharged in one year. Declining rate reduced from 1.175 m/yr to 0.25 m/yr.

Source:http://www.itc.nl/library/papers_2014/msc/upm/anand.pdf

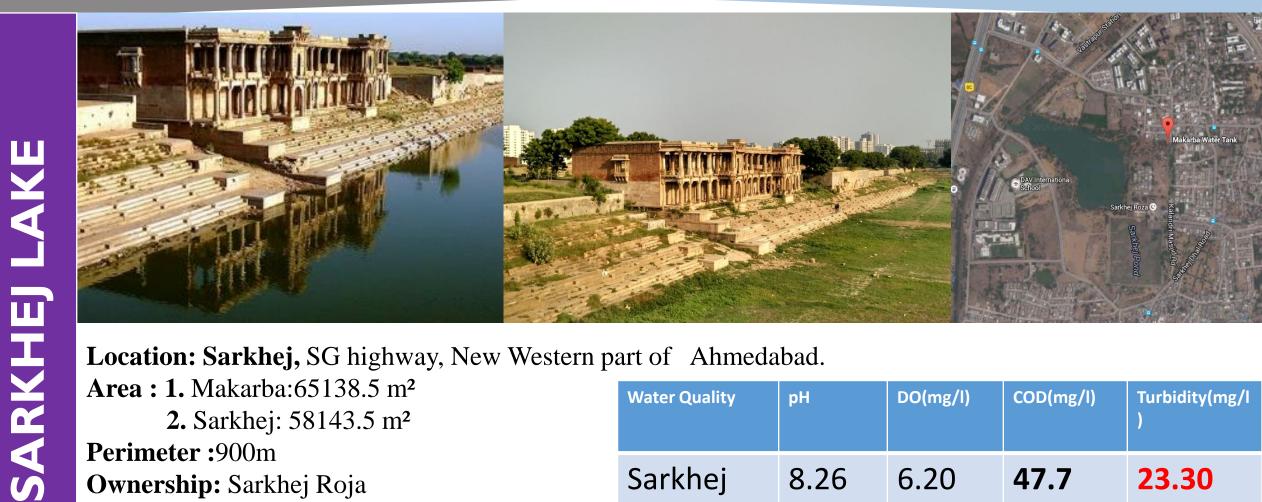
Thaltej Lake Front Development



Cost Breakdown

C ivil W orks	35 Acres			
Desilting	216.0278			
Compound Wall	2.01172			
Chain Link Fencing	76.13587			
Culverts and Waste Weir	22.43842			
Jogging Track	4.487683			
B Electrical works	18.41498			
C Lands caping And Plantation	38.06793			
Well Installation	5			
Treatment Plant	40			
Total Hard Cost	382.5844			
Contingency Cost (2% of the hard cost)	4.54			
Financing Charges (0.5% of the hard cost)	1.88			
Total Project Cost	387			

Funding Mechanism

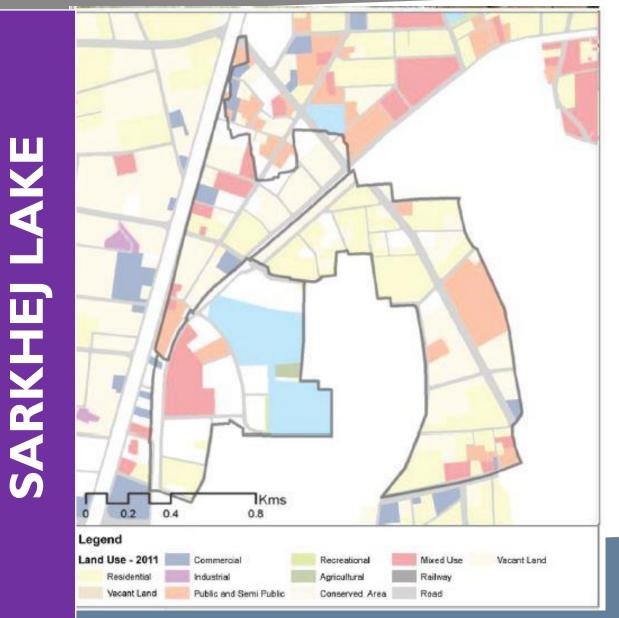

NLCP Guidelines:

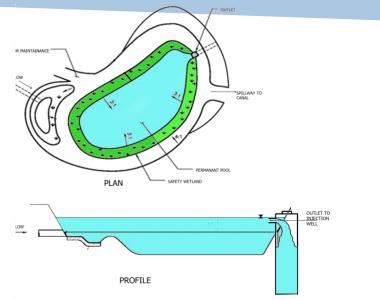
- State Governments need to get perspective plans and proposal (Detailed Project Reports) prepared through consultants.
- NRCD/Government of India shall bear up to **70%** of the Project cost
- States shall bear **30%** of the project cost, of which the share of the local body would be up to **10%** to ensure public participation in the project
- Funding Provided Under NLCP: Anasagar Lake, Ajmer(19 Cr), Pushkar Lake, Pushkar(50 Cr)

Source: http://www.moef.nic.in/sites/default/files/nlcp/Lake_Conserv-Manage_India.pdf

Detailed study of Shortlisted Lakes

Location: Sarkhej, SG highway, New Western part of Ahmedabad.


Area : 1. Makarba:65138.5 m ² 2. Sarkhej: 58143.5 m ²	Water Quality	рН	DO(mg/l)	COD(mg/l)	Turbidity(mg/l)
Perimeter :900m Ownership: Sarkhej Roja	Sarkhej	8.26	6.20	47.7	23.30
Depth: 2.5-3m Storing Capacity : 125 Million Litters					


Intervention needed: restoration of water level of the lake.

	 Capacity of lake: 369843 m³ Water losses from surface(12Months Period) :314958.5m³ 	Characteri stics	Inflow	Outflow
ш	Losses:85%Regular Inflow required: 862.96KLD	BOD	155	7.04
	 Technology Used : SBT Technology Area required:1000-1500sq m 	COD	510	14.1
	• Cost of Treatment : 1.12 Crores	TDS	847	0.4
	 O&M :11 Lacs per Year Recharge well : 5Lacs 	TSS	218	16
КНВ	Funding For a treatment plant can be provided by Corporat	Faecal te Social Responsi	50x10 ³ bility CSR	55
SARKHEJ LAKE		INFLOW	PROFILE	OUTLET TO INJECTION WELL

Catchment area of Thaltej:432.15Acres(1.748km²) Water Recharge of Ground water: 0.4*1.748*10³*10³*0.797

Water recharge Potential per year = $5.57 Lakh m^3$

Case study:

Haryana	1	Roof Top Rainwater Harvesting	2350 Cubic meter runoff water recharged in one year
	1	Combination of Recharge shafts and injection wells	3.50 lakh cubic meter runoff water recharged in one year. Declining rate reduced from 1.175 m/yr to 0.25 m/yr.

Source:http://www.itc.nl/library/papers_2014/msc/upm/anand.pdf

Funding Alternatives for Lakes Rejuvenation

Funding Mechanism	Stakeholder	Revenue(Sources) Or Non Revenue	Case Studies	Suitability
PPP withRecreational revenue generationRevenue with Advertisement rights	AMC, Private Player	Revenue	Hebbal Lake(Oberoi Hotels) Nagavara Lake	Recreational LakesHistorical Lakes
CSR	AMC, Corporate sector	Revenue/Non Revenue	Parimal Garden, Torrent	 Environmental Ecosystem Lakes Historical Lakes
National Lake Conservation Programme	AMC, MoEF	Non Revenue	Anasagar Lake, Ajmer	Environmental lakeHistorical lakes
 Revenue through Innovative financing Organic Farming in the lakes periphery Setting up a green house Make your neighbourhood beautiful 	AMC, Citizens,	Revenue/Non Revenue		• Detailed analysis of site should be required

Components of Institutional Framework Required

Urban Planner(Housing and Infrastructure)

Representative of Housing Department

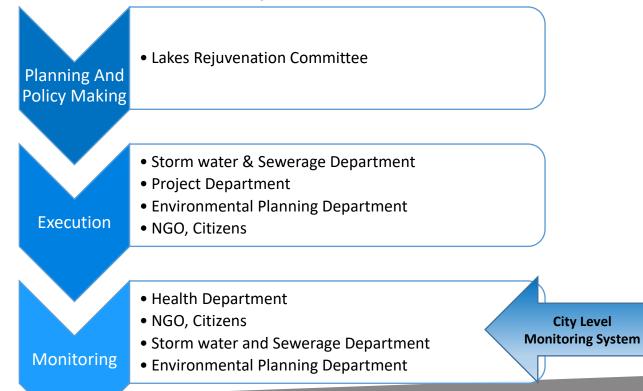
Civil Engineers and Technical advisers

Industrial Representative

Researcher And Ecologist

Tourism And Land Developer

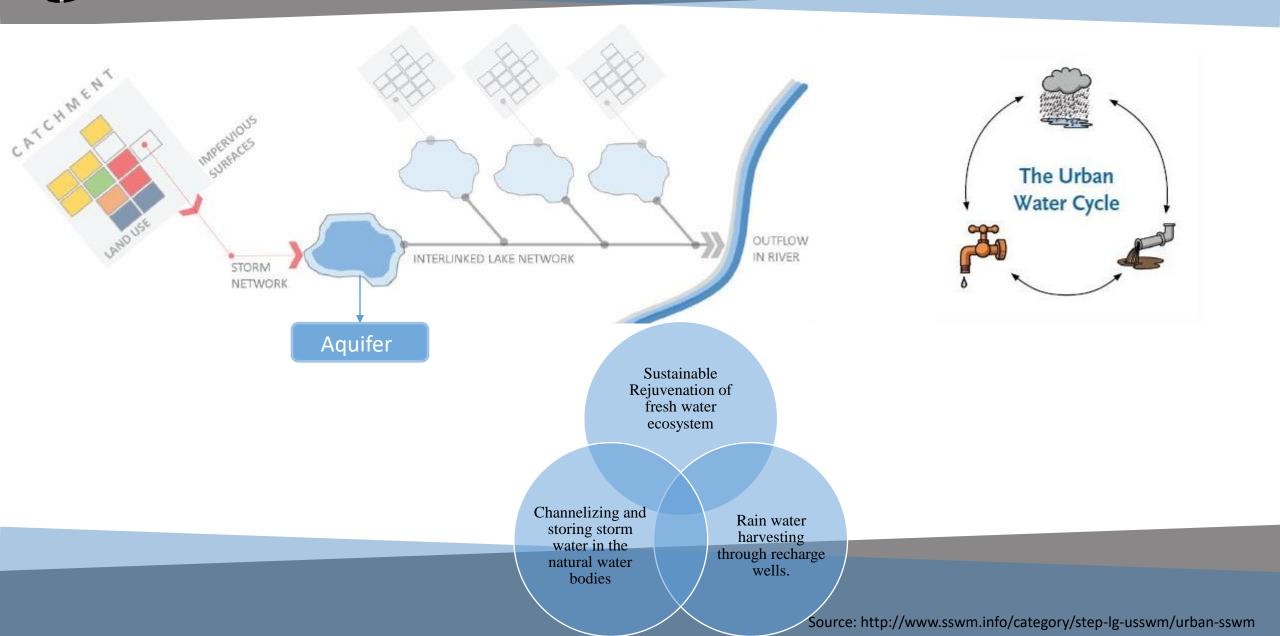
Municipal Representative


Members of citizen group

Environmental Engineer

Water Quality Monitors & Managers

NLCP Guidelines

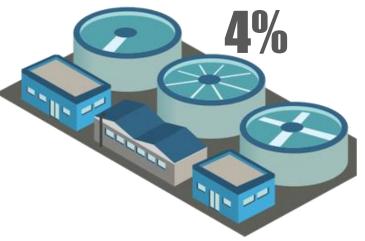

<u>City Level Monitoring Committee:</u> The Ministry of Environment and forest(**MoEF**) has asked all the state all the states to constitute City Level Monitoring Committees for all the Lake conservation Projects.

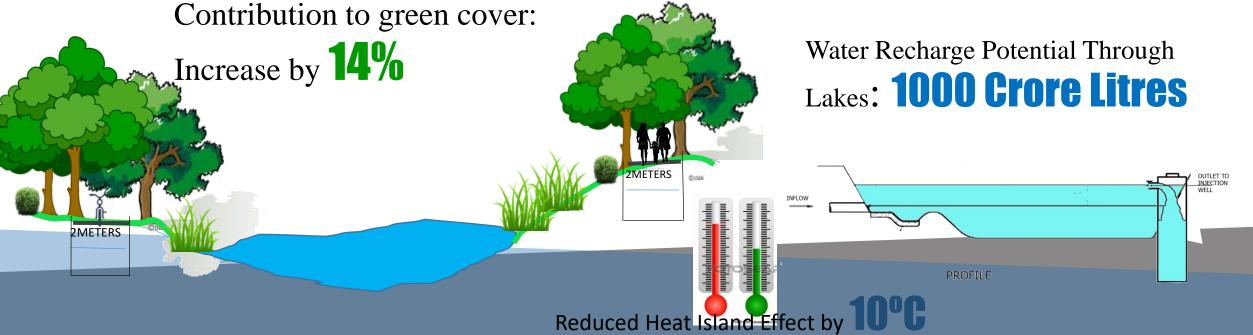
Source: <u>http://www.moef.nic.in/sites/default/files/nlcp/Lake_Conserv-</u> Manage_India.pdf

Rejuvenation of Lakes Steering Committee

Weaving in The Integrated Urban Resource Management

Benefits Of Lake Development Project




Higher Land Prices Due to Lake Development

 Vastrapur Lake: Municipal Land Was Sold for 55 Crores while the lake development took place in 5 Crores

• Profit: **1100 %**

Reduced Load On STP : 30 MLD

Comparison Between Lake Interlinking And Our Project

 LAKE INTERLINKING Aim Reduce flooding Maintaining water balance in lakes Sizeable reduction in storm water 	Water Availability	Ground Water Recharge	Cost Of the Project Lakes	Lake Rejuvenation
 drains Factors not considered Lake ecosystem Water quality 	4 Months		Interlinking (22Lakes):105 Crores	
 Aim Restore Water Quality Conserve the ecosystem Restoring identity of water body Alternatives to keep lake perennial Strategies followed Categorization of lakes Developing suitable scenarios 	Perennially		Treatment Technology(3 Lakes):12.4 Corers	

Source: Draft City Sanitation Plan, Ahmedabad Municipal Corporation

Name of the Lake	Cost (Crores)	Funding Pattern	Year 1	Year 2	Year 3	Year 4	Year 5
Chandola Lake	48	PPP					
Thaltej Lake	4	NLCP		20 Lacs	20 Lacs		
Sarkhej Lake	1.12	CSR					
Naroda(R)	10	PPP					
lsanpur Lake(E)	5	CSR					
Bareja Lake(H)	5	NLCP/CSR					25Lacs
Chharodi Lake(H)	6	PPP					

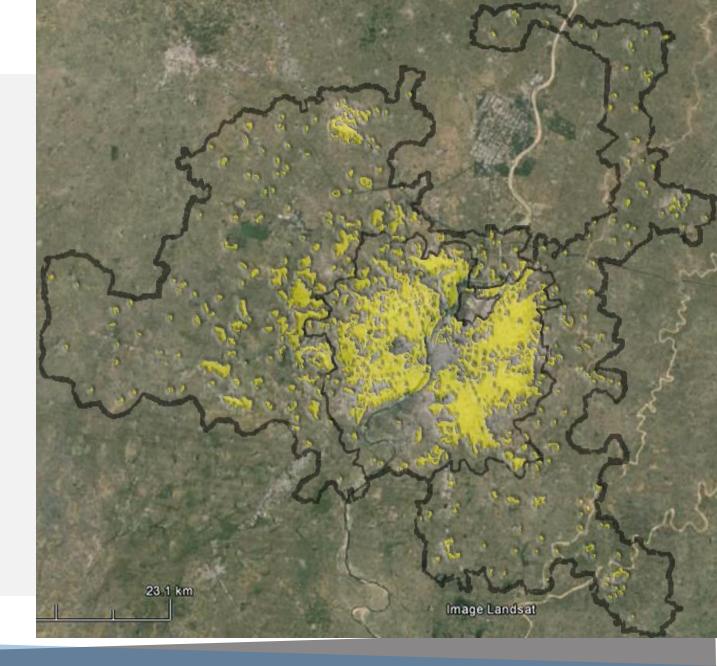
Total Cost Of the Project is estimated to be **300 Crores** for all the Lakes in Ahmedabad

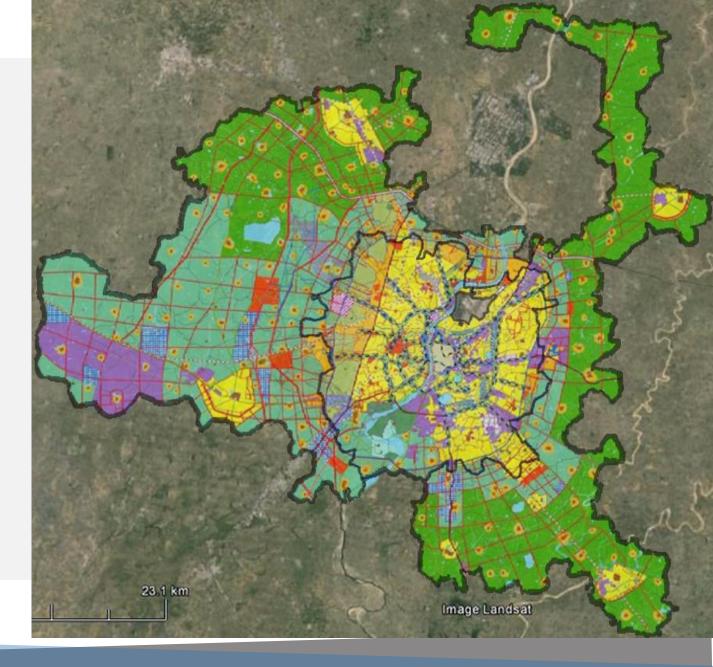
Retain, Reuse, Recycle

Residential, Institutional

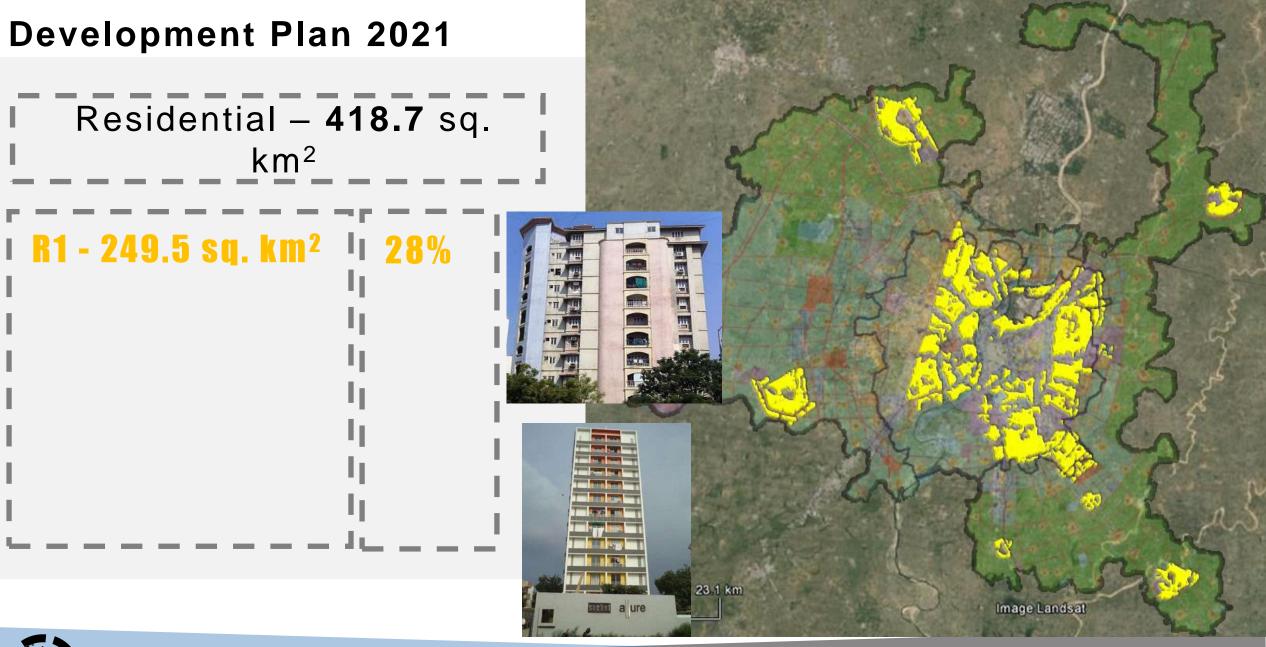
Existing Scenario

AMC - 464 sq. km²

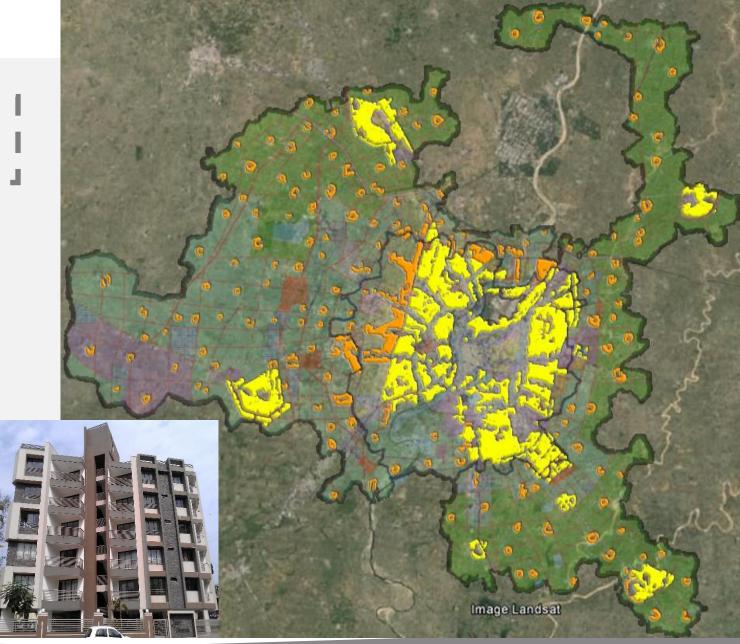


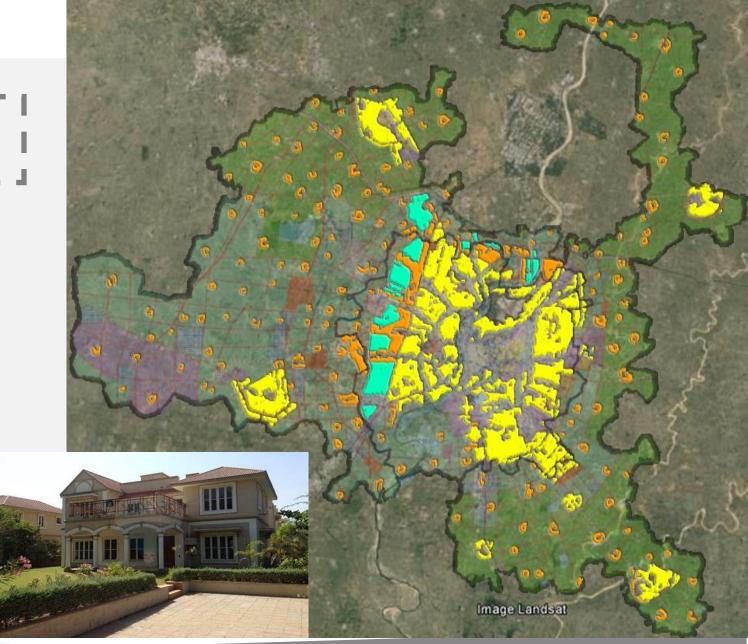

Existing Scenario

Developed Residential 175 sq. km²

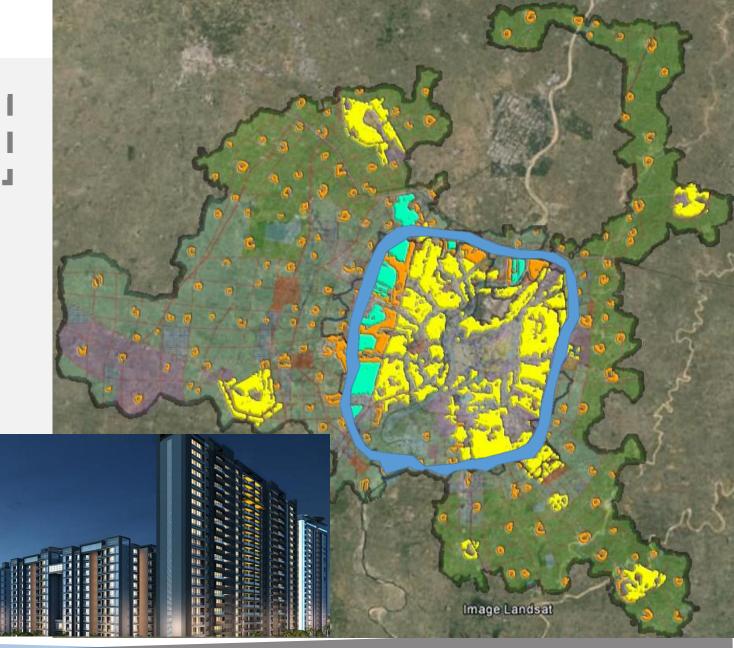


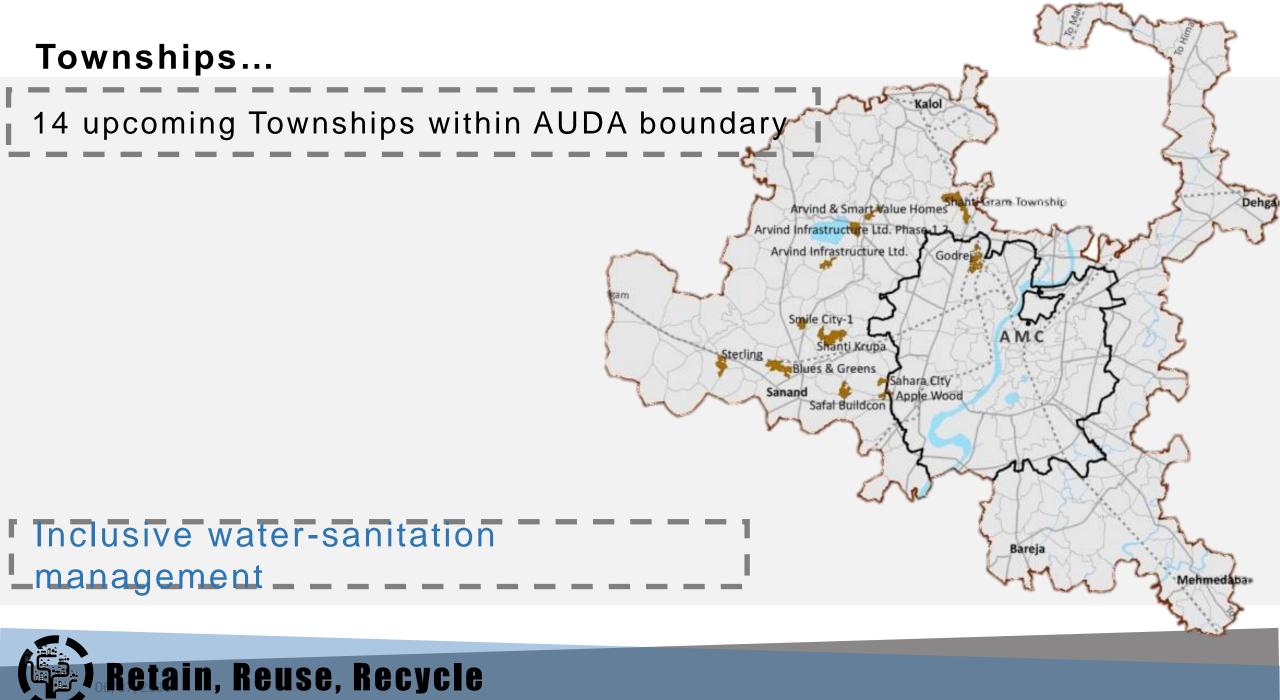
Residential – **418.7** sq. km²




Residential – **418.7** sq. km²

- R1 249.5 sq. km² | 28%
- R2 44.3 sq. km² 61%

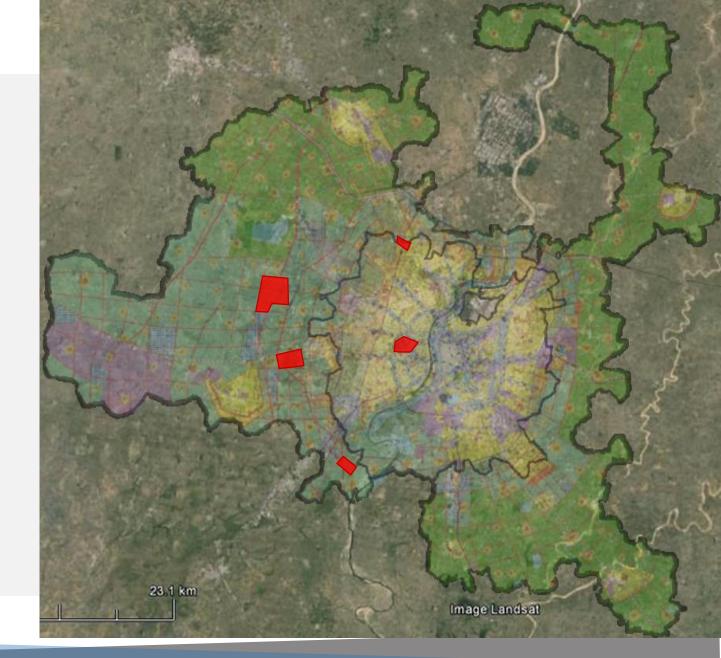

Residential – 418.7 sq. km² ı R1 - 249.5 sq. km² lı 28% **R2 - 44.3 sq. km²** 61% R3 – 45 sq. km² 81%



Residential – 418.7 sq. km² ı R1 - 249.5 sq. km² lı 28% **R2 - 44.3 sq. km²** 61% R3 – 45 sq. km² 81% **I RAH – 75 sq. km² | > 90%**

Retain, Reuse, Recycle

Source: AUDA DP 2021

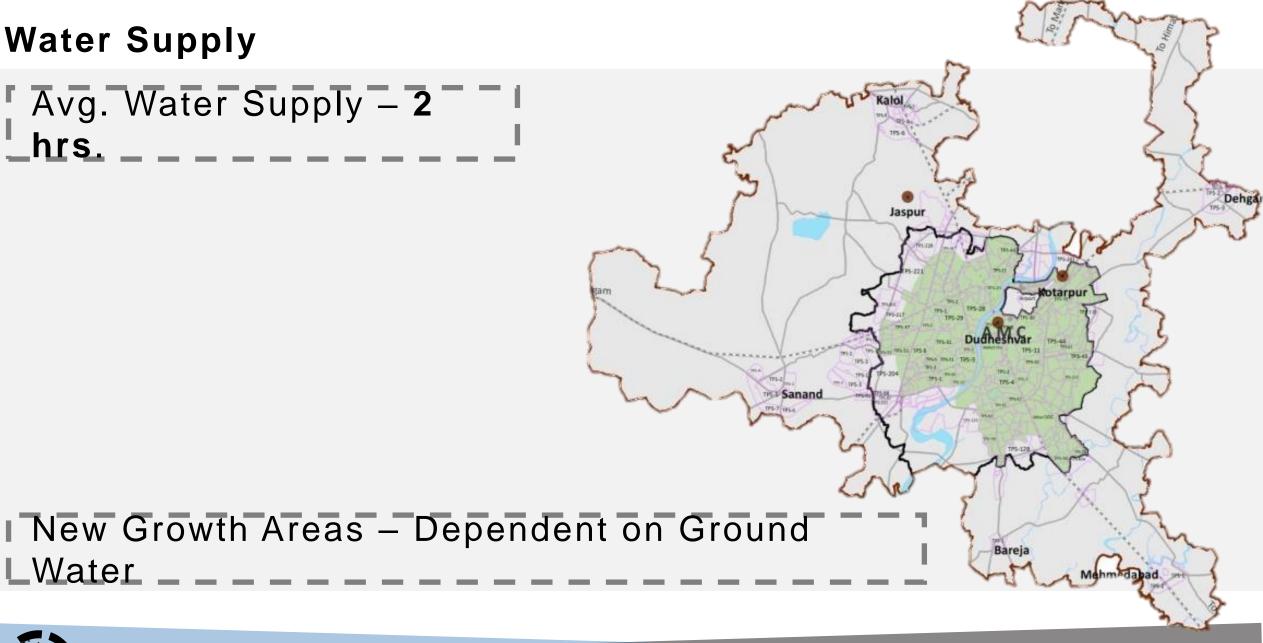

Knowledge Corridor

Educational Institutions

Max. Ground Coverage – 30%

Secondary School – 2000 m²

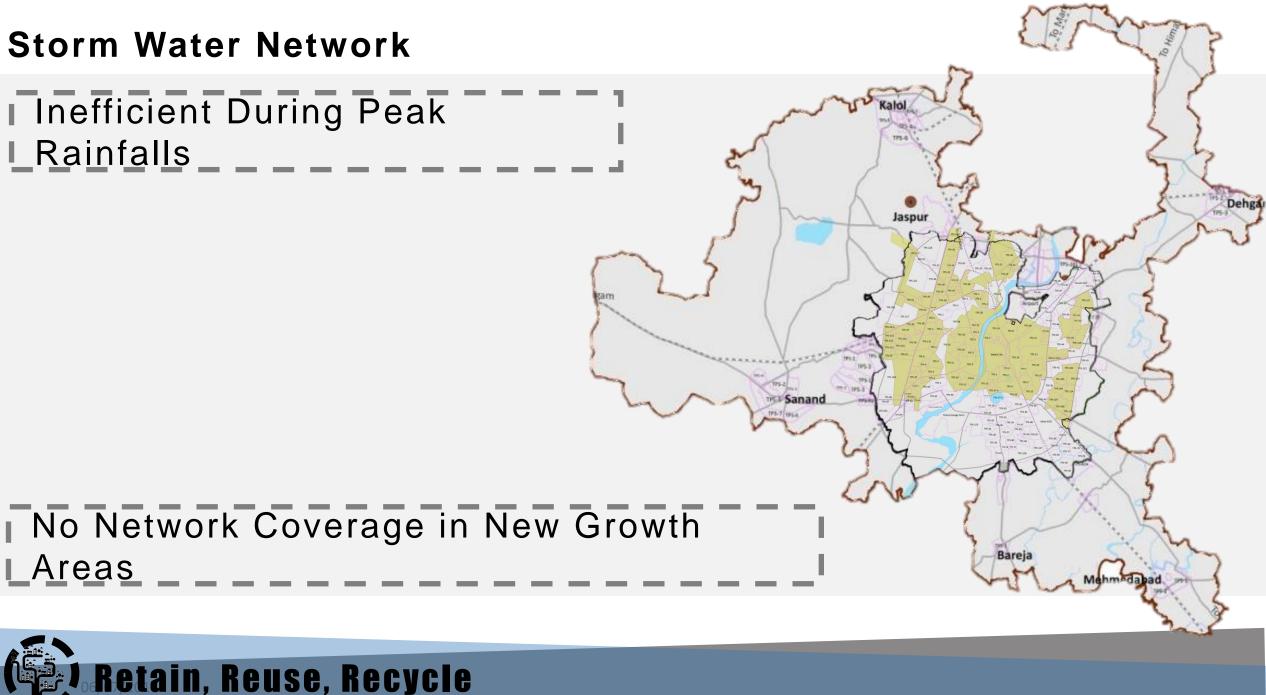
College – 3000 m²


WHY SHOULD RAIN WATER BE

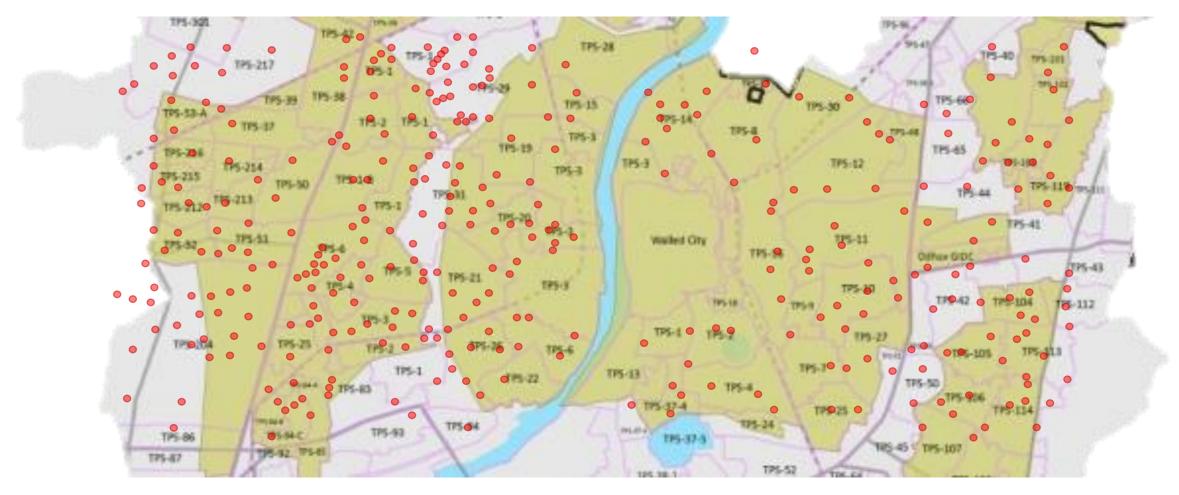
HARVESTED & GREY WATER

Residential Institutional REUSED ?

Water Supply


_Water

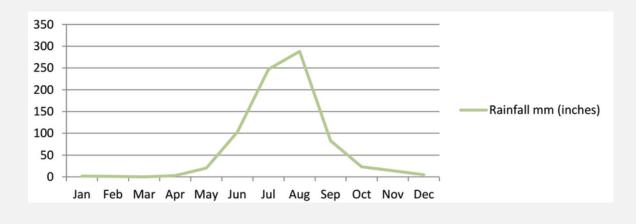
Storm Water Network


Inefficient During Peak **Rainfalls**

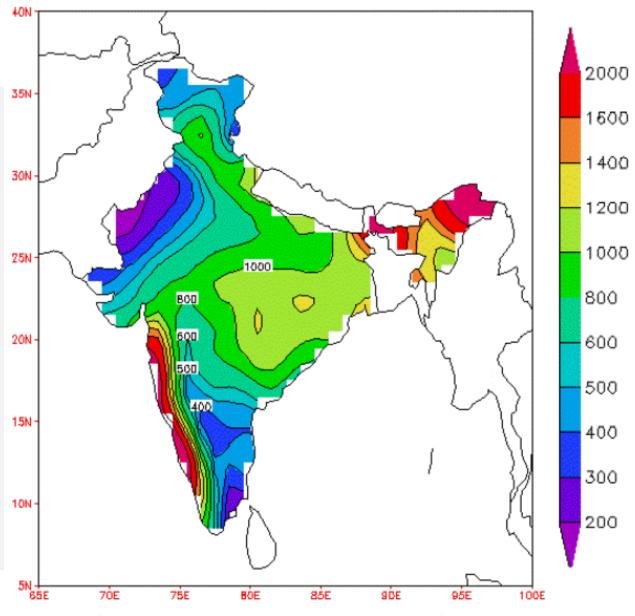
Areas

Water Logging Areas during Monsoon Showers

Advertise Rapid Conveyance - never the ultimate solution



Source: Google Maps – Terrain, AUDA DP


Rainfall Distribution

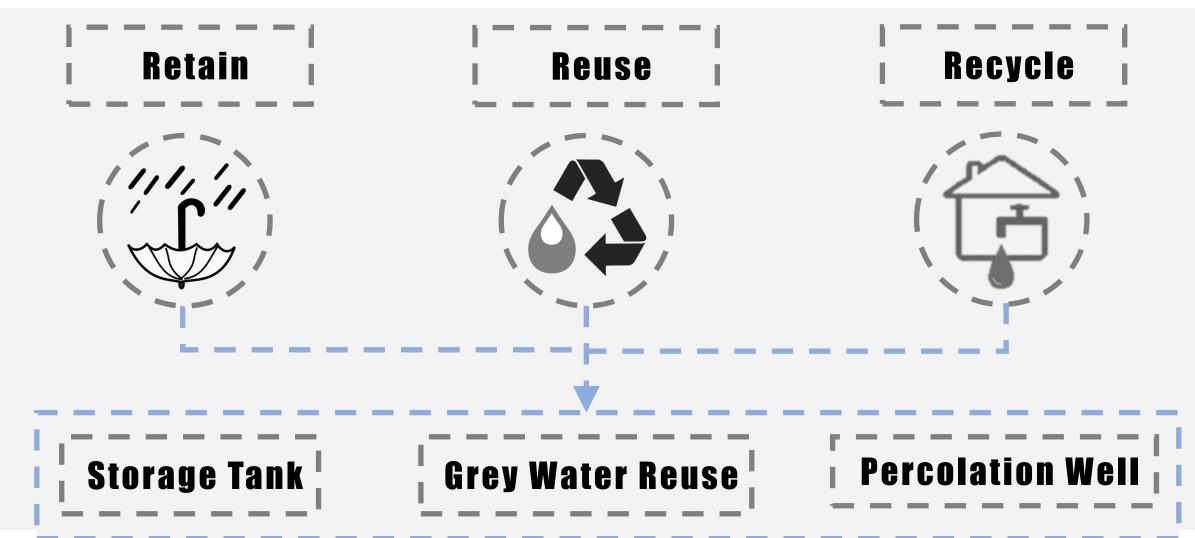
June	July	August	September	JJAS
81.1	249.3	209.7	119.2	659.3

Most of the rainfall received in 4 months

Retain, Reuse, Recycle

Source: Meteorology Department 2015, AUDA DP 2021

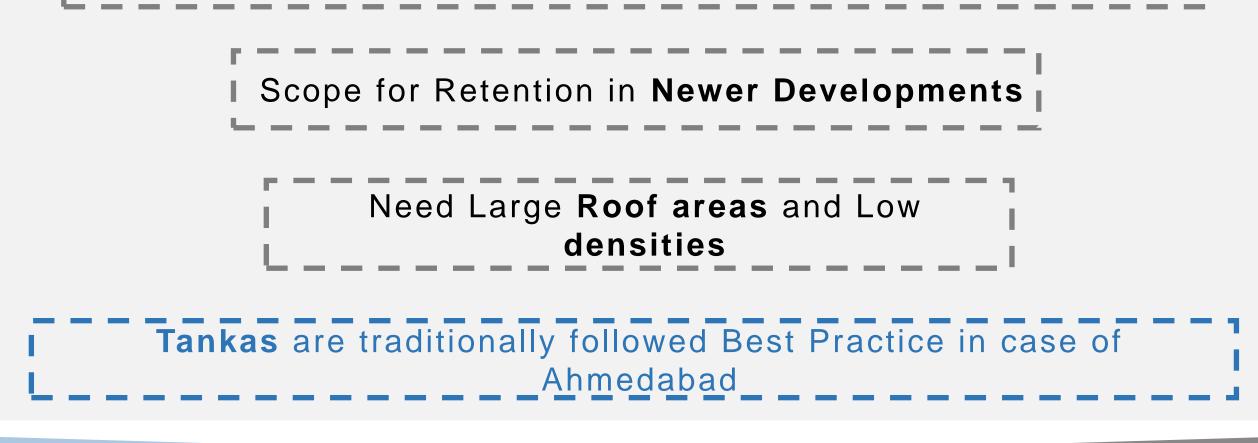
WHAT ? WHY ? HOW ?


Residential, Institutional

ISSUES

- Scarcity during dry season
- Flooding & logging during monsoon season
- Projected physical scarcity of water
 OBJECTIVES
- Reduce runoff and peak flows
- Rain water harvesting at Dwelling unit / neighbourhood level & Institutional level
- Easy and Cost effective implementation of grey water reuse
 TECHNIQUES
- Retention, infiltration and storage of storm water
- Use of vegetation for water filtration
- Diverse portfolio of water sources

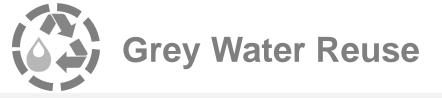
Rainwater Harvesting


Rooftop Harvesting

Percolation into Aquifer

Grey Water Reuse

No Regulation or Policy for retention and storage of storm water



Regulations

- Rainwater harvesting mandatory for all buildings covering an area of over 1,500 m²,
 one percolation pit is mandatory to ensure ground water recharge
- For every additional 4,000 m² cover area, another pit needs to be built
- All Govt. Buildings, irrespective of their use, should have a percolation pit

Mandatory for all High Rise buildings due to minimum plot size

Regulation

All clusters in RAH zone with more than 100 units must have double plumbing

system for waste water reuse for the purpose of flushing and gardening

Cost of Plumbing is **double** than the usual single plumbing system

Applicable only for Green Field Developments

Rooftop Harvesting Percolation into Aquifer

Grey Water Reuse

Building Type	Name of Building		Rooftop Harvesting	Percolation	Sample size
Low Rise Apartment		Sopan Lifestyle	7.5 %	14 %	30
Medium Rise Apartment		Riddhi Towers	4%	7%	30
High Rise Apartment		Sachet Allure	3%	11%	10
Individual Bungalows		Aryamaan Bungalow	Minimal	500 KL	30

Traditional Neighbourhoods... 🤇

Tanka system departing from Pols mainly due

to Adaptive Reuse and Reconstruction

Building Type	Name of	Building	Rooftop Harvesting	Percolation	Reuse
Low Rise Apartment		Sopan Lifestyle	7.5 %	14 %	30 %
Medium Rise Apartment		Riddhi Towers	4%	7%	30 %
High Rise Apartment		Sachet Allure	3%	11%	30 %
Individual Bungalows		Aryamaan Bungalow	Minimal	500 KL	60 %

Institutional

Rooftop Harvesting

Percolation back into the Aquifer

Grey Water Reuse

Institutions...

Building Type	Name of Building		Rooftop Harvesting	Percolation	Reuse
School – Day		St. Xavier Loyala School	9%	4 times	Minimal
School – Hostel		SGVP International School	8%	1.7 times	40 %
College – Day		CEPT University	5%	64 %	Minimal

Comparison

Type of Building	Storage	Percolation	Reuse
Traditional Houses - Pols			
Low Rise			
Medium Rise			
High Rise			
Bungalow			
School – Non Residential			
School – Residential			
College - Non Residential			

Policy Comparison – State wise

rollerala	All New Buildings	Kerala Municipality Building Rules, 1999 Amended in 2004	Floor area – 100 m ² Plot area – 200 m ²	KWA – 75 % Jalanidhi – 90 %
· Lamipadu	All Buildings	Tamil Nadu Municipal Laws Ordinance, 2003	All Govt Buildings 3-storey and above	Disconnect water connection
Rajasthan	All New Buildings	Water Resource Vision 2045 State Water Policy 1999	Plot area – 500 m²	Disconnect water connection
HARYANA	All New Buildings	HUDA & CGWA 2002	Irrespective of Roof or Plot areas	CGWA banned drilling of tube wells
HIMACHAIL	All Buildings	Roof-top Rain Water Harvesting, 1999	Plinth area – 1000 m ²	No Objection certificate will be issued only after clearance
Karnataka	All New Residential Buildings	BWSSB, 2009	Plot area – 2400 ft²	20 % Rebate on tax payment for 5 years
GUJARAT	All Govt Buildings All New Residential Buildings	GDCR, 2002	Covered area – 1500 m ² Additional 4000 m ² +1 Pit	Building permission only if RWH structures are provided

Policy Comparison – State wise

- Kerala	Kerala Govt. Initiative	Awareness and Citizen Participation	Kochi
· Lamipadu	Tamil Nadu Govt. Initiative	Strict and Incentivised	Chennai, Coimbatore
Rajasthan	Rajasthan Govt. Initiative	Strict	Jaipur
HARYANA	Haryana Govt. Initiative	Awareness & Citizen Participation and Strict	Faridabad, Gurgaon
HIMACHAL	Himachal Govt. Initiative	Strict	Shimla, Solan
Karnataka	Karnataka Govt. Initiative	Strict and Incentivised	Bengaluru
GUJARAT	Gujarat Govt. Initiative	Strict	Surat, Ahmedabad

Policy Comparison – City wise

Indore	All New Buildings	Directives to Urban Local Bodies, 2004	Area – 250 m²	6 % Rebate on Property Tax
Chennai	All Buildings	Tamil Nadu Municipal Laws Ordinance, 2003	All Govt Buildings 3-storey and above	Disconnect water and sewer connections
Mumbai	All New Buildings	Directive of MCGM, 2002	Plot area – 1000 m²	Termination of water supply connection
New Delhi	All New Buildings	MoUD & CGWA 2002	Plot area – 1000 m²	50 % cost of construction up to Rs.2 lakh
Hyderabad	All Buildings	Hyderabad Metropolitan Water Supply & Sewerage Board, 2001	Plinth area – 300 m²	50 % subsidy on RWH structures
BENGALURU	All New Residential Buildings	BWSSB, 2009	Plot area – 2400 ft ²	20 % Rebate on tax payment for 5 years
RAJKOT	All Existing Buildings All New Buildings	General Development Control Regulations, 2002	Built up area – 1000 m² Built up area – 80 m²	A moratorium of 6 years
Surat.	All New Buildings	Surat Municipal Corporation, 2013	Plot area – 4000 m²	50 % subsidy max amount up to Rs. 2000

Cost – Benefit Analysis

Residential, Institutional

Regulation Reforms

One Policy will not work for all the housing types and zones

• Grey water reuse regulation has to be implemented for All Green field Developments in all other

Residential as is being implemented in the RAH zone

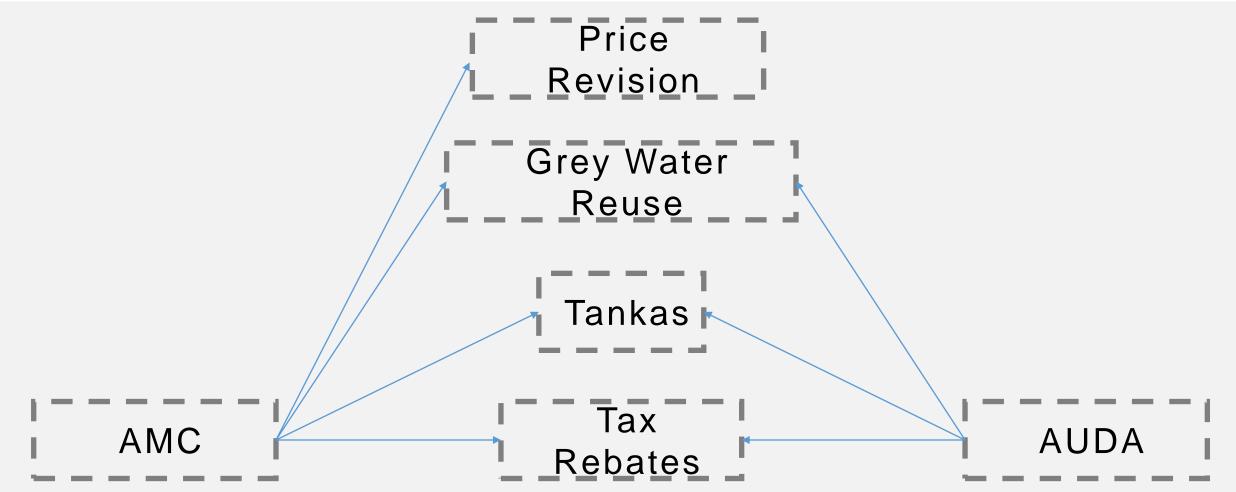
- Minimum plot size for installation of Percolation Pit in **R3 zone** has to be revised for 1000 m²
- TDR incentives has to be given for Tanka usage in **Traditional Neighbourhoods** similar to those given for

Heritage buildings

Pricing Reforms

Along with regulation reforms, existing Water Tax (Pricing) structure has to be revised

- Tariff has to be revised from **Bulk tariff to Increasing Block Tariff**
- Price should also depend on the size of **municipal tap connection** provided for the building
- Buildings having **Bore wells** has to be taxed extra depending on their bore well pump HP
- Buildings reusing grey water has to be given rebate in the water tariff



Costing - Typologies & Methods...

Building Type	Name of Building		Rooftop Harvesting	Percolation	Reuse
Low Rise Apartment		Sopan Lifestyle		Recharge	
Medium Rise Apartment		Riddhi Towers	12,000	1 Pit	4,000
High Rise Apartment		Sachet Allure	Cost of Plumbing	30 ,5 00	Double Plumbing
Individual Bungalows		Aryamaan Bungalow	4.6 Lakhs	Filtration Bed	3.6 ‡akh
School – Day		St. Xavier Loyala School	Storage Tank	1 8 0	Storage Tank
School – Hostel		SGVP International School	65	Percolati on Well	35
College – Day		CEPT University	890	174	-

Retain, Reuse, Recycle

Institutional Framework

NON-REVENUE WATER (NRW)

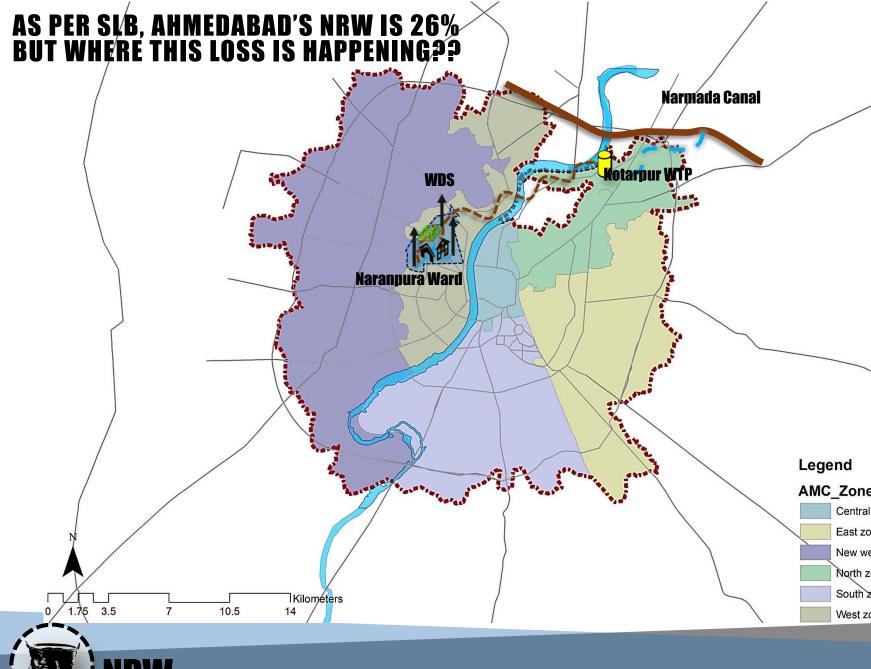
Why-NRW?

- 40 to 70 percent of more water can be available to the urban households without any extra cost by reducing financial and physical losses. (World Bank,2012)
- To increase the supply capacity, investment in NRW reduction will be much cost effective than investments in new capital projects. (Liemberger, 2010)
- The per unit cost of reducing leakages is significantly less than the cost involved in creating additional capacity (PwC, 2011)

Hence focus on NRW management may be a sustainable model of urban water management.

Types of NRW

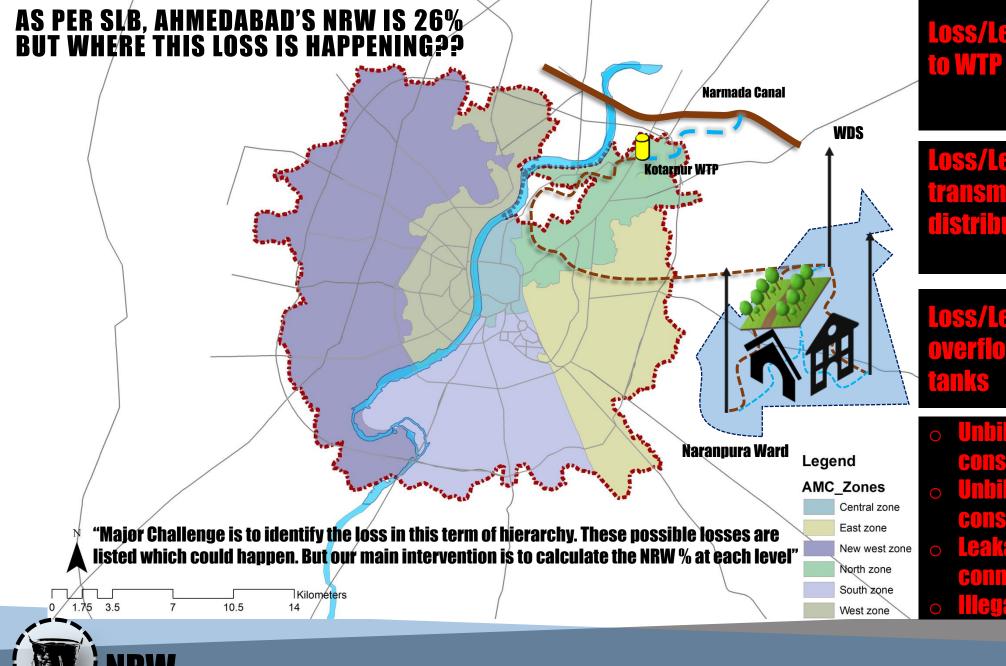
Physical (or real) losses Leakages from transmission mains. facilities, storage distribution mains service or They connections. are majorly caused due to poor operation and maintenance and poor quality of underground


Commercial (or apparent) losses Caused due to water theft and poor data holdings. Unbilled authorized consumption

Water which cannot be billed like gardening purposes and free water services to certain groups.

- materials (assets)

Source: World Bank (2012). India: Improving Urban Water Supply and Sanitation Services. World Bank Publishing, Frauendorferc, R and Liemberger, R. (2010). The Issues and Challenges of Reducing Non Revenue Water. ADB publishing, PwC. (2011). Bringing Water to your door step: Urban Water Reforms for the next decade. PwC



Loss/Leakages from source to WTP

Loss/Leakages on transmission and / or distribution mains

Loss/Leakages and overflows at Utility's storage tanks

- **AMC Zones** Central zone East zone New west zone North zone South zone West zone
- Unbilled un metered consumption
 - \circ Unbilled authorized cons<u>umption</u>
 - Leakage on services connections • Illegal Tapping

Loss/Leakages from source to WTP

Loss/Leakages on transmission and / or distribution mains

Loss/Leakages and overflows at Utility's storage tanks

- Unbilled un metered consumption
- Unbilled authorized consumption
- Leakage on services connections

- × Lack of data base management & monitoring
- Water supply network distribution data unavailability
- \circ Break Up of the losses at different stages not available
- × Water charges levied by ULBS are very low because of political interference and unwillingness of people to accept as an economic good resulting in poor collection even to get the operation and maintenance (O&M) of the service.
- × The ULBS are suffering from faulty and inadequate metering/no metering, rampant leakages and illegal connections.
- × With operational inefficiencies, poor collection, and low tariff structure practices by the water boards, resulting in low cost recovery of even 0&M costs.

Measurement & Reduction

INSTITUTIONAL

Formation of Illegal Use Reduction Unit (IVRU)/

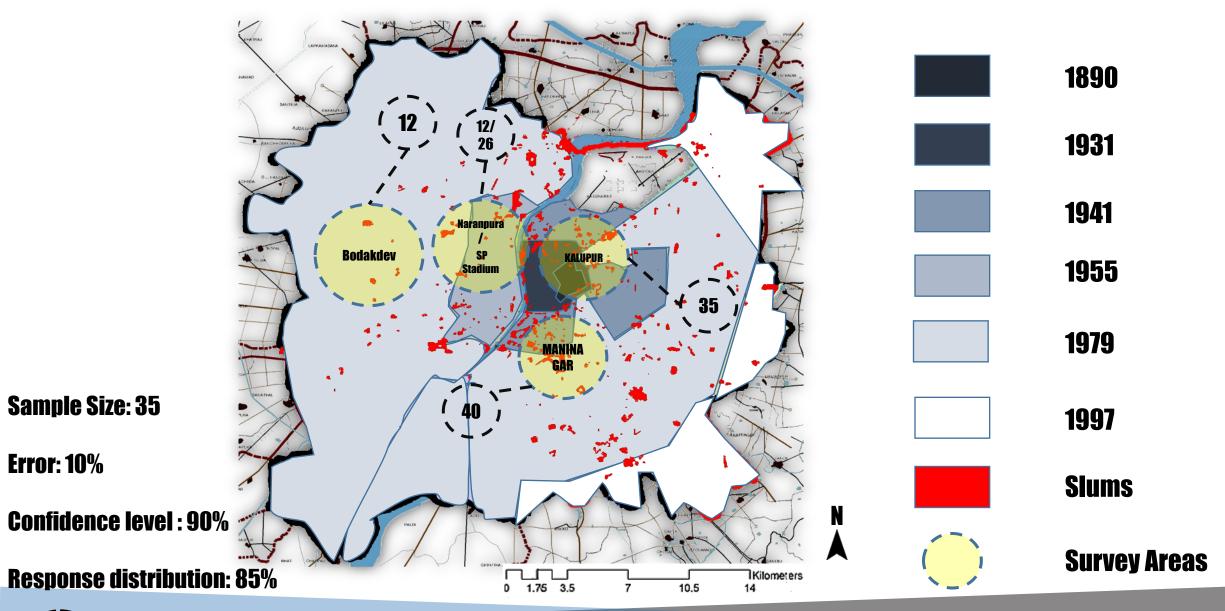
Allocating Roles & Responsibilities

TECHNICAL

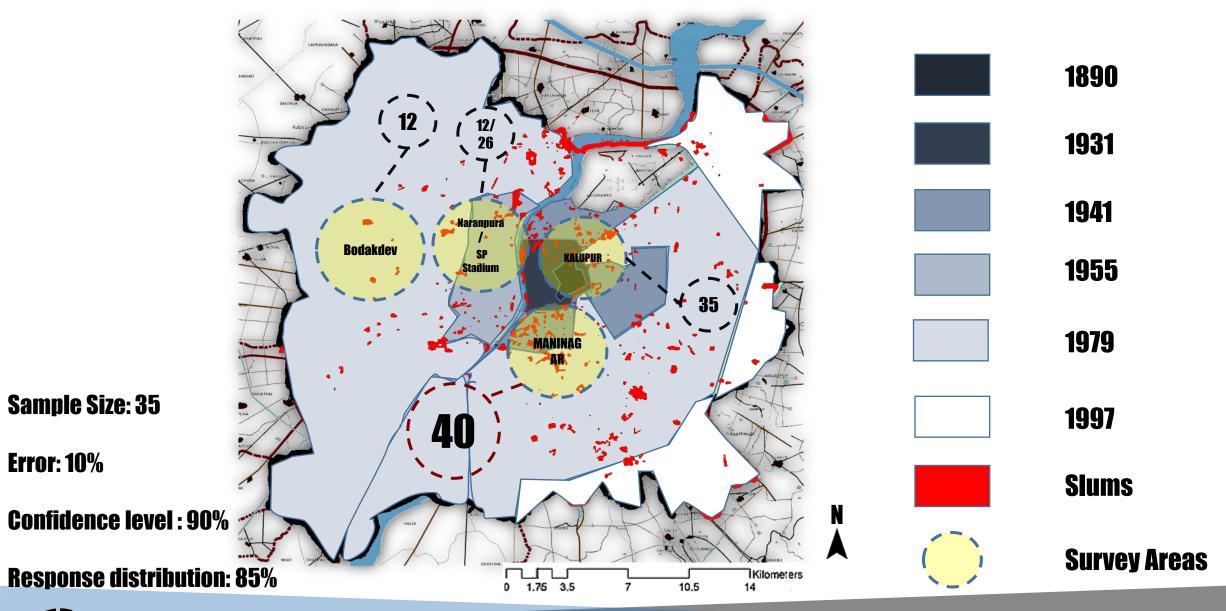
Proposing bulk metering to calculate actual losses occurring in the whole water distribution system from source to end

INTERVENTIONS

FINANCIAL


Revision in water tariff structure Increasing Cost Recovery Enhancing collection efficiency

POLICY LEVEL


Reviewing policies related to water in context of Ahmedabad & Suggesting Policies

Defining Fines & Performance Indicators

- ✓ Data base management system
- ✓ Bulk metering at supply side (Source to WTP & WTP to WDS)
- ✓ Leak Detection
- ✓ Improving financial performance of ULB
- \checkmark Identification of Illegal Consumption through institutional framework

City Level

- DBMS
- Bulk Metering
- Improving Financial Performance of ULBs
- Identification & Reduction of Illegal Consumption through institutional framework

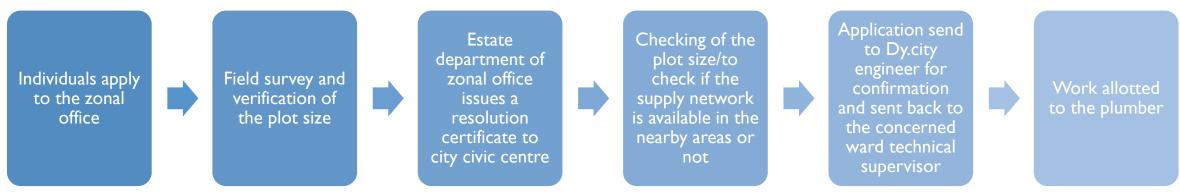
Ward Level

- Leak Detection
- Consumer Metering

DATA BASE MANAGEMENT SYSTEM

WATER CONNECTION DATA BASE

INFORMATION RECORDED ON PAPER


- Zone
- Name of the owner
- Full address of property with survey number
- Type of building
- Ferrule size of connection to be given
- Details of existing connection: size, age, length.
- Date of application.

APPLICABILITY

- Only those who have drainage connection
- He/she should be a tax payer
- Approved by Dy. Engineer, additional deputy engineer & assistant engineer of respective ward

USE OF DATA

- To know the material used in case of corrosion/leakage for replacement of pipes
- To know whether an individual society has legal connections

Procedure takes minimum of 10-15 days & can take long time if the total number of application are more than 14-15

NRW- DATA BASE MANAGEMENT SYSTEM

ISSUES & INTERVENTIONS

ISSUES

- No data regarding total **no. of water connections** with increasing population
- Evaluation of information/issues done on basis of population of census 2011
- No information about the number of different size of connections
- All the data is **maintained on paper** rather than using software or just an excel sheet.

INTERVENTIONS

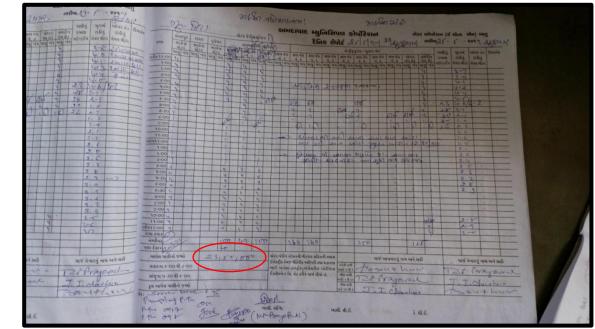
- Accounting all the data generated on any designed software
- Accounting it all on just an **excel sheet**
- Recording of the population data on basis of water connections/Number of HH

ROLES & RESPONSIBILITIES

DEPARTMENT		OFFICERS	FUNCTIONS	RECORDS
		C.E	Overall NRW is 2%	 Registers SMS
Water producti	City level	Dy. CE	 Have to keep a check on the total inflow, treatment of water, overflow from any reservoir 	
on		A.C.E	tank(if) and total supply from all 4 WTP.	
		A.E		
	Zone level	ADDI C.E		
	(CLASS I & II)	Dy. C.E	Monitor if there is a major leaks in the mains, distribution channels	
		A.C.E		
Water project	Ward level (CLASS III)	A.E	Complete the formalities of new connections Check if there is a line break down, problems in pressure and leak and send a private contractor	
		Tech. supervisor	To check areas where water is not reaching	Registers
		Non tech. supervisor	New connection formalities To check the leakage through customer complaints	Complaints in form of receipt
Water	W.D.S	fitter	Repairing mains and old pipes if they are worn out	
supply departm ent	(CLASS IV)	operator	Problems of leakages has to be addressed to the upper level	Register (manual)

ISSUES

- Lack of adequate data
- Lack of instruments for calculating the supply from WTP.
- There is lack of up gradation of water network map
- Insufficient data pertaining to water loss and illegal tapping
- No data about the number of existing connections and new connections coming up.



NRW- DATA BASE MANAGEMENT SYSTEM

DATABASE ON WATER DISTRIBUTION STATION

DATA RECORDED IN REGISTER DAILY

- No. of threads of a valve opened for gravity intake (24*7) into sump of WDS
- Level of water in sump (hourly)
- Number of submersible bore pumps operated & its duration
- Number of booster pumps operated & its duration
- Number of hours of operation of chlorine pump
 ISSUES Pressure during general supply hours(30 min interval)
- Ultimately at the end, the total quantity of water supplied is calculated manually & is hand written which seems **unreliable**
- No meaning of recording the **no. of threads** as it doesn't really depict the total intake.

INTERVENTION

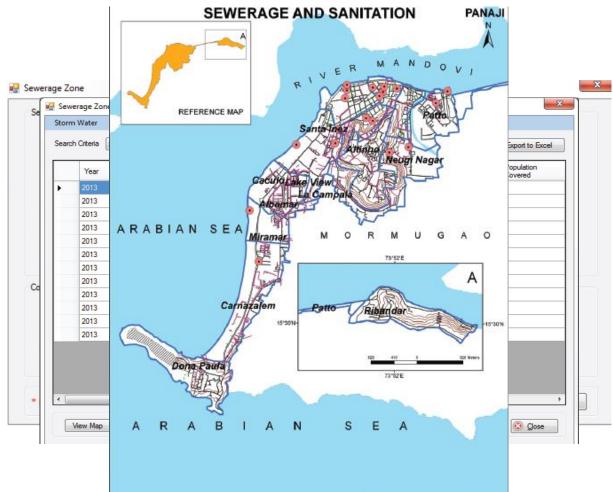
- capacity building of the staff
- installation of digital bulk meters at the intake and discharge of WDS including a column for recording bulk meter readings.

NRW- DATA BASE MANAGEMENT SYSTEM

DATA BASE AT WATER TREATMENT PLANT

- Indirectly the total quantity of water intake is recorded with help of pumping capacity of pumps and no. Of hours of pumping.
- It is being recorded manually and then sent via SMS to city engineer at Dudheswar water works(primary visit to Kotarpur WTP).

PARTICLUARS	MLD
Total intake per day (11/09/2015)	1121
Total supplied to all WDS (11/09/2015)	1100
Total NRW at WTP	2%


- Low reliability of data because its measured indirectly
- Also the data generated at WTP has nothing to do with data generated at WDS because no data is getting **synchronized** at a place via SMS.
- No information about losses from WTP to WDS.

INTERVENTION

- Installing meter at WTPs and recording readings of total intake & release.
- Setting up an arrangement such that a designated person gets all the data via SMS primarily and puts the data into designed software.

DBMS:CASE STUDY OF PANAJI,GOA

The data collected was

- at one point in excel sheets,
- information was stored and the missing fields were updated to understand the gaps as well as populate the data in future.
- The inventory prepared was then developed into a Microsoft Access-based DBMS.

The information was mapped spatially using GIS and linked to the DBMS

WHY IS PROPER DATA REQUIRED???

- With proper data of water connection following things can be found
- a. water supply and demand can be calculated in all zones
- **b. future projections** and demand can be estimated
- Illegal connections can be found out
- Leakages in the pipelines can be known
- With more leakage complaints in a zone, more NRW levels and repairs can be done
- Proper functioning of WDS and WTP, less NRW levels

BENEFITS OF STORING DATA MANUALLY /COMPUTERISED

- Less labor work
- Stored data can be **evaluated** quickly for finding information to solve the issues
- Obtaining the **real time** data by synchronization
- Maps can be created using software, through which accurate information can be obtained
- During floods, difficult to handle manual data such as registers, but computerized data is easily accessible

PHASING OF THE PROJECT

	 Making provision of meter reading column in register at WDS and WTP 	
	• Training the operator for the same.	
SHORT TERM	Computerization of water connection data	0-1 year
LONGTERM	 Equipping the operators of each WDS with an arrangement such that the data recorded is transmitted to the designated authority in real time; maybe via SMS. Synchronizing all the WDS & WTP readings in real time 	
	via designed soft wares	

BULK METERING

Project : Bulk Metering At Supply Side

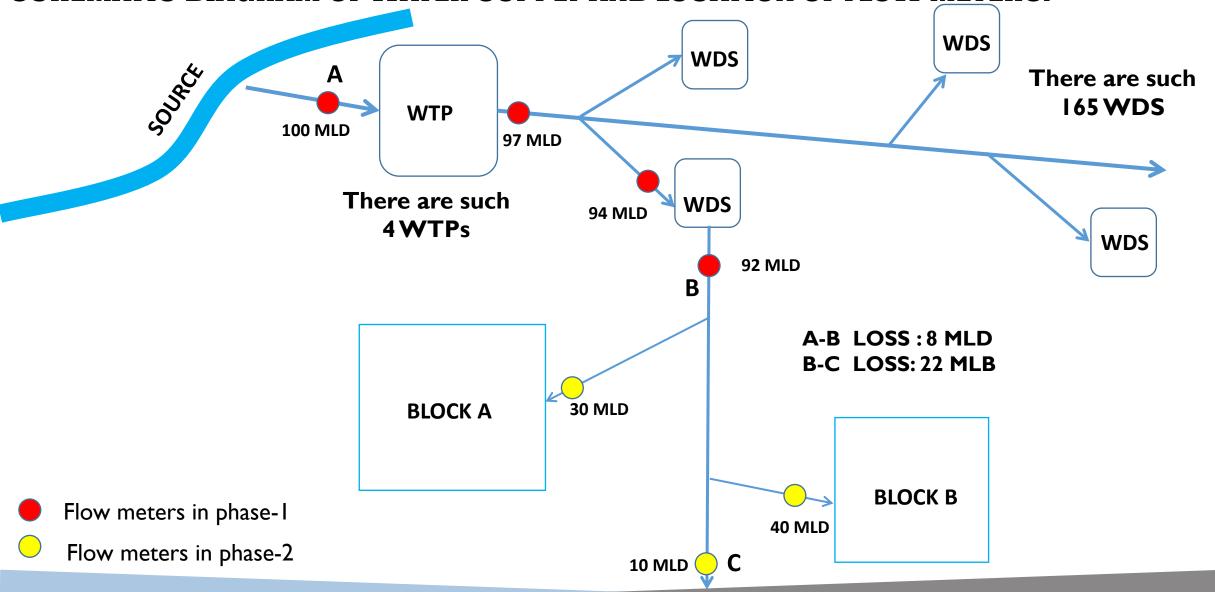
Need for bulk metering:

- Primary visit to WTP & WDS revealed that they have no direct measurement of water intake and supplied.
- No information about NRW in **different zones and stretches of AMC**.

Source: primary field visit to WDS & WTP

Project : Bulk Metering At Supply Side

Need for bulk metering:


- Primary visit to WTP & WDS revealed that they have no direct measurement of water intake and supplied .
- No information about NRW in different zones and stretches of AMC.

Interventions:

Phase I	Installation of bulk meters at WTP & WDS	0-2 years
Phase 2	Installation of bulk meters at strategic locations	2-5 years
Phase 3	Consumer end metering	After 5 years

SCHEMATIC DIAGRAM OF WATER SUPPLY AND LOCATION OF FLOW METERS:

Source: AMC website , field visit to WDS & WTP

Project : Bulk Metering At Supply Side

Need for bulk metering:

- Primary visit to WTP & WDS revealed that they have no direct measurement of water intake and supplied .
- No information about NRW in different zones and stretches of AMC.

Interventions:

- Phase I: Installation of flow meters at inlet and outlet of WTPs and the WDSs.
- Phase 2: Installation of flow meters at the strategic locations in the supply network from WDS.
- Phase 3: Consumer end metering (long term).

Outcomes of the project:

- We will have **water auditing** at WTPs & WDS; also for different stretches in network.
- It will assist data base management system
- It will aid the leak detection project as we will be knowing losses in different stretches.

Challenges

- Flow meters are needed to be **calibrated** & serviced at regular intervals.
- As in case of **Rajkot Municipal Corporation** where after installation of bulk meters, **no proper framework** was there so as to operate and maintain at regular interval. Hence whole rationale of project was not served.

Performance based contract for operating & maintaining the meters

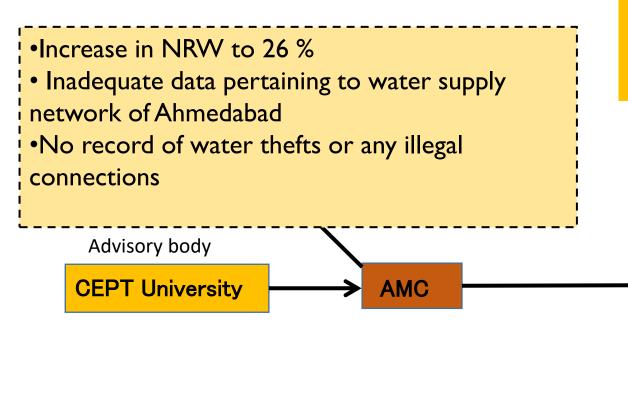
Parameters	Desired Outcomes	Required Services	Performance Standards	Acceptable Quality Level(AQL)	Monitoring Method	Incentives/ Disincentives
Objective	Proper functioning of the bulk meters at the WTP & WDS	Servicing & calibrating the bulk meters at every 3 months	Servicing of all the meters be done within 15 days period	Maximum Technical error of +/-0.5% in measurement of flow	Fluent working of meters as per AQL throughout service period	For performance as per the standard extra 5% of fee will be credited & vice versa
		Providing service at the time of breakdown of meter	Incase of break down, meter will have to be restored within 2 days	Maximum float of I day in service delivery	Technical error will be checked by ultrasonic non destructive meter	

Source : Rajkot Municipal Corporation Website, Catalogue Of Eureka Meters, PBC of IT firm

Bulk Metering

Estimate:

Location of Meter	No. of meters needed	Capital cost per unit	Total capital cost	Installation cost	O&M cost	Total cost
			(Lakh)	(15% of capital cost)	(10% of capital cost)	(5 year)
WTP	8	I 5000	1.2	0	0	2.46 lakh
WDS	330	I 5000	49.5	7.42	4.95	81.67 lakh
Consumer metering (Maninagar)	21000	5000	1050	105	-	I I 55 lakh
						1240 lakh


NRW- Bulk Metering

Source : Catalogue Of Eureka Meters, AMC official website,

Upgrading Water Network, Water Audit and Leak detection

Major Concern for AMC and Amdavadians

Objective

The main objective of water audit is the preparation of leak detection and repair plan, the main objective is to reduce NRW through leaks etc

What all needs to be done?

Identification of water pipeline network in Zones with upgraded maps

Water Audit at the respective places where NRW is maximum on the basis of our Household survey

Filling up of water leaks

NRW- Upgrading Water Network maps, Water Audit and Leak detection

Source: Ahmedabad CSP2012

Models for the project

Model-I

Consultancy A shall do all the projects as done in Nagpur (Shah Technical Consultants)

Identification of water pipeline network in Zones with upgraded maps

Water Audit at the respective places where NRW is maximum on the basis of our Household survey

Filling up of water leaks

Model-2

Consultancy A Identification of water pipeline network in Zones with upgraded maps

Consultancy B

Water Audit at the respective places where NRW is maximum on the basis of our Household survey

Leak Assessment and Filling up of water leaks

Why Model-2

•Takes Less time

•Two projects could be started simultaneously at one time

• Consultancy B will be engaged in Water auditing so it will have a better understanding of leaks

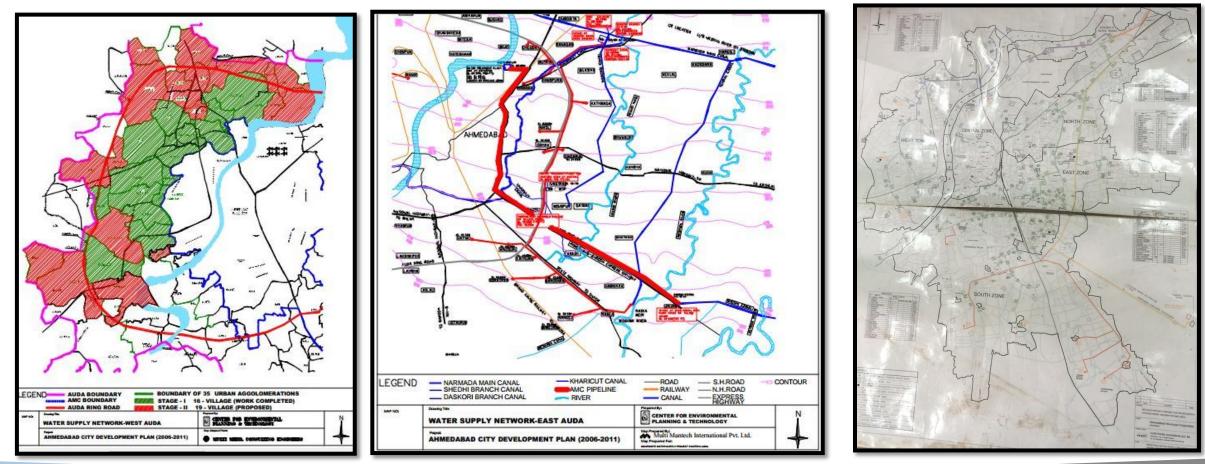
NRW- Upgrading Water Network, Water Audit and Leak detection

Nature of Contract:

Performance based Contract

•Consultants should deliver the list of task with in the mentioned time.

•A time check shall be performed whether the consultant is on time or not


•If a consultants fails to identify the water pipeline network on time then its tenure may get terminated or project should be awarded to second shortlisted bidder

• If the service and performance is delivered efficiently more incentives would be provided to the consultants

For O & M Capacity building exercise shall be done and AMC will itself operate and monitor for any leakage in future as SURAT has done it quite efficiently

Maps related to Ahmedabad water distribution network

Source: CDP2006, visit to Kotarpur water Works

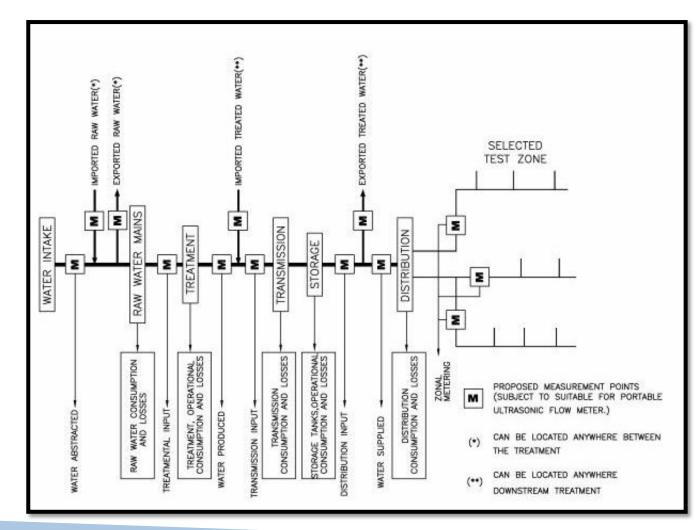
Meetings and Technology

Consultation

Meetings with AMC officials, plumbers. Linemen etc being employed by AMC from time to time so as to trace the pipeline

Ultrasonic Air and Water Leak Detector System The equipment utilizes highperformance digital technology to identify precisely where water and air penetrates in applications

Schedule & Costing


Time required for upgrading of these maps=190 days Information required for water connections to Households added after these maps were prepared Cost for each day manpower = 20000 Cost for 90 days week=38 Lakh

Cost of each Ultrasonic Air and Water Leak Detector System= 3000 Required Ultrasonic Air Detectors=1000 Pipe Locators=500 Leak Locators= 1000 water pipeline Sounding Rods=1000 Overall cost=2 crore

Water Auditing including metering at various levels

This is a major step of water auditing

Instigating The leak

Installing Ultrasonic flow meter to get an idea

•How much is the water loss?

• What is the Hierarchy

Source: DPR on Nagpur water Audit, NMC

Methodology to study NRW through water auditing :

•Audible Leak Detection Using Electronic Equipment

•To know NRW at HH level .The Selection of Test Zone with maximum NRW like Maninagar etc according to our HH survey

HIG, MIG, LIG and Slum

- Availability of Isolation Valves
- Pipe and Valve Survey Pipe & Valve survey is required to identify and verify the alignment of mains, service connections, location of valves in distribution system
- Checking of Existing Flow Checking of existing flow by installation of bulk flow meter and also using Ultrasonic Flow Meter in test zone during normal working hours
- Testing of Valves: The existing valves will be checked whether working or not.

NRW-Water Auditing and leak detection

Source: DPR on Nagpur water Audit, NMC

•Leak Detection Test- The leak detection using electronic equipments will be carried out during supply hours. Test generally lasts for about 2 to 4 hours.

During the test if the flow recorded is high then additional investigation are required like.

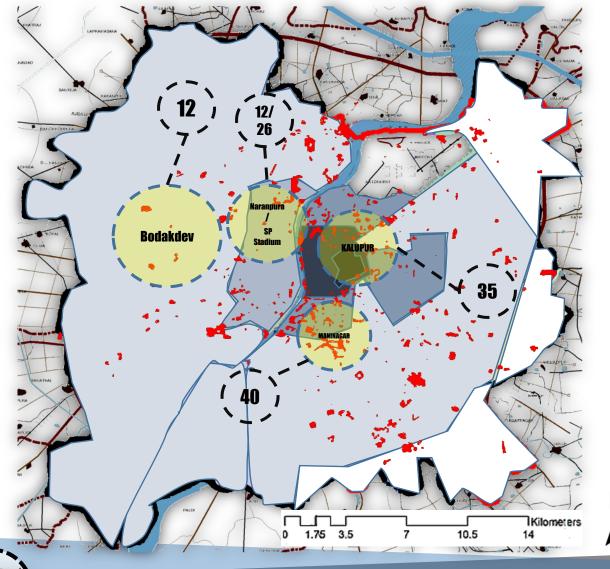
- Audible Leak Detection.
- Multiple Pressure Recordings.
- Visual Leak Detections

Equipments to be used During Test

Ultrasonic Flow Meters.

Pressure Gauges.

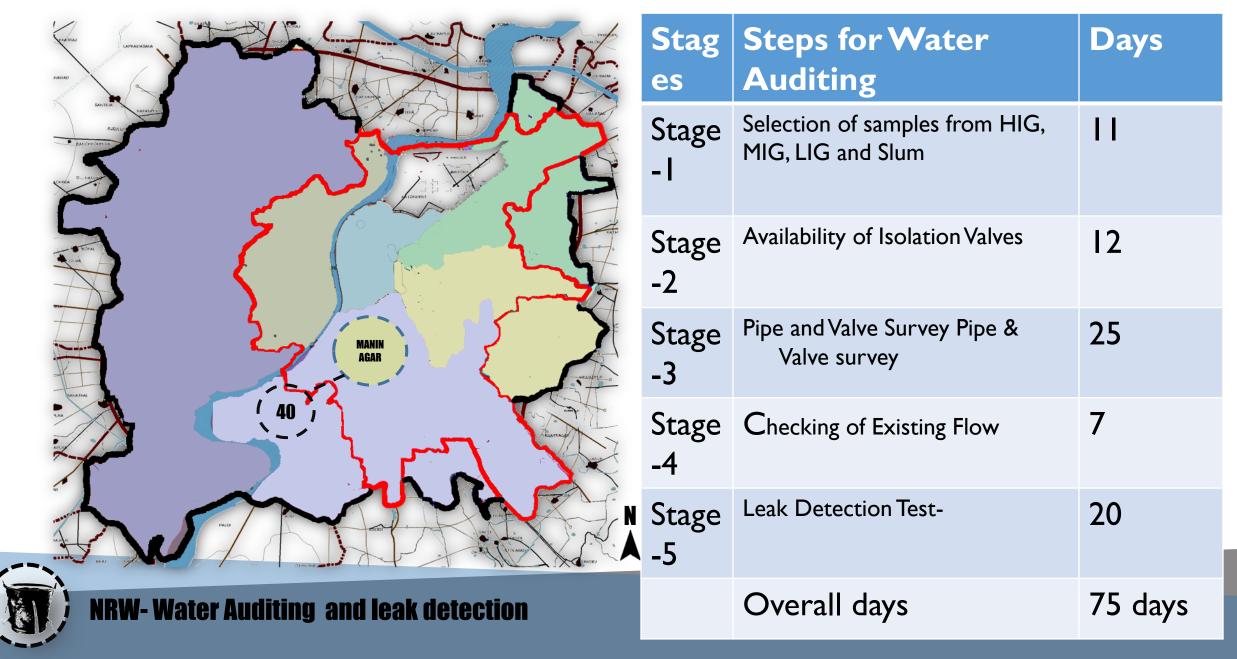
Pipe Locators.


Leak Locators.

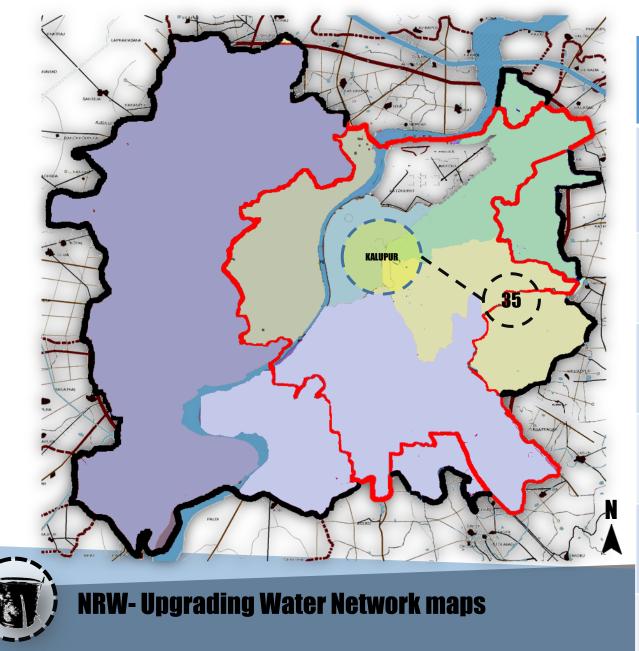
Sounding Rods.

Tanker and Pump unit (if required)

Water Audit and Leak detection : Maninagar & Kalupur Ward


Survey Areas

•Water Auditing and Leak detection survey in the areas of Kalupur and Maninagar where NRW is maximum


Ward	No of HH	Population
MANINAGAR	7339	33824
KALUPUR	11023	53630

Water Audit and Leak detection : Maninagar Ward

Water Audit and Leak detection : Kalupur Ward

Stage s	Steps for Water Auditing	Days
Stage- I	Selection of samples from HIG, MIG, LIG and Slum	14
Stage- 2	Availability of Isolation Valves	16
Stage- 3	Pipe and Valve Survey Pipe & Valve survey	29
Stage- 4		
Stage-Leak Detection Test-5		24
	Overall days	94

Costing for water Auditing at Kalupur and Maninagar Ward

Ward	No of HH	Population	Overall Project
		J I	Cost
MANINAGAR	7339	33824	3.24 crore
	11022	52/20	7.0
KALUPUR	11023	53630	7.60 crore
Total cost			10.84
· · · · · · · · · · · · · · · · · · ·			

Overall Project Cost includes

Cost of Instruments
Cost of Man power
Cost of Ultrasonic Flow Meters.
Pressure Gauges.
Pipe Locators.
Leak Locators.
Sounding Rods.
Tanker and Pump unit

Overall cost= 13.2 Crore

Source: Census 2011

Past Trends for Ahmedabad : Financial Assistance

Under Smart city Initiative

- •I lakh crores sanctioned for ULB's
- •48000 crores
- •200 crore for Smart Ahmedabad
- •98 crores for three consecutive years

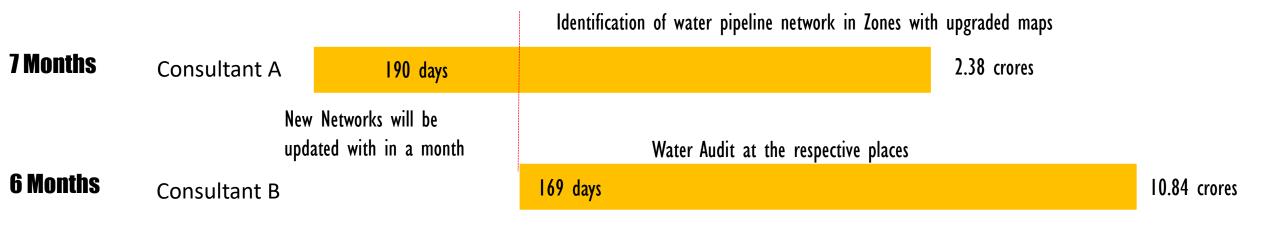
Looking at past trends, The contribution for the project

ULB:7 crores GOG:2 crores GOI:4.2 crores

Some past Trends under JNNURM

Approved Project cost for Ahmedabad=2390.7 crores

GOI share=836.6 crores GOG share=358 crores ULB share =1200 crores


No of Approved Projects=26

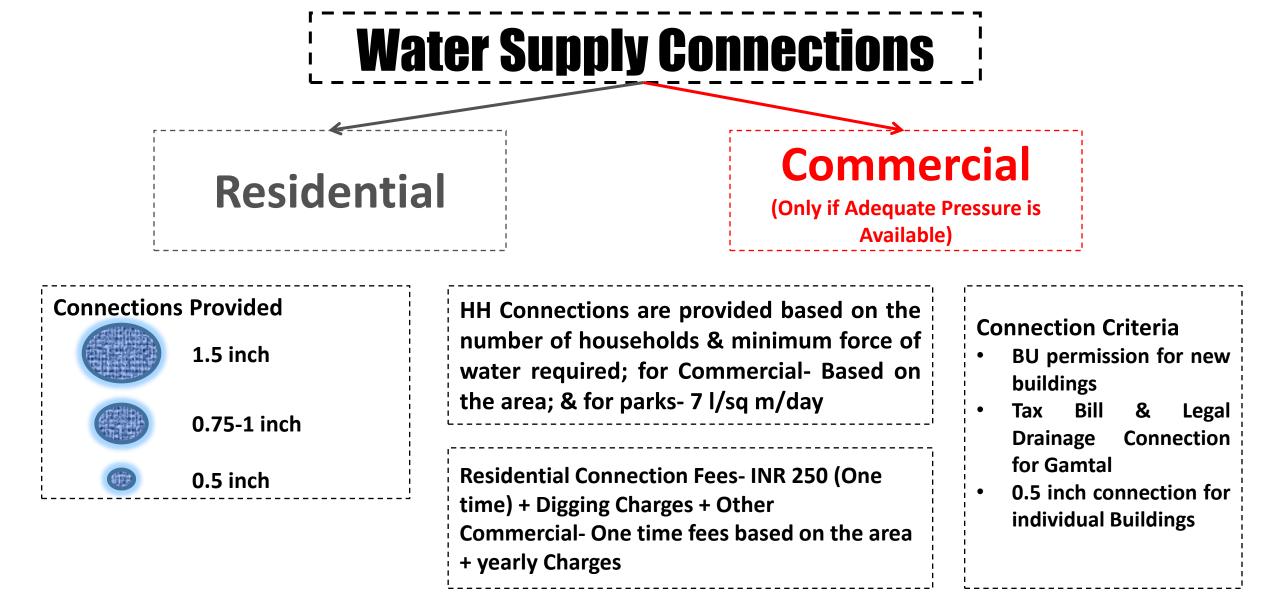
Completed Projects(till sep 2013)=21

Overall Expenses on water sector of Ahmedabad=Nearly 500 Crores

Scheduling of Projects

Monitoring of loss and management after water auditing through SCADA, manpower and capacity building exercise

Identification & Reduction of Illegal Connections through Institutional Framework



Overall 286 MLD Ioss @26% NRW If reduced to 15% NRW 121 additional MLD will be available without any additional capital cost 20 additional LPCD for supply will be available

By Reducing Illegal Connection^{15-20% of the total NRW} 21.2 MLD>>>3.5 LPCD of water & 0.86 Lakh/day revenue expenditure will be saved (3.14 crore/year)

NRW-Identification & Reduction of Illegal Connections through Institutional Framework

NRW-Identification & Reduction of Illegal Connections through Institutional Framework

Source: (AHO), AMC (New West Zone), (AHO) (ACE), AMC (North Zone)

Legal Connections

- The residential units are only provided water supply after getting a BU permission from the corporation
- The Gamtal houses are provided with connection on their property tax bill
- The Commercial Units are provided with a connection based on the BU permission & on the built up area, also they have to pay --a yearly fees for the connection

Illegal Connections

- The residential units without a BU Permission
- -The Residential units connecting to the main line with the help of private plumbers

The consumer hasn't paid the tax

Source: (AHO), AMC (New West Zone), (AHO) (ACE), AMC (North Zone)

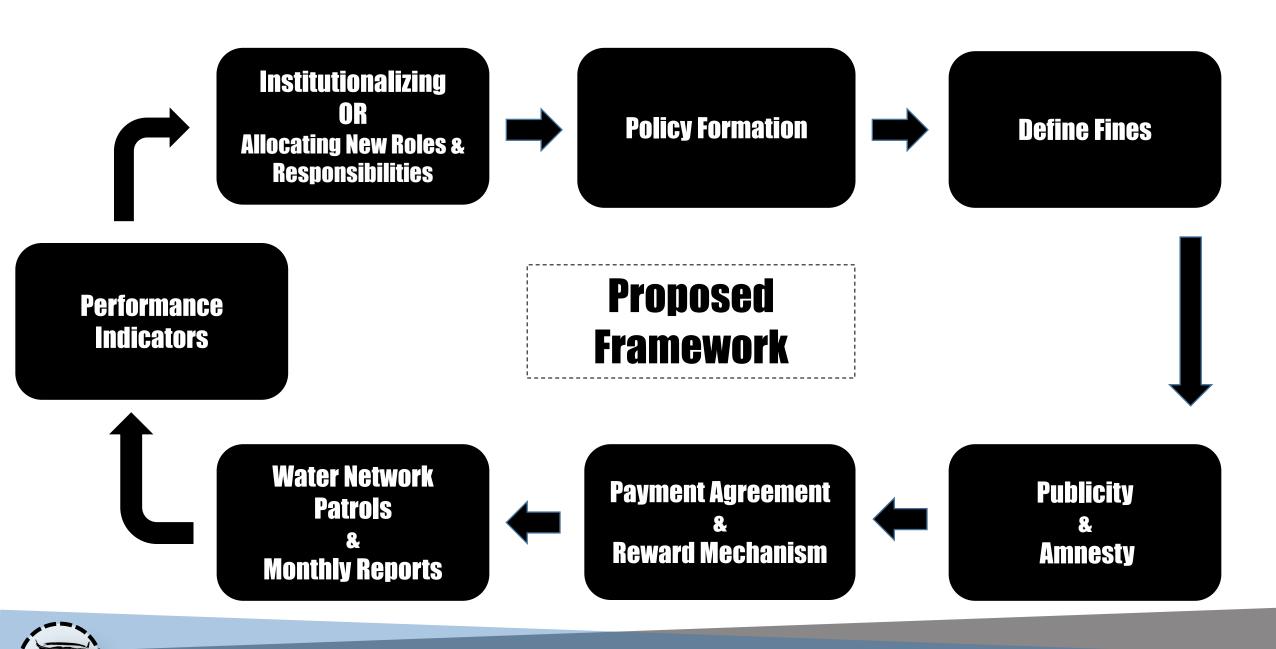
Present Actions

- There are no Patrols done for detecting the illegal connections
- There are no defined Fines or Punishments
- The illegal connections are only tapped after a complaint is made by a residential unit suffering from a low water pressure
- The illegal connection is sealed

ingt the offender

Very rarely the connection of a unit
 is sealed for not paying the tax
 Is sealed for not paying the tax

Issues


- No Institutionalization/Allocation of responsibilities
- Lack of Human Resources
- No policy or reforms
- No fines or punishment for the offenders
- Lack of Awareness among the people
- No data management/record of number of illegal connections
- No scheduled maintenance or

Astitutional Framework

CK of network lavour (AHO) (ACE), AMC (North Zone)

Actions against illegal	Case Study	Fines	Policy	Rules/ Regulations	Metering	Punishme nt	Institutiona lization	Implement ation- ULB/Pvt
Connections In other	Mumbai							ULB
Places	Vellore							ULB
	Delhi							ULB
	Hyderabad							ULB
	Goa							
	Bangalore							
	East African Region -LVV							ULB/Pvt
	Bangkok							ULB/Pvt
	Singapore							ULB/Pvt
	Ahmedabad							

Actions against illegal	Case Study	Fines	Policy	Rules/ Regulations	Metering	Punishme nt	Institutiona lization	Implement ation- ULB/Pvt
Connections In other	Mumbai							ULB
Places	Vellore							ULB
	Delhi							ULB
	Hyderabad							ULB
	Goa							
	Bangalore							
	East African Region -LVV							ULB/Pvt
	Bangkok							ULB/Pvt
	Singapore							ULB/Pvt
	Ahmedabad							

NRW-Identification & Reduction of Illegal Connections through Institutional Framework

Institutionalizing OR Allocating New Roles & Responsibilities	Policy Formation	Define Fines
Formation of an Illegal Use Reduction Unit (IURU)	Develop an Illegal Use Reduction Policy. The top management together with the technical team should develop this policy /	The Fines or penalties should as well be defined for instance if caught with any offence you will be charged a fine, in addition
I Unit for each Zone - 6 Total Units	stand of the water supply system concerning illegal usage of water.	customers will pay additional penalties;
Staff Required – Based on the Number of		• If the offence is an illegal connection,
House Holds in the zone		Reconnection offence,
	instance if caught with any offence , in addition	•
Defining & allocating Roles & Responsibilities for:	customers will pay additional charges	• Equivalent of 12 month average consumption if the offence is a meter
-Periodic Maintenance	The policy has to be very clear and practical.	by pass and
-Periodic Inspections		• An equivalent of 24 month of
-Monthly Reports		estimated average consumption if the
-Imposing Fines & Collection -Complaint Redressal		offence is illegal connection

Institutionalizing OR Allocating New Roles & Responsibilities		
>Formation of an Illegal Use Reduction Unit (IURU)		
I Unit for each Zone - 6 Total Units Staff Required – Based on the Number of	Institutionalizing Distribution of Roles and	Allocating New Roles & Responsibilities
House Holds in the zone >Defining & allocating New Roles & Responsibilities for: -Periodic Maintenance	Responsibilities	Saving in Revenue Expenditure Less Management Issues
-Periodic Inspections -Monthly Reports -Imposing Fines & Collection -Complaint Redressal	Additional Revenue Expenditure Management Issues	More Burden on the current management system Lesser human resource availability

NRW- Identification & Reduction of Illegal Connections through Institutional Framework

Institutionalizing OR Allocating New Roles & Responsibilities	Policy Formation	Define Fines
Formation of an Illegal Use Reduction Unit (IURU)	Develop an Illegal Use Reduction Policy. The top management together with the technical team should develop this policy /	The Fines or penalties should as well be defined for instance if caught with any offence you will be charged a fine, in addition
I Unit for each Zone - 6 Total Units	stand of the water supply system concerning illegal usage of water.	customers will pay additional penalties;
Staff Required – Based on the Number of		• If the offence is an illegal connection,
House Holds in the zone		Reconnection offence,
	instance if caught with any offence , in addition	•
Defining & allocating Roles & Responsibilities for:	customers will pay additional charges	• Equivalent of 12 month average consumption if the offence is a meter
-Periodic Maintenance	The policy has to be very clear and practical.	by pass and
-Periodic Inspections		• An equivalent of 24 month of
-Monthly Reports		estimated average consumption if the
-Imposing Fines & Collection -Complaint Redressal		offence is illegal connection

Payment Agreement & Reward Mechanism For Informers

It is important to notify the public about our position as a water service provider on the issue of illegal use of water.

This can be done through all the modes of communication:

Radio announcements,

Public gatherings,

News papers

Distribution of fliers etc.

Amnesty

The number of people of illegal cases may be so many that dealing with each of them legally may be **uneconomical**.

Amnesty is therefore paramount at this stage. An amnesty period of **three month** is realistic, during which customers who declare that they have illegal connections will **not be penalized**.

Where customers can not pay off fines at once, agreements can be signed with the culprits with clear **install payments on monthly basis.**

The date for the monthly payment (e.g. every 30th day of the month) should be indicated as well in the agreement for proper monitoring of the system

Clear **reward mechanism** should be put in place. A **provision of funds** should be put in place preferably in form of replenish-able amount to facilitate quick payment of rewards

The reward can be either in the form of incentives or subsidies or cash payments (e.g. 30% of the fine to the informer & 20% to the officer who acts on it as an incentive)

NRW-Identification & Reduction of Illegal Connections through Institutional Framework

Water Network Patrols & Monthly Reports

Areas where **mains intensification and extension** have been carried out

Follow up suppressed accounts

Revisit people who once applied for water and did not return

The IURU shall be required to keep **records** of **quantifiable performance indicators** to facilitate verification by the subcommittees

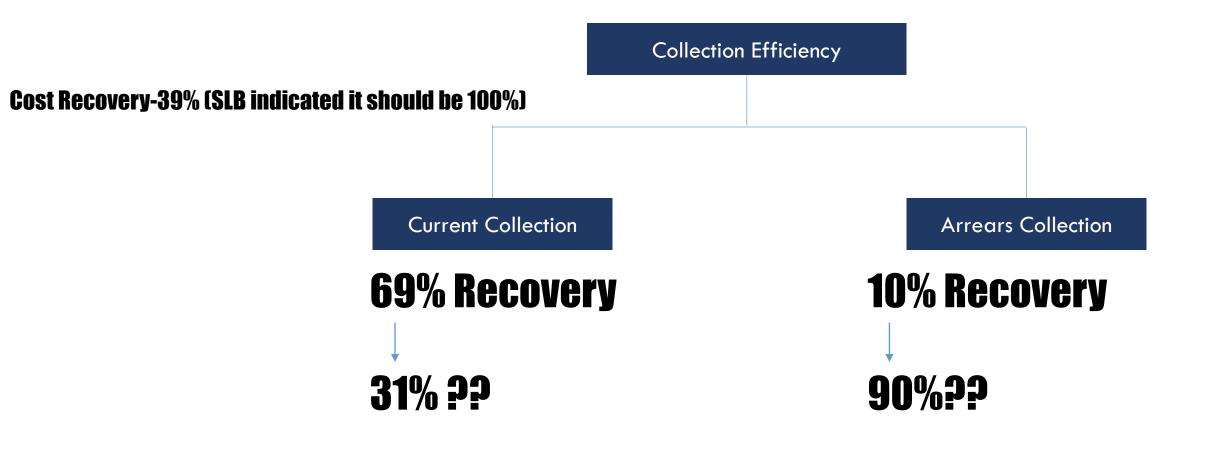
The evaluation of the performance of the IURI shall be carried out at the **end of each month** and each sub-committee shall highlight constraints experienced and proposed way forward

Performance Indicators

Define performance indicators for monitoring the efficiency of the system

Indicator	Unit
Investigation to unearth Illegal connection carried out	Νο
Illegal connections identified	No.
Total amount of fines invoiced to illegal consumers	INR
Amount of levied fines collected	INR
Percentage amount of levied fines collected	%
No. of disconnections of illegal cases effected	No.
No. of reconnections of illegal cases effected	No.
\mathcal{L}	

NRW-Identification & Reduction of Illegal Connections through Institutional Framework


Benefits

Institutionalizing- 13.6 crore	Institutionalizing- 13.6 crore	Saving in Revenue Expenditure
Replenish-able Fund- 2.01 crore	Exemptions from revenue income-	(21.2 MLD @ Rs 4/KL) = 3.1 crore
O & M- 1.6 crore	4.02 crore	
Other- 0.30 crore	O & M- 1.8 crore	Revenue generation through fines
	Other- 0.40 crore	$\mathbf{D} = \mathbf{D} = $
		Reduction in NRW (15-20% of total)
Total- 17.6 crore	Total- 19.82 crore	• Extra water, 21.2 MLD/Day,
		available for meeting the demand
		for a short term
Pay Hike- 0.30 crore	Pay Hike- 0.30 crore	
Replenish-able Fund- 2.01 crore	Exemptions from revenue income-	• Improving the quality of the service
	4.02 crore	
		Preventing water contamination
		• Better Planning - reliable demand
Total- 2.7 crore	Total- 4.82 crore	projections

NRW- Identification & Reduction of Illegal Connections through Institutional Framework

Improving Financial Performance of water sector

Source : pas.org.in, AMC budget, DCB Tables

Current Collection

69% Recovery

↓ Why 31% ??

Reasons

- More than 15% of property are disputed and closed.
- More than **10-15% duplicate property** billing has been generated.
- Online payment gateway is there but **right now its not** working.
- People are **not aware** of mobile collection van.

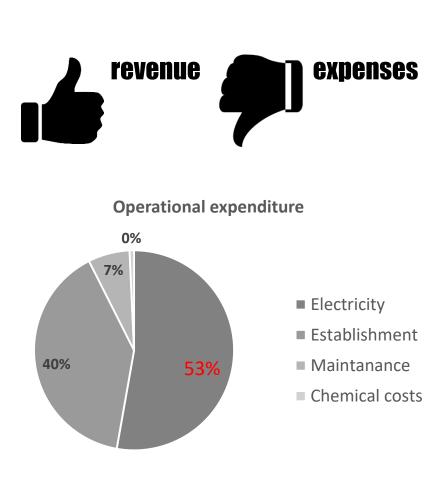
Arrears Collection

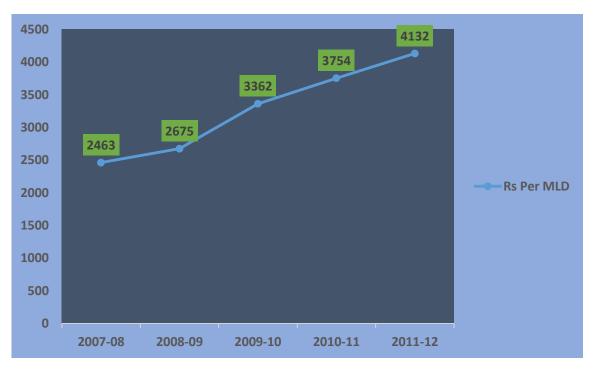
10% Recovery

Why 90%?? 99 code property

• Property tax has been continuously added to arrears account of **sealed property**.

Source : pas.org.in, ,AMC Budget, DCB Tables, AMC west zone office


Proposal to Enhance Collection Efficiency


Collection Process	Current	Actions Reforms
 Presenting the bill 	 Paper Bill 	 Online Text message
 Responding to questions about the bill 	 Public Service Walk in office 	 Interactive online chat Smart phone applications Social media
 Processing debtor payments 	 Manual paper check processing 	 Non-traditional payment processors such as PayPal, Google Checkout, etc. Active online payment gateway
 Securing an involuntary payment 	Fines LevySealing the property	 Banking standards for automated e-levy transactions Electronic levies transmitted to banks.

Source : The next Generation of Government Debt Collection Practices by CGI Tax Collections Centre of Excellence

Increasing Cost Recovery

Issues

Poor power quality Deficit power supply Single pump capacity No provision of parallel pump.

NRW-Improving Financial Performance of water sector

Source : energy cost savings in municipal water pumping systems-need for web interactive tool by IJSST, AMC Budget, Student Thesis Shivnath Patil

Proposal to Reduce Electricity Cost

Energy Audit (A performance based contract to measure potential savings in electricity)

Development of a Web Interactive Monitoring Tool.

NRW-Improving Financial Performance of water sector

Scope of work: **Measure potential** savings in electricity.

Area: South Zone.

Duration: 6 Months.

Cost: 5 lacs.

	Particular	Instruments requirement	What to measure	Energy Cost Savings Parameters
		Portable load manager	Transformer parameters	Power factor.Acting Power.(kW)Apparent Power
	A tender will float to measure potential savings in electricity.	Clamp on electrical power analyzers	Individual motor parameters	 (demand, kVA). Reactive Power (kVA). Energy Consumption
`•		Ultrasonic water flow meter	Velocity and flow rate of water at the pump and in pipelines	(kWh) • Frequency (Hz)
		Digital pressure sensor	Delivery head of the pumps	

Scope of work: Measure potential savings in electricity.

Area: South Zone.

Duration: 6 Months.

Cost: 5 lacs.

	Particular	Instruments requirement	What to measure	Energy Cost Savings Parameters	Actions
		Portable load manager	Transformer parameters	Power factor.Acting Power.(kW)Apparent Power	 Installment of suitable sizing of pumps
	A tender will float to	Clamp on electrical power analyzers	Individual motor parameters	 (demand, kVA). Reactive Power (kVA). Energy Consumption 	 Replacement of inefficient pumps. Operating schedules. Using parallel pump for
y.	measure potential savings in electricity.	Ultrasonic water flow meter	Velocity and flow rate of water at the pump and in pipelines	(kWh) ▪ Frequency (Hz)	 Using parallel pump fo supplying. Penalties paid in lieu of maintaining low.
		Digital pressure sensor	Delivery head of the pumps		

Development of a Web Interactive Monitoring Tool.

Duties of person at WDS

- Data entry of Electrical system and pumps and its configuration, specifications.
- Also operating hours and number of pumps in use on
 - daily basis.

Duties of technical person

- Analyze the data monthly and daily basis.
- Look at the expert services, which can lead to pose questions to the experts based on the data

This will help the municipal staff, to take necessary steps to **furnished**. enhance the pumping system operating efficiency.

NRW-Improving Financial Performance of water sector

Pump Manipulation		
<u>View Raw Water Pump</u> <u>View Clear Water Pump</u> <u>View Booster Pump</u> <u>View Pump Station Details</u>	Web Based Energy	v monitoring System
Add Raw Water Pump Add Clear Water Pump Add Booster Pump Add Water Pump Stations	User Name: Password :	
Electrical Detail Report	Submit	

Pump House Details Raw Water Pump

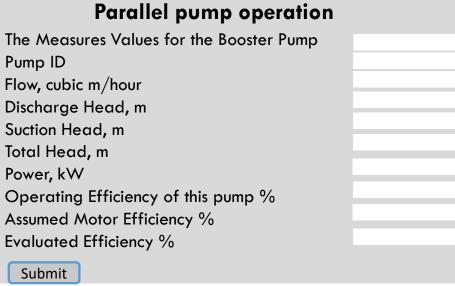
Total number of individual pumps in operation Total number of parallel pumps in operation

Clear Water Pump

Total number of individual pumps in operation Total number of parallel pumps in operation

Booster Water Pump

Total number of individual pumps in operation Total number of parallel pumps in operation Enter the following details the Water Pumping Station


Submit

NRW-Improving Financial Performance of water sector

The rated details of clear water pump and motor The Rated Details of the pump Enter the Details of the motor

Name of the pump	 Make	
Make	Frame	
Model	`/oltage	
Flow	Current	
Head	Output Power	
Pump efficiency	Aotor Efficiency	
Connected rotor	Connected rotor	
Speed	Power Factor	
	opeed	
Submit		
Pump Added Successf	ully	
Pump Added Failed		

Electrical Demand Management

NRW-Improving Financial Performance of water sector

Water Pricing (Tariff Revision)

Financial Cost	Economic Cost	Environment Cost
O&M Cost.	Resource Cost.	Over abstraction of Ground water.
Capital Costs.	Opportunity Costs.	Scarcity value of water.
Cost of Servicing capital		Pollution due to the utility.
Institutional capacity building and Skills training.		
Monitoring and Assessment.		

NRW-Improving Financial Performance of water sector

Source : Student Thesis (Juhi Gajjar EP0612)

Water Pricing (Tariff Revision)

Financial Cost	Economic Cost	Environment Cost
O&M Cost.	Resource Cost.	Over abstraction of Ground water.
Capital Costs.	Opportunity Costs.	Scarcity value of water.
Cost of Servicing capital		Pollution due to the utility.
Institutional capacity building and Skills training.		
Monitoring and Assessment.		

Source : Student Thesis (Juhi Gajjar EP0612)

Water Pricing (Tariff Revision)

Water Supply Budget (2008-09) (2009-10) (2010-11) (2011-12) (2012-13) (2013-14) **Particulars** actual actual actual actual actual actual 201.94 **Revenue Receipts** 80.52 112.40 127.10 136.81 150.71 206.98 **Revenue Expenditure** 147.96 166.14 171.59 214.66 117.76 Surplus/Deficit -37.24 -35.56 -39.04 -34.78 -56.27 -12.72 **Operating Ratio** 1.46 1.32 1.31 1.25 1.37 1.06

RAW Water Ha Financial Performance of water sector

Current Water Tariff

Proposal Water Pricing (Tariff Revision)

pattern.

based pricing

	Tariff Structure Revision				
After 5 ye	0-5 years				
	A clause of household size	Rate in Rs. Non- Residential	Rate in Rs. Residential	REA (Sq M) TO	CARPET A
	will be added in	600	348	15	0
	current water tax	1080	600	25	15.01
Increasin	which is linked to	1440	960	50	25.01
Block tari		2400	1440	100	50.01
		3600	2100	200	100.01
		6000	3750	500	200.01
/	It will help roughly	11250	7500	999999	500.01
Consump	It will help roughly to consider water consumption				

Source : water policy 2014

	Level of	Level of intervention Durati Capital Rev			Reven	Reven	Other Benefits	
Project	Ciţŷ~~~	Zone	Ward	on	Cost	ue	ue	Quality Data
Activities			ڈ_ی		Ř	Incom	expen	
		Innerte				e/w	ditare	Monitoring Augmentation
						ng		
Data Base Management System				0- 13				
		6	<i>L</i>	<u>3</u> >5				
				~5				
Bulk Metering				0	3.15			
				4	5.15			
Upgrading Water Network, Water Audit and Leak				01				
detection	<u> </u>			<u> </u>	7		1.5	
				4				
Identification of Illegal Connection through				0			10.0	
Institutional Framework				>5		>3.1	19.8	
PR PR CE	immary			0	2.24			

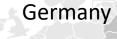
24x7 water supply in Ahmedabad

What is 24x7? CPHEEO

"24x7 water supply can be achieved when water is **delivered continuously to every consumer** of the service **24 hours a day, every day of the year**, through a transmission and distribution system that is **continuously full and under positive pressure**"

MOUD,24x7 guidelines

"The **supply of potable water** to end users through a system of pipes – comprising interlinked bulk transmission and/or distribution systems – which are continuously full and under positive pressure throughout **their whole length**, such that the **end user may draw off water at any time of the day or night, 24 hours a day, every day of the year**".


What is 24x7?

U.S.A.

Global South

Spain

Australia

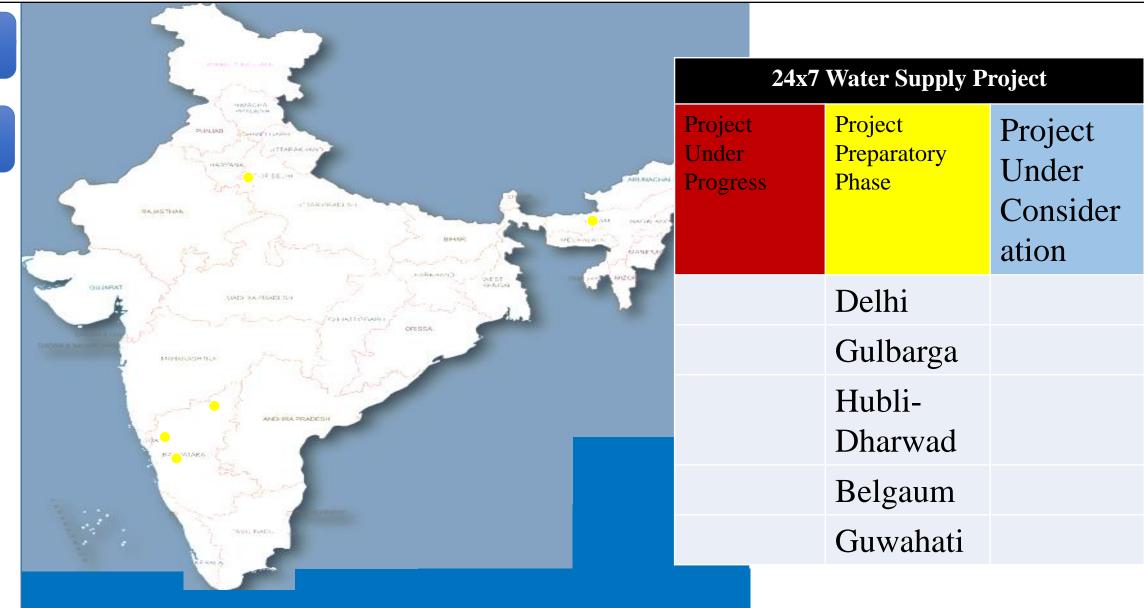
All developed countries have 24x7 water supply system

World wide scenario

Russia

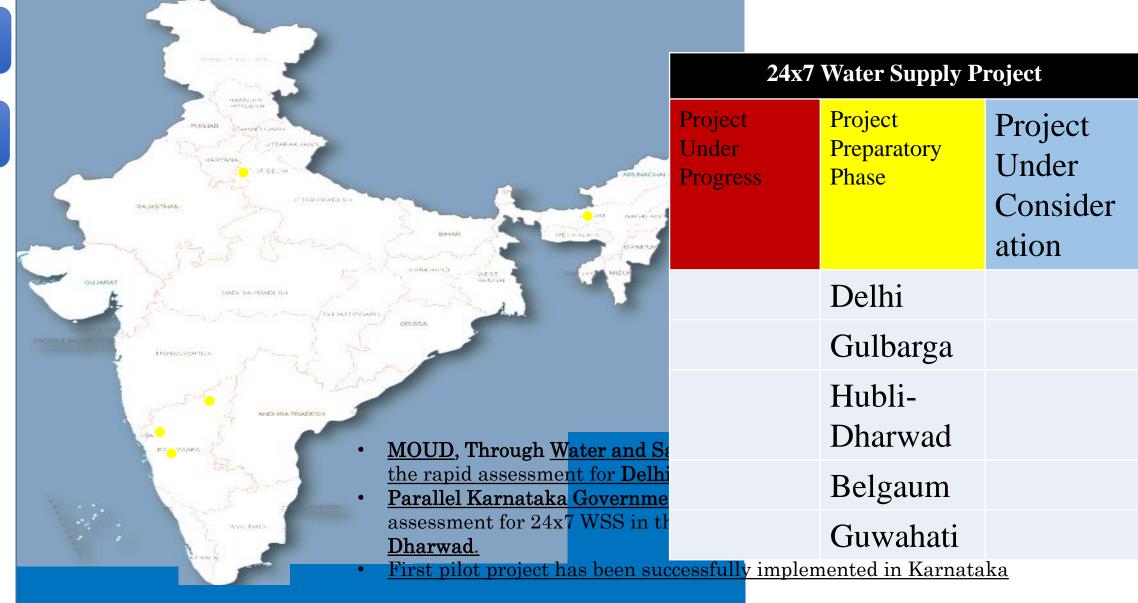
24X7 WSS DOES NOT DEPEND ON ECONOMY OF THE COUNTRY.

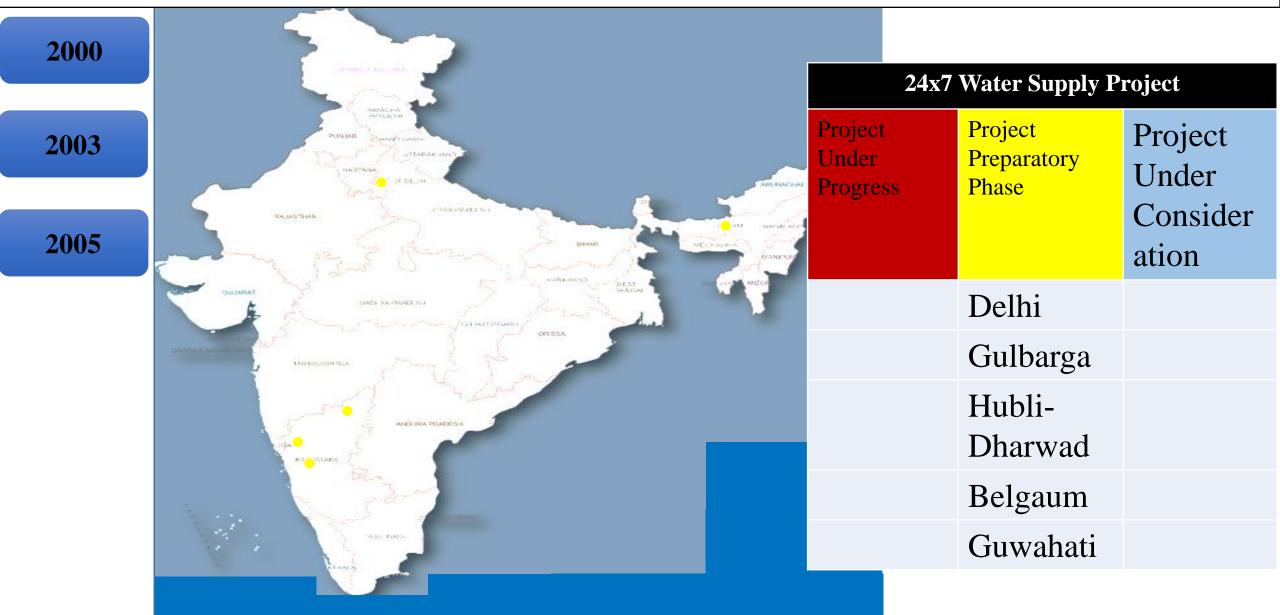
City,Countary Name	GDP (US \$ Trillian)	GDP - per capita (PPP) (US\$)
Kuala Lumpur, Malaysia	305033	15,800
Bangkok, Thailand	365966	9,500
Chengdu, China	8227103	8,500
Shanghai, China	8227103	8,500
Male, Maldives	2222	6,405
Colombo, Sri Lanka	59423	5,700
Jakarta, Indonesia	878043	4,700
Manila, Philippines	250182	4,100
India	1842321	3,700
Ho Chi Minh, Vietnam	155820	3,400
Tashkent, Uzbekistan	51113	3,300
Vientiane, Laos	9418	2,700
Phnom Penh, Cambodia	14038	2,200
Dhulikhel, Nepal	18963	1,300
Kampala, Uganda	19881	558



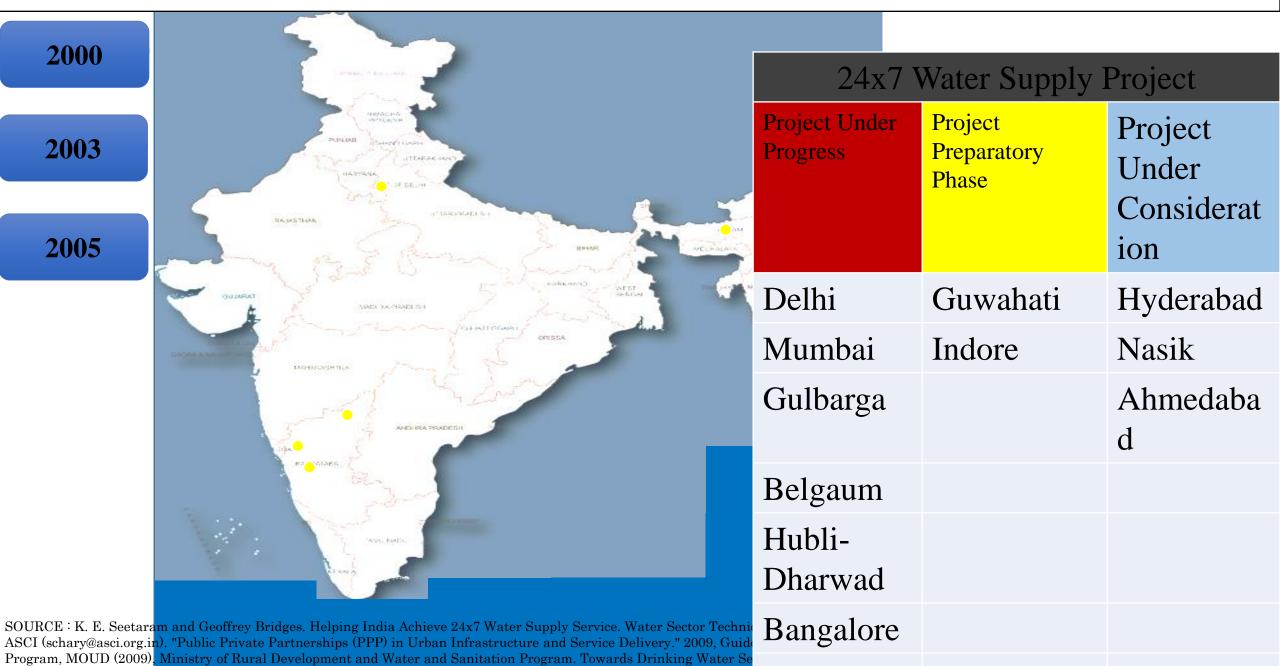
Asian country scenario

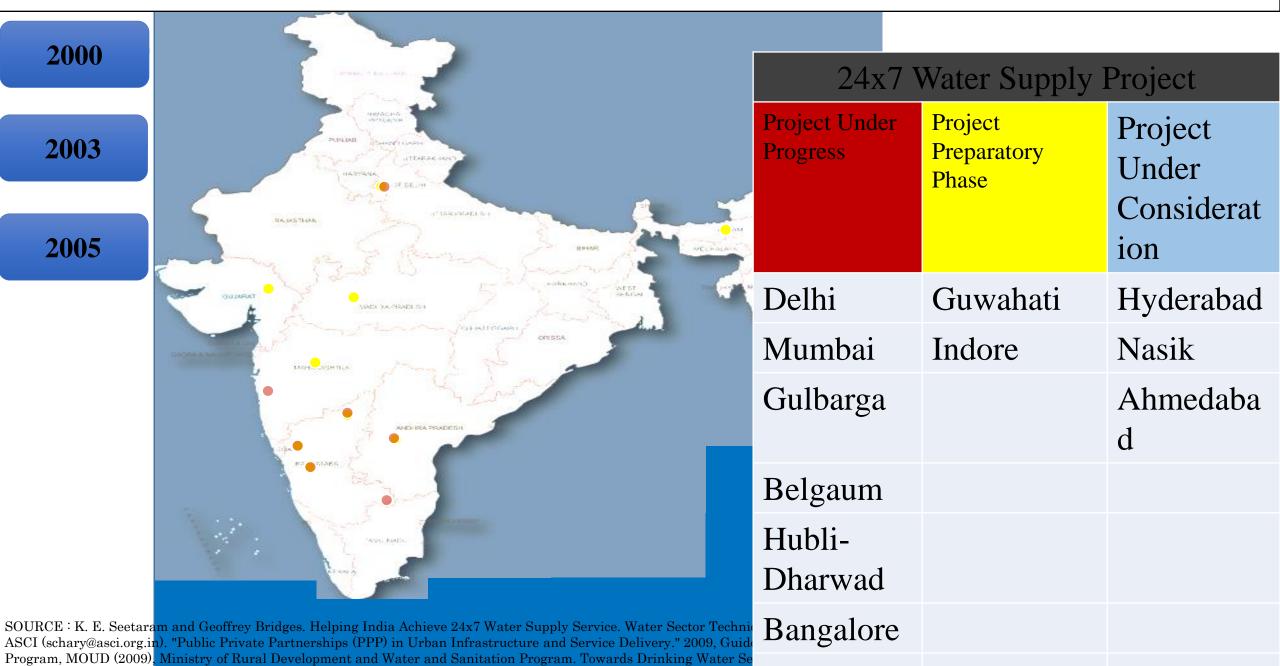
SOURCE : <u>Asian Countries</u>:(http://www.asci.org.in/asciicap/DAY1% 20ASCI% 20ICAP .pdf) V. Srinivasan Chary, ASCI (schary@asci.org.in)."Public Private Partnerships (PPP) in Urban Infrastructure and Service Delivery." 2009, <u>Al</u> <u>Countries GDP and per capita GDP</u>:http//data.worldbank.org/country,12,December,2012, http://data.un.org/CountryProfile.aspx?crName=Uganda , 12,December,2012 MAP:http://www.indexmundi.com/map/?t=0&v=67&r=as&l=en,21,January,2014

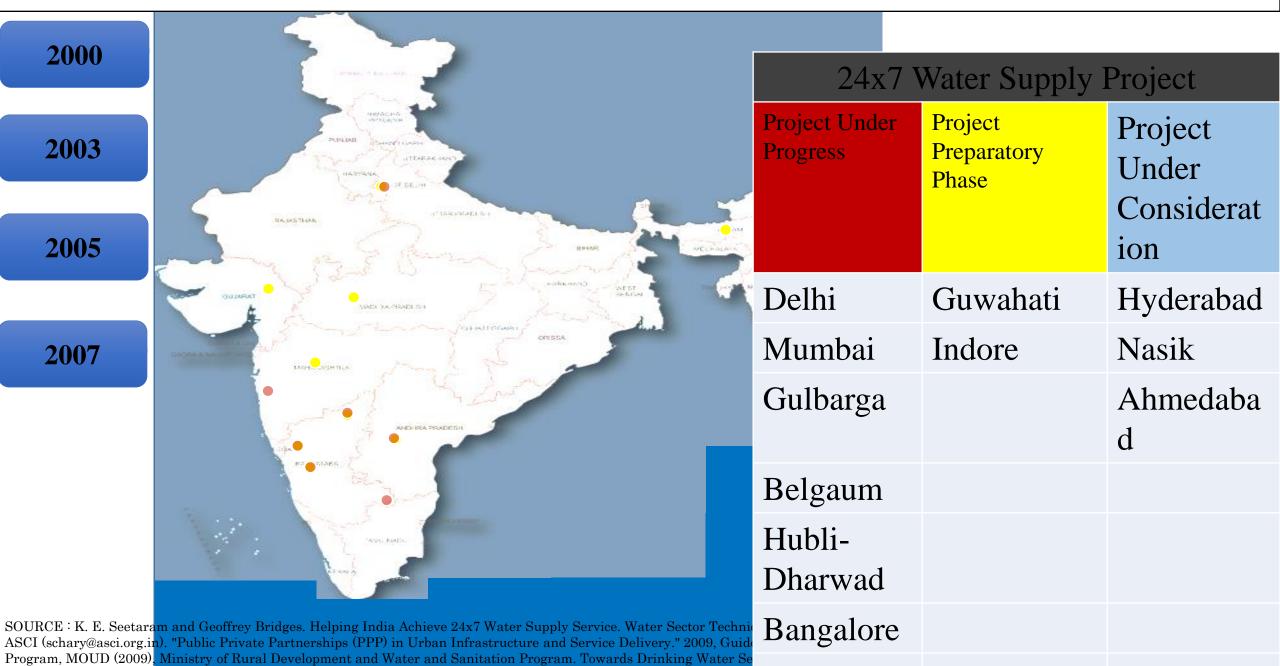

2000 2003

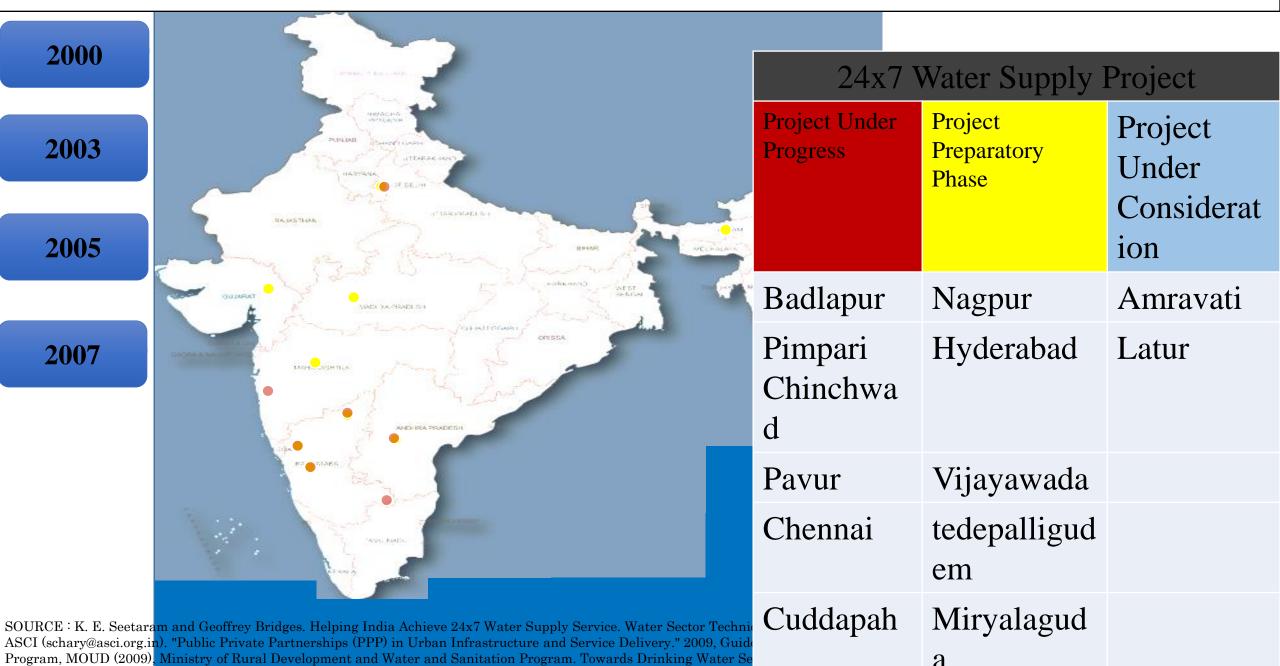

SOURCE : K. E. Seetaram and Geoffrey Bridges. Helping India Achieve 24x7 Water Supply Service. Water Sector Technical Note 1. Bangalore: Asian Development Bank (ADB), 2010, V. Srinivas Chary, ASCI (schary@asci.org.in). "Public Private Partnerships (PPP) in Urban Infrastructure and Service Delivery." 2009, Guideline notes for continuous water supply. Guideline. Delhi: Water and Sanitation Program, MOUD (2009), Ministry of Rural Development and Water and Sanitation Program. Towards Drinking Water Security in India: Lessons from the Field. Delhi, 2011. Literature Review

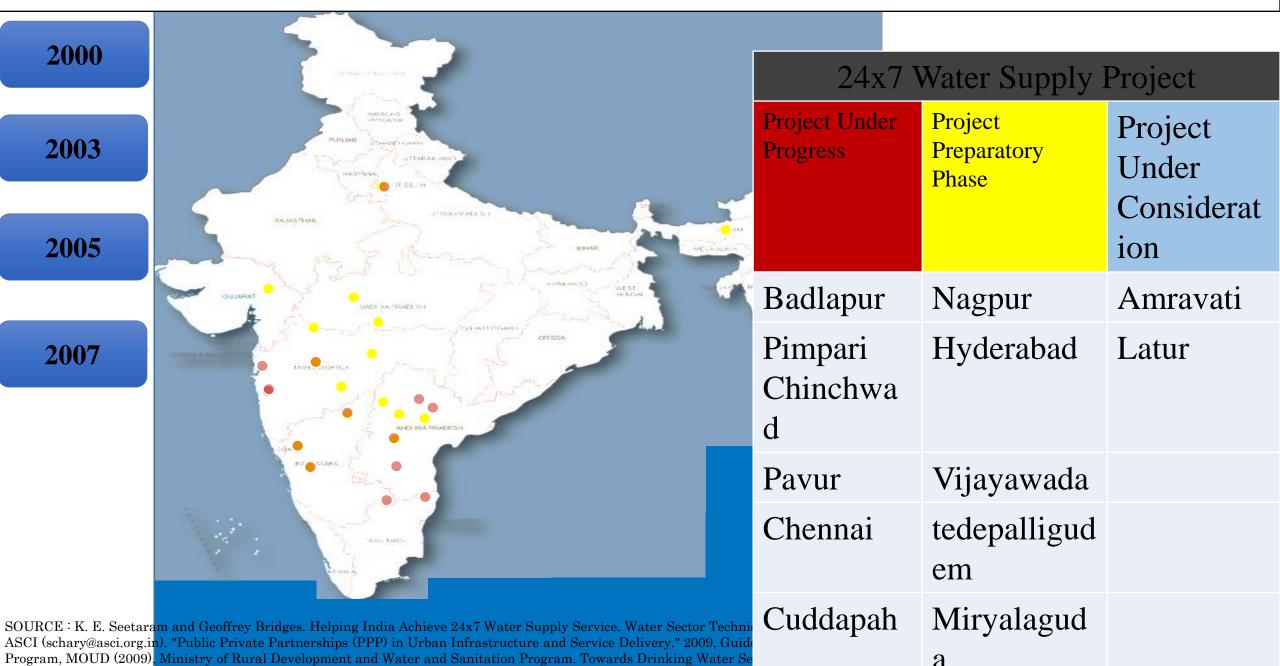
2003

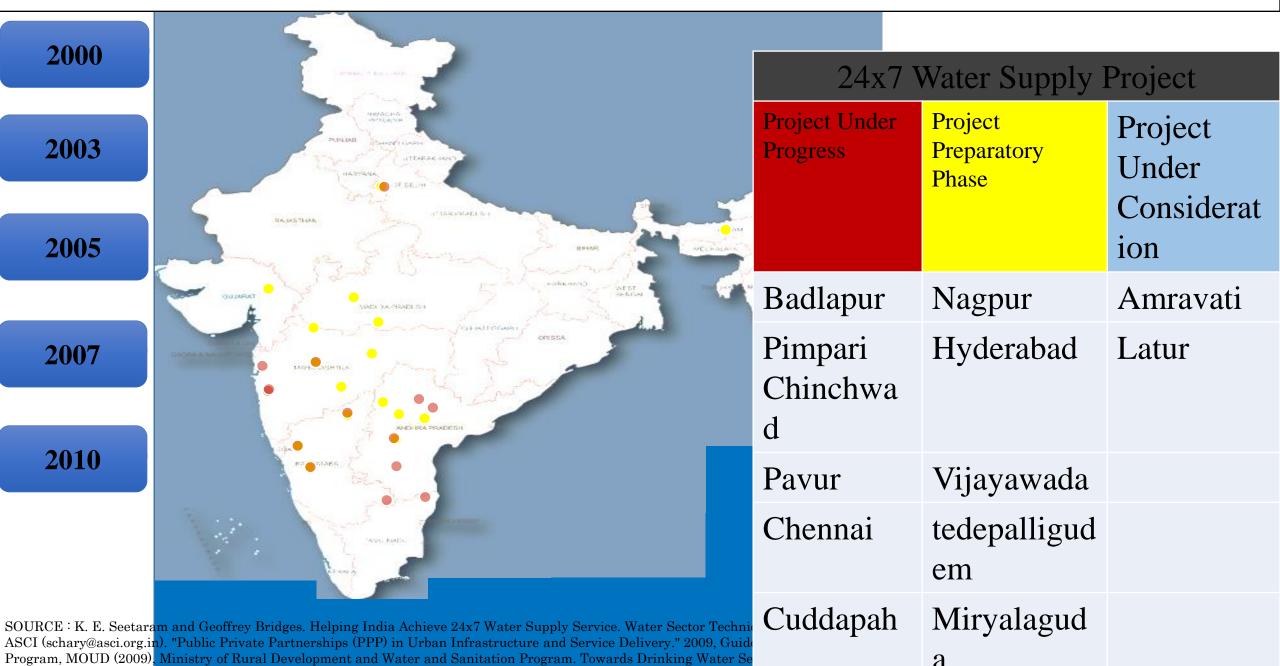

2000

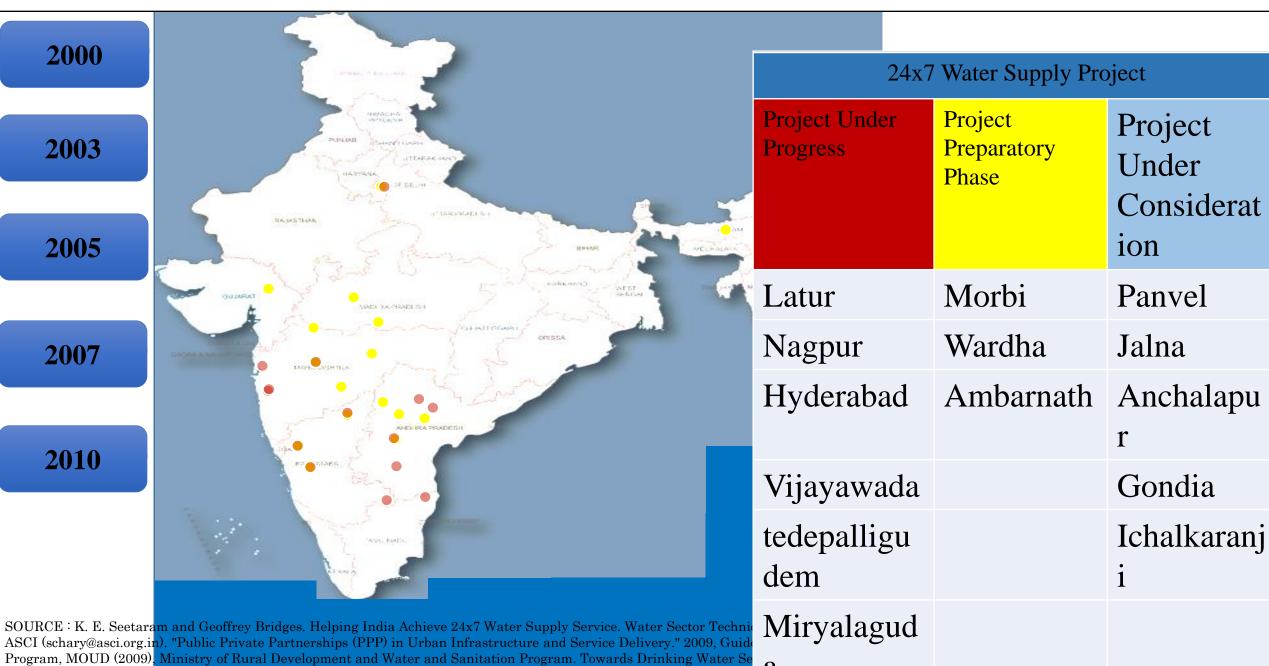


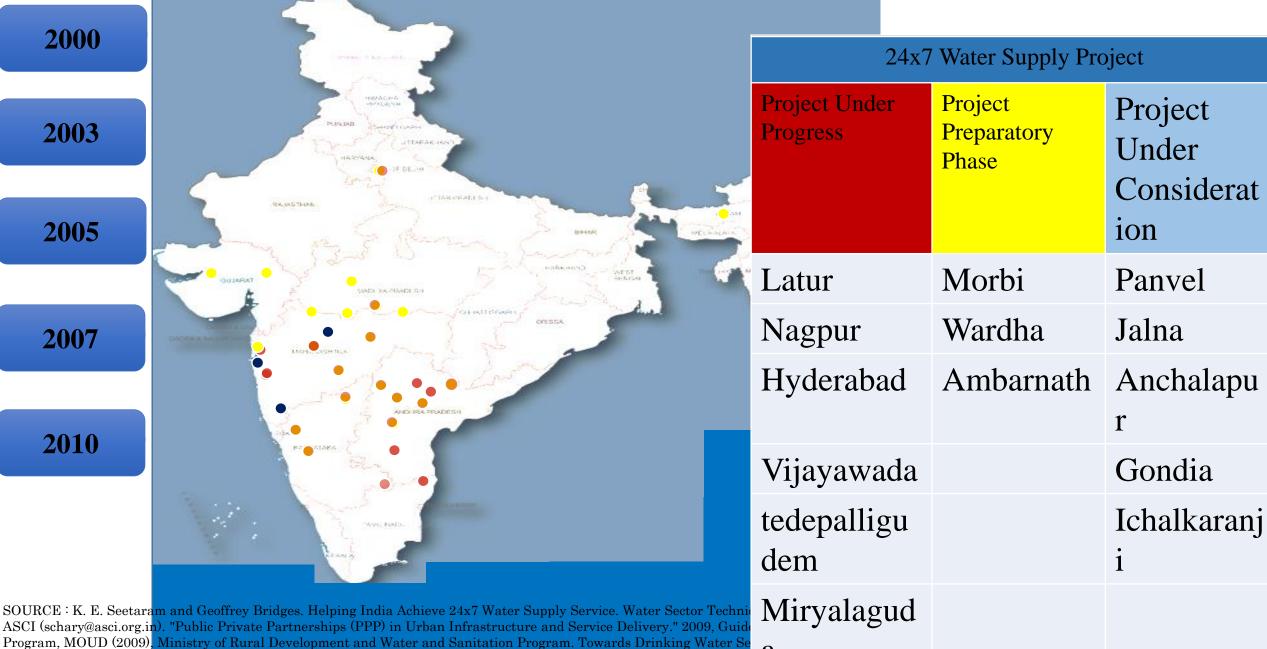

SOURCE : K. E. Seetaram and Geoffrey Bridges. Helping India Achieve 24x7 Water Supply Service. Water Sector Technical Note 1. Bangalore: Asian Development Bank (ADB), 2010, V. Srinivas Chary, ASCI (schary@asci.org.in). "Public Private Partnerships (PPP) in Urban Infrastructure and Service Delivery." 2009, Guideline notes for continuous water supply. Guideline. Delhi: Water and Sanitation Program, MOUD (2009), Ministry of Rural Development and Water and Sanitation Program. Towards Drinking Water Security in India: Lessons from the Field. Delhi, 2011. Literature Review

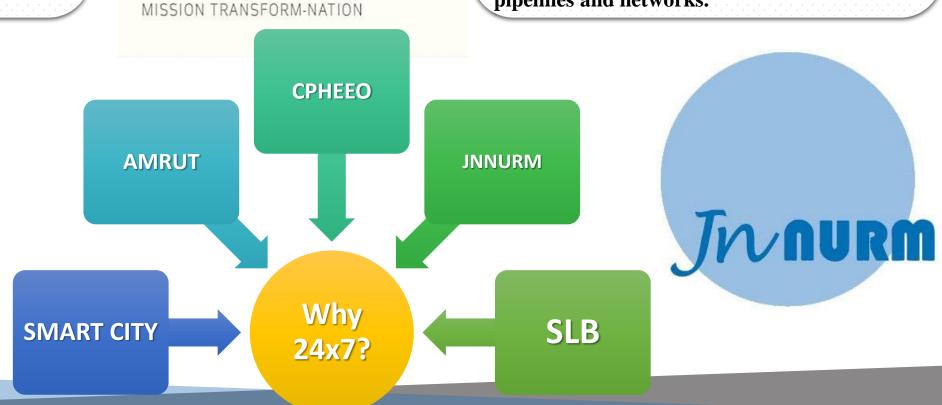



SOURCE : K. E. Seetaram and Geoffrey Bridges. Helping India Achieve 24x7 Water Supply Service. Water Sector Technical Note 1. Bangalore: Asian Development Bank (ADB), 2010, V. Srinivas Chary, ASCI (schary@asci.org.in). "Public Private Partnerships (PPP) in Urban Infrastructure and Service Delivery." 2009, Guideline notes for continuous water supply. Guideline. Delhi: Water and Sanitation Program, MOUD (2009), Ministry of Rural Development and Water and Sanitation Program. Towards Drinking Water Security in India: Lessons from the Field. Delhi, 2011. Literature Review



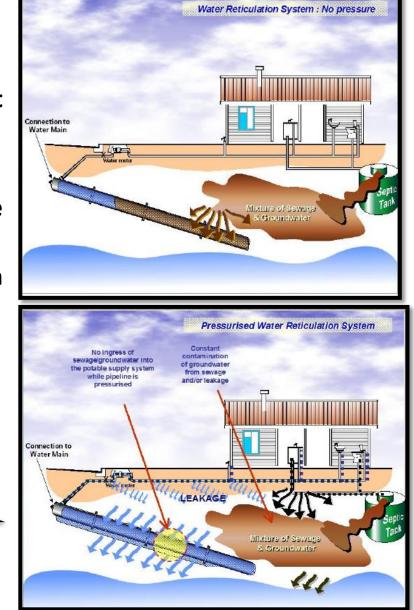






ASCI (schary@asci.org.in). "Public Private Partnerships (PPP) in Urban Infrastructure and Service Delivery." 2009, Guid Program, MOUD (2009), Ministry of Rural Development and Water and Sanitation Program. Towards Drinking Water Se **SLB:** Continuity of supply is measured as the average number of hours of pressurised water supply per day. Water pressure should be equal to or more than a head of 7 metre (m) at the ferrule point/meter point for the connection

CPHEEO & JNNURM: 24-7 supply is achieved when water is delivered **continuously to every customer of the service 24 hours a day**, every day of the year, through a transmission and distribution system that is continuously full and **under positive pressure** throughout all of its pipelines and networks.



Source: SLB,CPHEEO manual, JNNURM reforms,Amrut guidelines, smart city guidelines

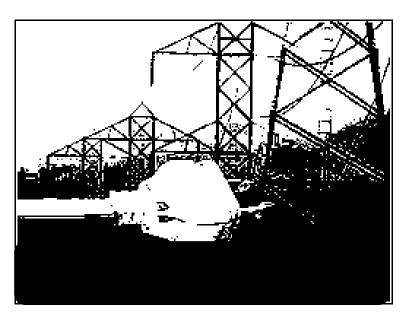
- ✓ Continuous water supply at desired pressure.
- $\checkmark\,$ No Contamination of water
- ✓ Beneficial to poor-Better Service to Consumer
- ✓ Less storage & Reduction in wastage of water

24x7

- ✓ Better Accountability
- ✓ Sustainability of system

Intermittent water supply

- ✓ Time constrain
- ✓ Poor quality of water
- ✓ leads to increased pumping costs,
- ✓ Oversized pipes mains, underutilized reservoirs ,
- ✓ reduced lives of pipes and valves due to wide changes in pressure


Source: google.co.in

TAXES ON TAP? NO!

"Politicians don't want to charge people??" or "People don't want to pay??"

States hit by water scarcity Rajasthan Uttar Pradesh Madhya Pradesh Chhattisgarh Gujarat Andhra Pradesh Maharasht Tamil nadu **"We don't have**

"We don't have enough water in a water-scarce country to supply continuous water"

"We have intermittent power supply so how can we expect to have continuous water supply?"

24x7 is always debatable

Cities	Pilot area (in wards)	Population	Connection		Consumption efficiency (lpcd)		Average pressure (meter)	Actual losses (%)	Cost recov ery	
Belguam	3	74,361	8,509	130	93	4	15	3.3%	60%	
Gulbagra	2	62,982	3,810	95	67	3.5	12-15		97.7%	N
Hubli	5	82,337	12,327	120	107	5	25-40	15%	98.44 %	
Dharwad				98	87	4	22		99%	
Nagpur	4	1.2 lakh	15895	142	127	5	12	31% from 50%	100%	

NRW reduction 6.5 mld (Hubli dharwad)

Content (Hubli- Dharwad)	BEFO RE	AFTER
Supply (mld)	13.04	6.4
Consumption(mld)	3.63	3.53
Average pressure(m)	2	8
NRW volume(mld)	9.41	2.89

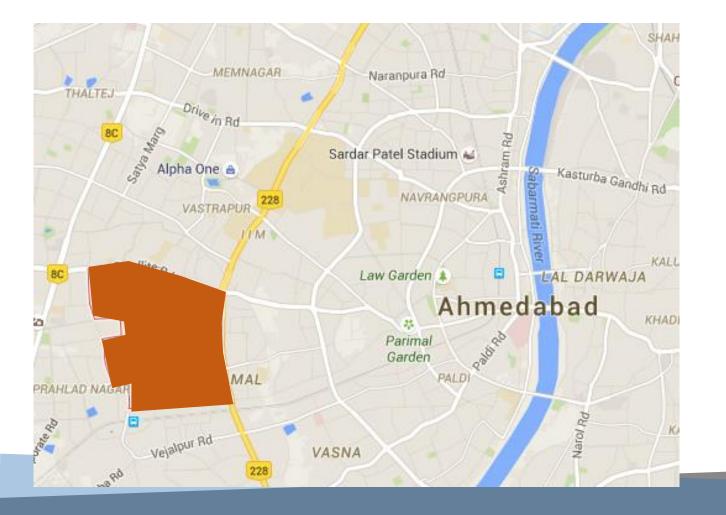
Social Economic Benefits of 24 X 7 in Hubli

Time saved 26-40 hrs per HH per

month

- 43% respondent could attend social functions
- Negligible e.coli & coliform compared to 15% & 35% of intermittent samples
- Child diarrhea 11% lower

emented cities


https://www.wsp.org/sites/wsp.org/files/publications/WSP_Karnataka-water-supply.pdf, nagpur development plant

24 X 7 Water Supply in Ahmedabad (Ghatlodiya)

Jodhpur 24x7 water supply

Area : 700 hectars No of DMA : 5 DMA area : 1 sq.km One DMA : One ESR Where needed upgradation of network Some part replacement of network

They proposed water tariff structure & new policies

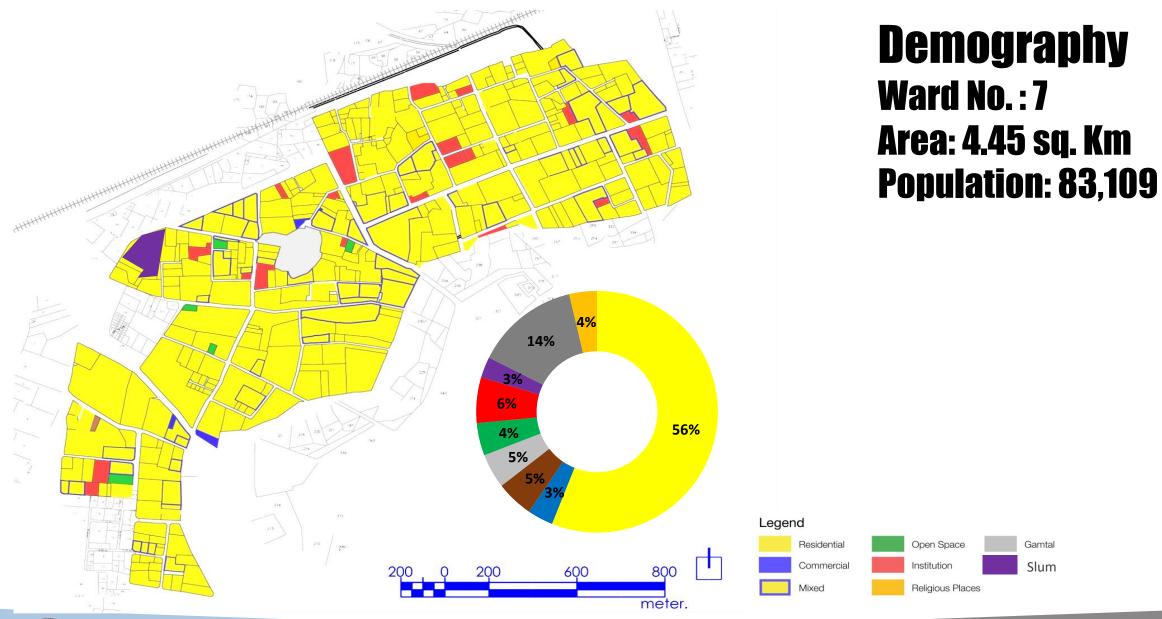
Source : Multimedia consultant

Land use – Mixed landuse

Building typology- G+1, G+2, high rise(mix)

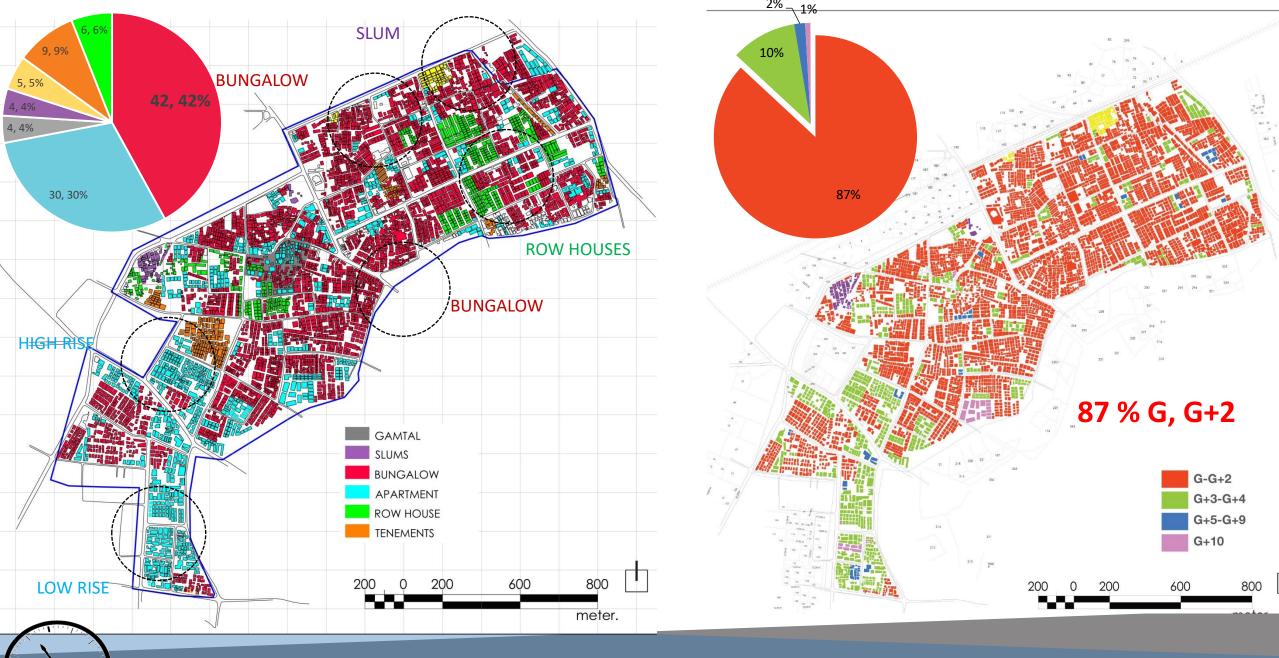
Population sample size – 10% of Ahmedabad Data

Data availability


Area with less illegal connections

			Nos of main			HH covered with tap	no of	Nos. of	Capacity of UGT Lac		Capacity of OHT	Total Capacity
zone	sr no	ward	WDS	HH(census)	(census)	connections	connection	UGT	Litre	ОНТ	Lac Litre	Lac Litre
new west												
zone	1	Sarkhej	4	25891	84.40%	21852	24413	4	41	16	14.3	55.3
	2	Vejalpur	8	35579	84%	29886	33389	8	172	1	5	177
	3	Jodhpur	7	18030	95.20%	17165	19176	11	286.8	12	17.5	304.3
	4	Bodakdev	6	20182	86%	17357	19391	6	170.5	15	36.2	206.7
	5	Thaltej	2	27172	86.20%	23422	26167	2	172.7	7	16.3	189
	6	Ghatlodiya	3	19205	90.90%	17457	19503	3	138	5	13	151
	7	Chandlodiya	3	11173	98.40%	10994	12283	3	92.5	2	3	95.5
	8	Ranip	1	12053	98.40%	11860	13250	1	110	1	. 1	111
	9	Gota	5	11334	99.60%	11289	12612	6	164.4	10	19.3	183.7
	10	Kali	1	13340	97.50%	13007	14531	6	18.6	7	11	29.6

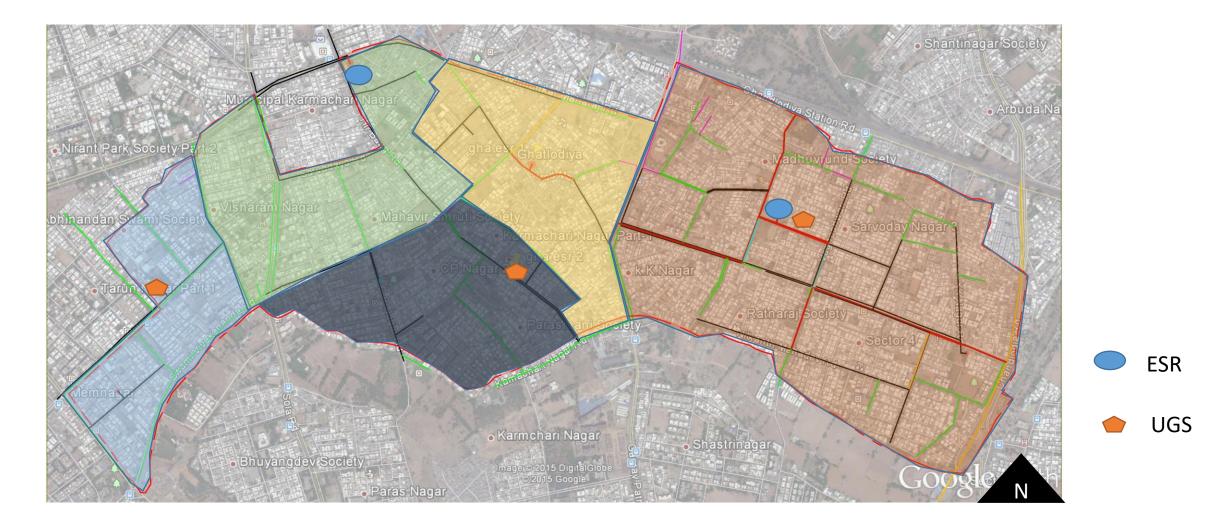
Selection criteria for study area


Source: hh from census

Ghatlodiya – Land Use map

Source: BPLAN 2013

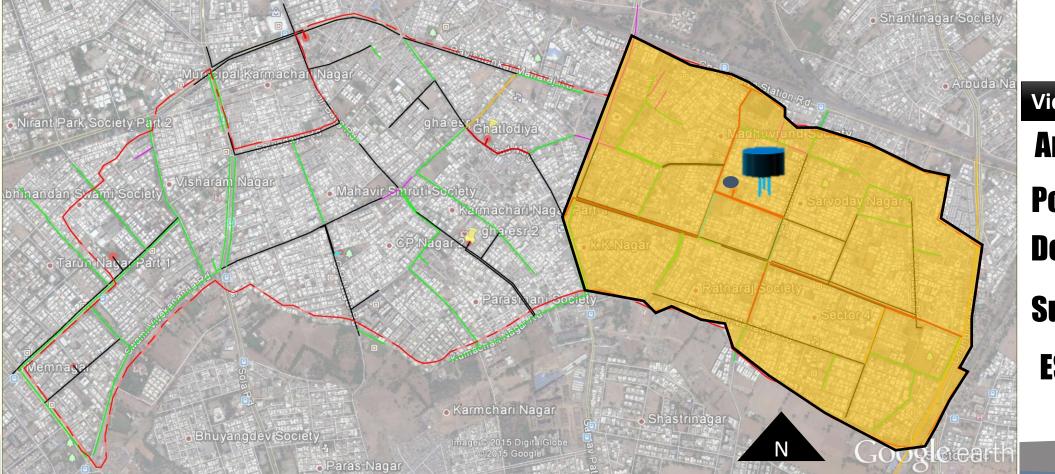
Ghatlodiya – Building typology


Source: BPLAN 2013

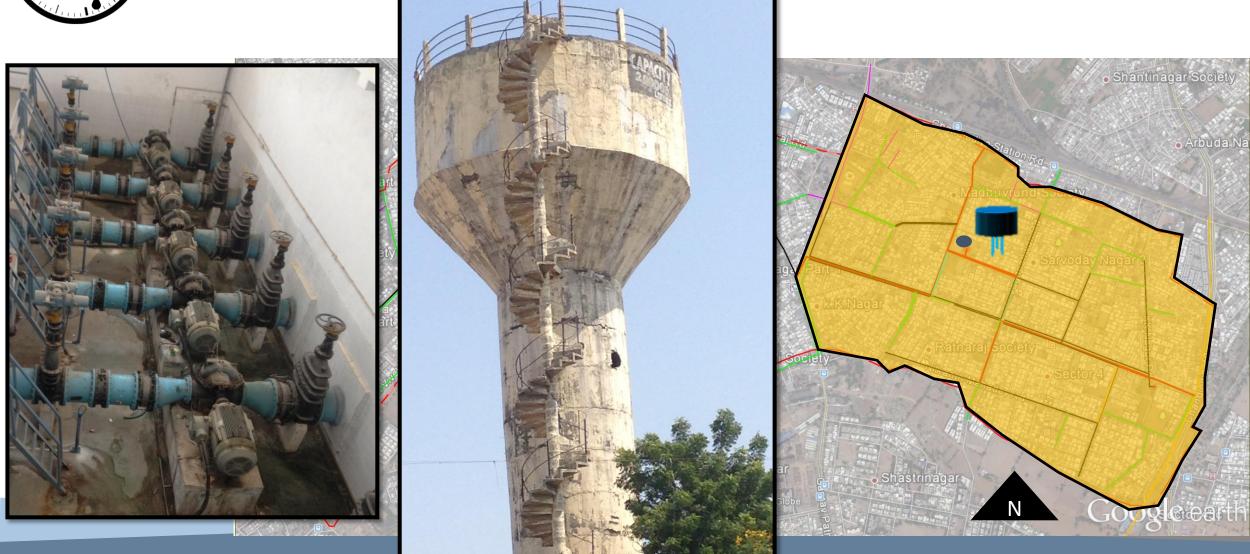
Sr. No.	Name of wds	No. of society		Req. of water as per 700 lit. (20% UFV)	Reqd. supply time	water supply at present	No. of pump	pump capacity	Qty. of water supply at present	Deficit
1	Vidhata	150	12500	10.5 MLD	3.75	2.00	2.00	1400000.00	8500000	2 MLD
2	Gamtal	45	7580	6.3 MLD	12.73	11.00	1.00	500000.00	4800000	1.56 MLD
3	Laxmangadh	142	12775	10.7 MLD	10.73	14.15	2.00	500000.00	6750000	3.98 MLD

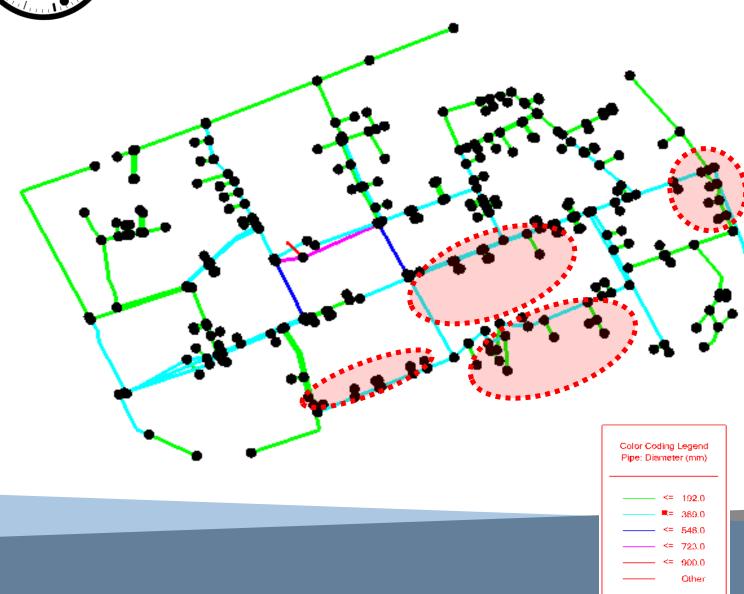
7.54 MLD deficit in Ghatlodiya ward

Ghatlodiya- water supply deficit



Source: AMC Ghatlodiya ward office

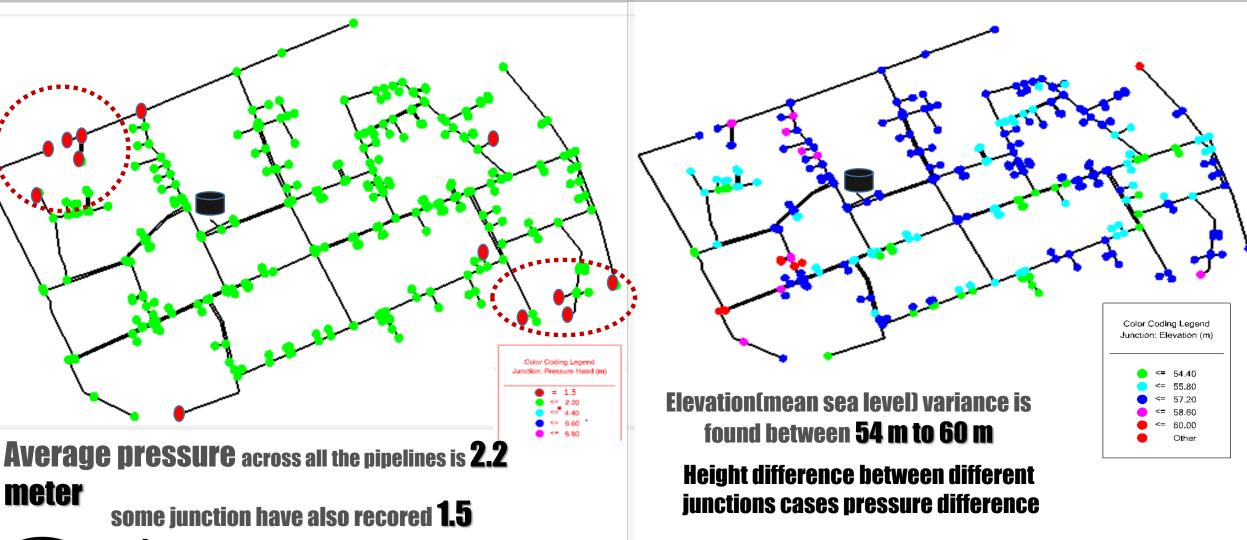

Selected area for DMA- VIDHATA Nagar


Vidhata nagar Area :1.29 sq.km Population: 37,050 Density: 20445 Sump : 22 lakh gallon ESR: 3 MLD

Selected area for DMA- VIDHATA Nagar

Issues in existing network

 Haphazardly installed pipe network

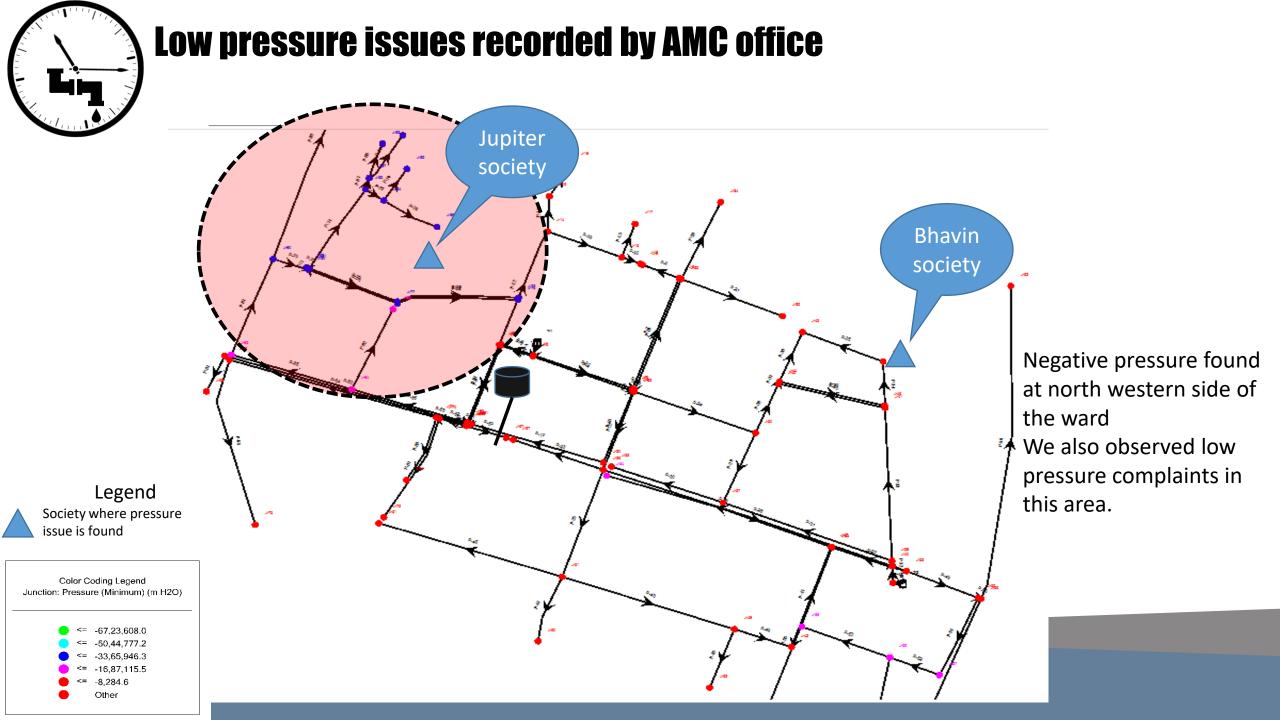

- Drastic variance in pipe diameter
- Pressure issues found in dead ends of pipeline
- ESR not in working condition
- Lack of data management

Pressure head in existing area

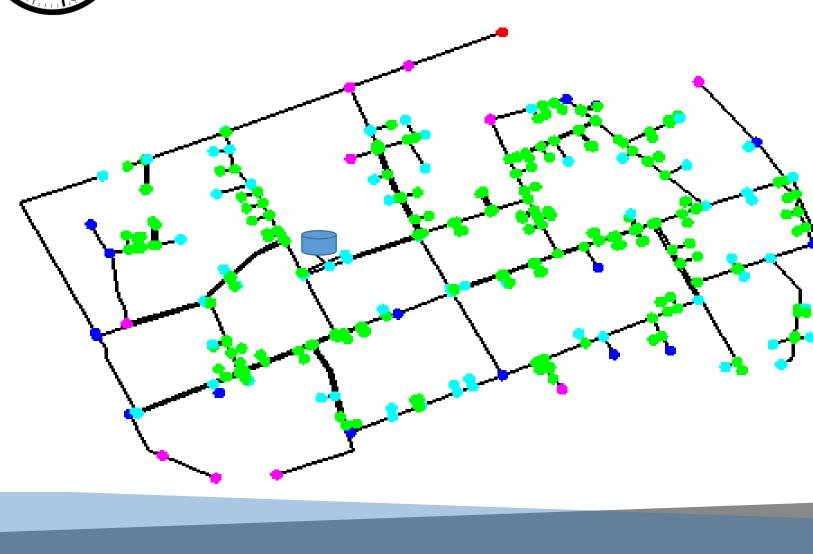
meter pressure

meter

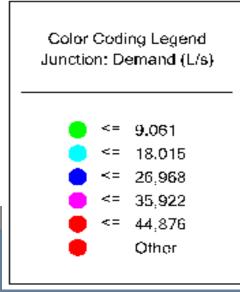
Existing analysis- Issues of present network


Source: AMC Ghatlodiya ward office

Pressure issues record in AMC

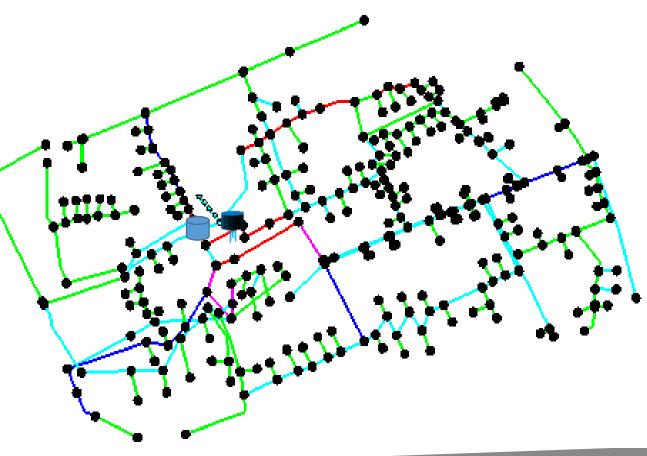

Ward	WDS	Particular society	Complaint	Solution	expendit ure	remarks	
Ghatlodiya	Vidhata tank	Giriraj soc.	located at the endpof network systempso there is an issuepof low pressureppp	Issue can be solved by providing water from	50 lakh	Work will be done by "water	
		Bhavin soc.		OHT located near		project	
		Ishwarkaka soc.		K.knagar, Amul		department"	
		Kanal tenement		garden, so pressure problem can be			
		Jupiter soc.		solved.			
Ghatlodiya	Vidhata tank	Anand nagar society	These societies are located at the end of network system so there is an issue of low pressure	By providing bore well issue can be solved.	25 lakh	Work will be handled by	
		Chhaya flat saame na chhapra(slum)		Water pressure can be maintained by bore water pressure		"water operation & maintenance"	
						o // =	

Date: 16/10/15



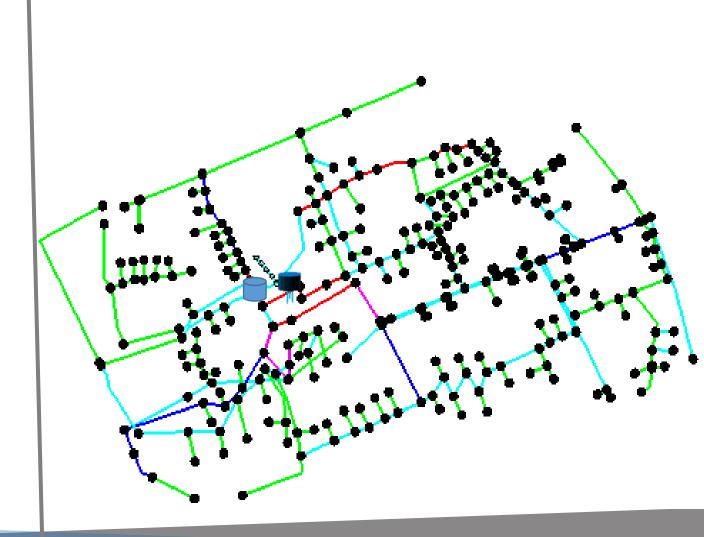
Water demand at junction level

Major junction's demand is 9061 liter per second.


Outer area of network has more water demand

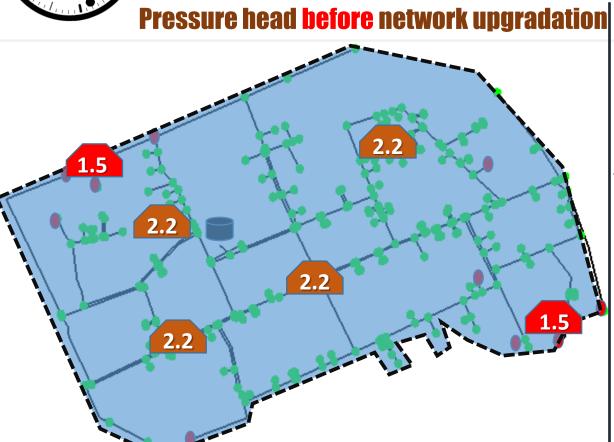
Proposed network for Intermittent water supply

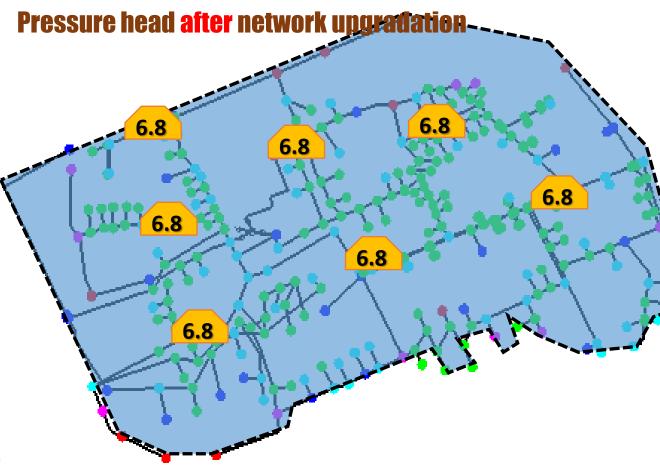
Proposed upgraded network


Proposed network for Intermittent water supply

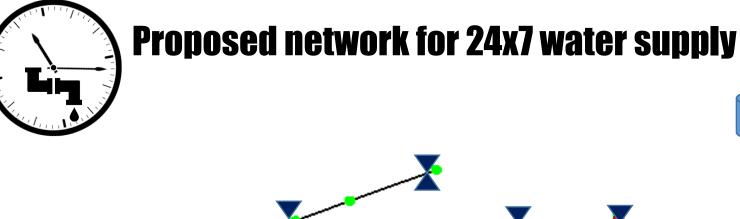
Proposals for water supply network for intermittent water supply

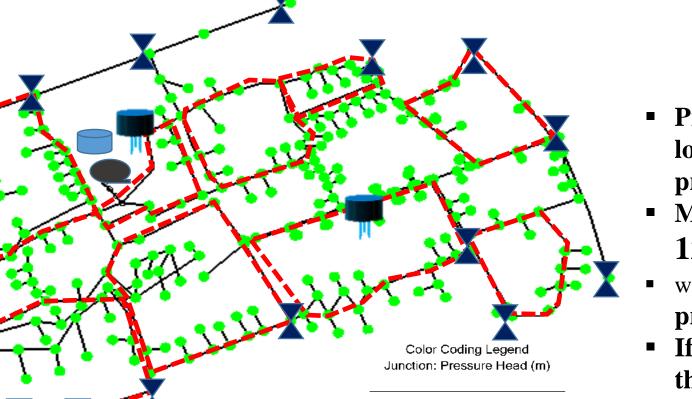
1. ESR : to maintain pressure


2. Three pumps : for maintaining constant pressure during peak hours


3. We have designed whole network such as that pipe diameter gradually decrease from main trunk lines to branch lines

Pressure head for proposed intermittent water supply



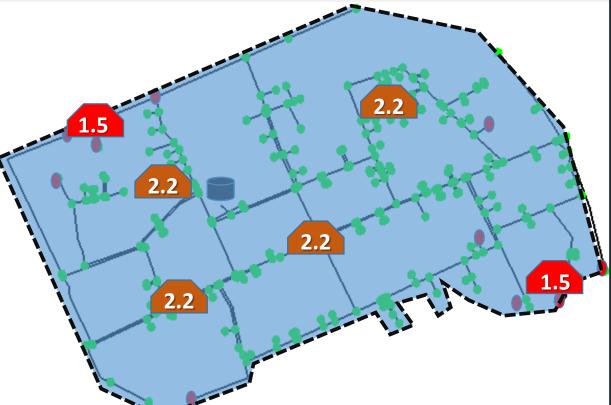


All junction have average 7 meter pressure after network upgradation

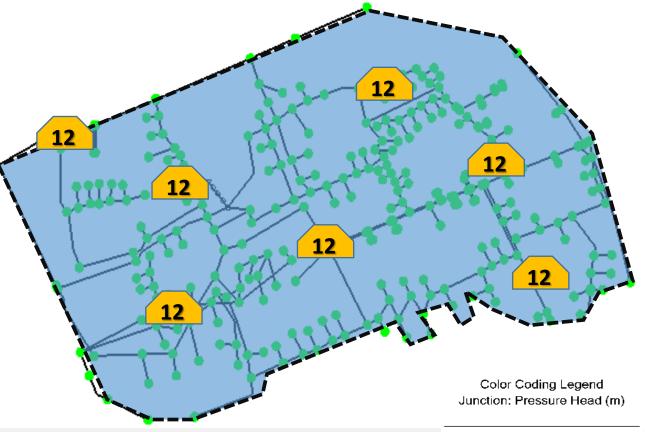
Color Coding Legend Junction: Pressure Head (m)

12.40

14.80 17.20


19.60 22.00 Other

- Proposed one ESR at sump location so we can maintain
 - pressure head at each household
- Minimum pressure will be served is
 12 meter
- we have made closed loop for better pressure management
- If hydraulic pressure get greater than 64 m (mean sea level) then pump will get off automatically.
- Meters are provided at society level.



Change in pressure head

Pressure head before network upgradation

Pressure head after 24x7 network upgradation

Hourly Hydraulic Pattern Hourly Hydraulic Pattern 1 Hydraulic Pattern 1 Hourly Hydraulic Pattern 1 Hourly Hydraulic Pattern 1 Hourly Hydraulic Pattern 1

20.000

22.500

0.500

0.000

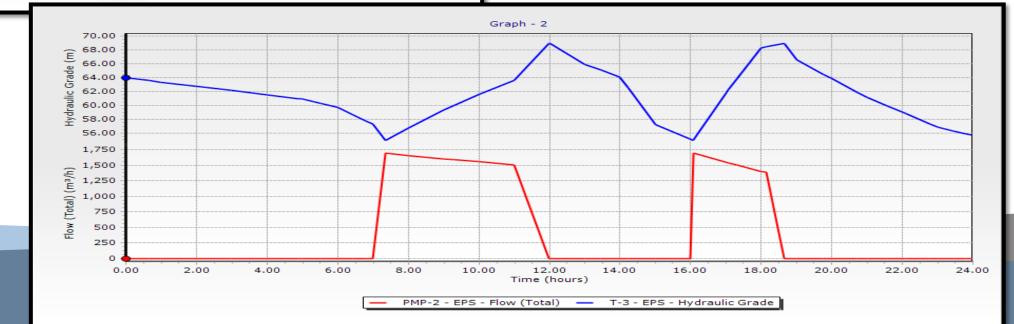
0.000

2.500

7.500

5.000

12.500


Time (hours)

15.000

17.500

10.000

Household survey format

Objective :

- To check people's acceptability for 24x7 water supply
- To know people's willingness for metering system
- At what extent people want to pay for monthly water charges?

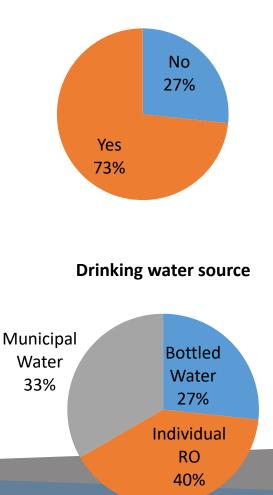
Metering in "Mandakini society"

Metering at Society Level in Mandakini Society, Ghatlodia

- 113 houses in the society
- 1 municipal connection and **1 bore well** for whole society
- Municipal water only caters the need of one hour
- In 2011 Society installed domestic water meters in all the houses
- Water tariff -4 Rs / KL (flat tariff)
- Frequency of collection 4 Months
- Average water charges -100 Rs / Month
- Water charges collected is used for maintenance of the society

Representative Survey Analysis

46 % of the people are facing **pressure problems**


People acceptability for water charges for 24x7					
Water Bill Range (per month)	% of people willing to pay				
0	26.6 %				
0-100	6.6 %				
100 - 300	40 %				
300 – 500	20 %				
>500	6.6 %				

33 % of the households are having **private borewell**

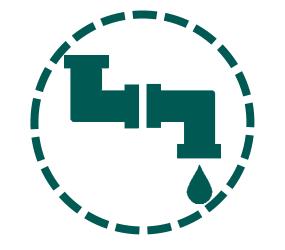
On an Average each household is paying **RS. 530** / month for private drinking water

Where as f**or Municipal** Connection it is **Rs. 51 / Month**

Willingness to accept 24x7 water with meter

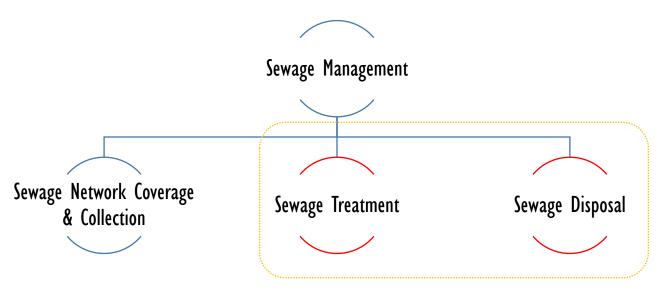
Source: Primary Survey

SCENARIO	DESCRIPTION	COST
1	Intermittent water supply replacing required pipelines	7.2 Crore
2	24x7 water supply replacing required pipelines	16.1 Crore
3	24x7 water supply replacing whole pipeline network	22.4 Crore


Flat Rate Water Charges (AMC) for Non Metered Connection to be paid annually

CARPET A	REA (Sq M)	Rate in Rs.	Rate in Rs.
FROM	то	Residential	Non- Residential
0	15	348	600
15.01	25	600	1080
25.01	50	960	1440
50.01	100	1440	2400
100.01	200	2100	3600
200.01	500	3750	6000
500.01	999999	7500	11250

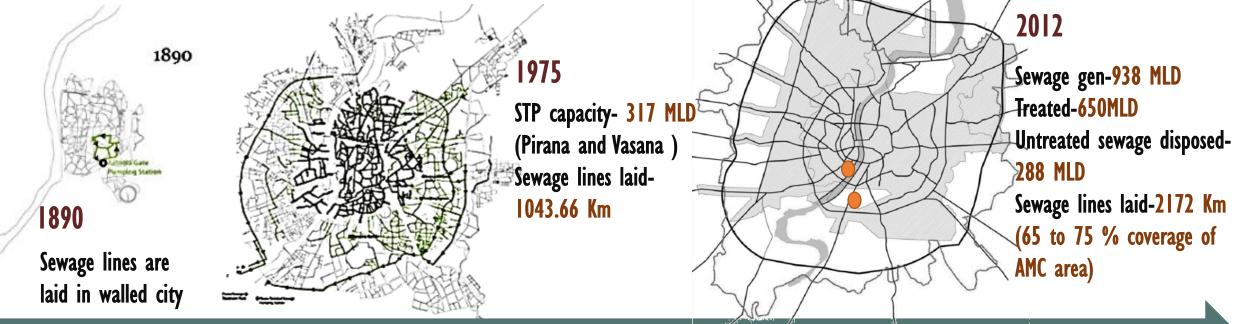
Note : Carpet Area shall be as assessed by the Property tax department of Ahmedabad Municipal Corporation.


Water Charges on Volumetric Basis for Residential Units

CARPET AREA (Sq M)		Water Rate (Proposed) Rs per kiloliter 0 – 20,000 litres per month	Water Rate (Proposed) Rs per kiloliter 20,000 -30000 litres per month	Water Rate (Proposed) Rs per kiloliter More than 30000 litres per month
0	15	1.00	1.50	3.00
15.01	25	2.00	3.00	6.00
25.01	50	4.00	6.00	12.00
50.01	100	4.00	6.00	12.00
100.01	150	6.00	9.00	18.00
150	200	8.00	12.00	24.00
200.01	500	12.00	18.00	36.00
500.01	1000	15.00	30.00	45.00

WASTE WATER REUSE

WASTE WATER REUSE



- I. To achieve the SLB of 20% use of waste water of total waste water generated.
- 2. With the increase in population, need for identifying new sources of water.
- 3. Reducing the discharge of untreated water into natural water bodies disrupting the ecosystems.

4. AMRUT, Smart City and National Water Policy are the programs encouraging the reuse of waste water by incentivising the local governments.

5. Water conservation and efficient use of alternative water resources to meet the future water demand of Ahmedabad.

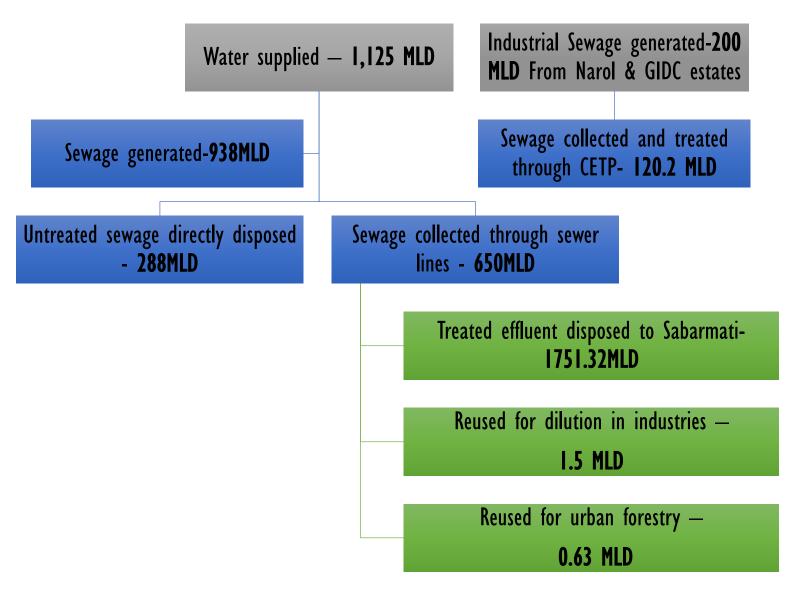
A GLANCE THROUGH THE SEWER LINES IN AHMEDABAD

1941

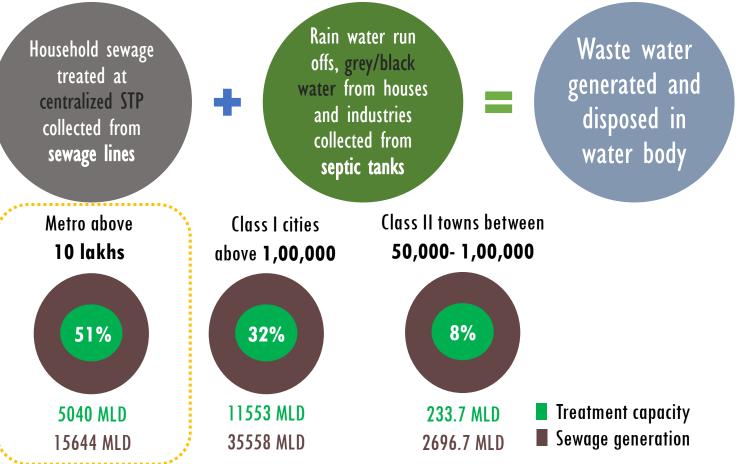
1941

Sewage network expanded collected water transfer to the Pirana stabilization pond

1955 In western part of Ahmedabad water discharged into Vasna sewage farm around (54 MLd) =


Sewage generation-500MLD Sewage treated-332MLD Untreated sewage disposed directly- 168MLD Sewage lines laid-1384 Km

2006


202 |

Forecast generation-1154MLD Ongoing lines-714km

Existing situation of wastewater treatment

HOW IS WASTE WATER GENERATED ?

- In Ahmedabad, industrial effluent is channeled into the domestic system, complicating the process, and exerting pressure on existing infrastructure.
- The presence of **industries within residential** areas has an adverse effect on wastewater quality.

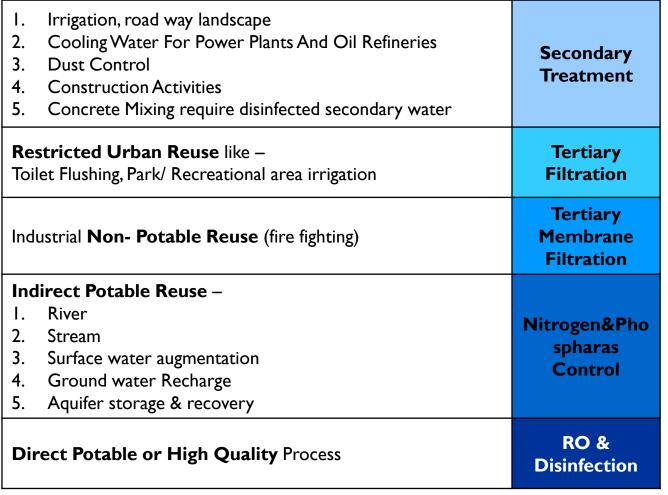
As per CPHEEO estimates about **70-80%** of total water supplied for **domestic use** gets generated as **wastewater**

AHMEDABAD

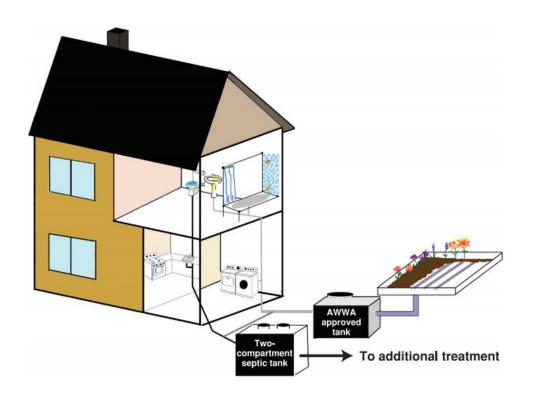
<u>Waste water disposal in Ahmedabad</u> WW generated — 938 MLD WW collected by sewer — 650 MLD WW disposed untreated — 288 MLD

Ahmedabad: As per the MoUD National Sanitation
Marking Scheme, cities with treatment capacity of 8090% will receive 6 marks out of 9.

No separate grey water collection system in the city -


0 marks out of 3.

- Sewage generation and treatment capacity in 498 class I cities and 410 class II towns in India (234 STP)
- Sewage Generated in major cities of India= 38354 (MLD)
- The Sewage Treatment Capacity = 11786 MLD
- Only 60% of Industrial Waste Water is Treated


	PROGRAM/MISSION (BY MOUD)	DURATION	BUDGET	WASTE WATER RELATION
Smart City	SMART CITIES MISSION	5 years starting from 2015	48 thousand crore	Essential features of Smart cities proposal include waste water recycling
MISSION TRANSFORM NATION SIFE CI Atal Mission for Rejuvenation and Urban Transformation	AMRUT	5 years starting from 2015	50 thousand crore	The mission focuses on sewerage facilities and septage management as one of the thrust areas. 1. In sewerage, Decentralised, networked underground sewerage systems, including augmentation of existing sewerage systems and sewage treatment plan 2. Rehabilitation of old sewerage system and treatment plants 3. Recycling of water for beneficial purposes and reuse of wastewater
	NATIONAL WATER POLICY under MOWR			Efforts should be made to provide improved water supply in rural areas with proper sewerage facilities. Least water intensive sanitation and sewerage systems with decentralized sewage treatment plants should be incentivized.
	NATIONAL URBAN SANITATION POLICY under MOUF			Promoting recycle and reuse of treated waste water for non potable applications wherever possible will be encouraged
स्वच्छ भारत एक कदम स्वच्छता की ओर	SWATCH BHARAT	5 years starting from 2015	62 thousand crore	In the event that a sewerage system is not available within 30 meters from the proposed household toilet, in addition to the construction of the toilet superstructure, an on-site treatment system (such as twin pits, septic tanks, bio-digesters, or bio-tanks) should also be constructed for the collection, treatment and/or disposal off sewage at, or near the point of generation.
JNNURM	JNNURM	Initially 7 years starting from 2005 but then extended to 2014	I lakh crore	 The sectors and projects eligible for JNNURM assistance included I. Water supply (including desalination plants) and sanitation 2. Sewerage and solid waste management 3. Construction and improvement of drains and storm water drains

TYPES OF WASTE WATER TREATMENT

CENTRALIZED SEWAGE TREATMENT SYSTEM

DE-CENTRALIZED SEWAGE TREATMENT SYSTEM

Issues of wastewater reuse in Ahmedabad

Treatment capacity 1075 MLD Treated water only 650 MLD 288 MLD Untreated water

bypassed from treatment plant All STP have
 Secondary
 treatment

Less scope of water reuse. Insufficient secondary

treatment for Pirana and Vinzol.

Recommendation of waste water reuse methods in agriculture and institutional framework

Degradation in soil quality

for agriculture.

Negative impacts on health

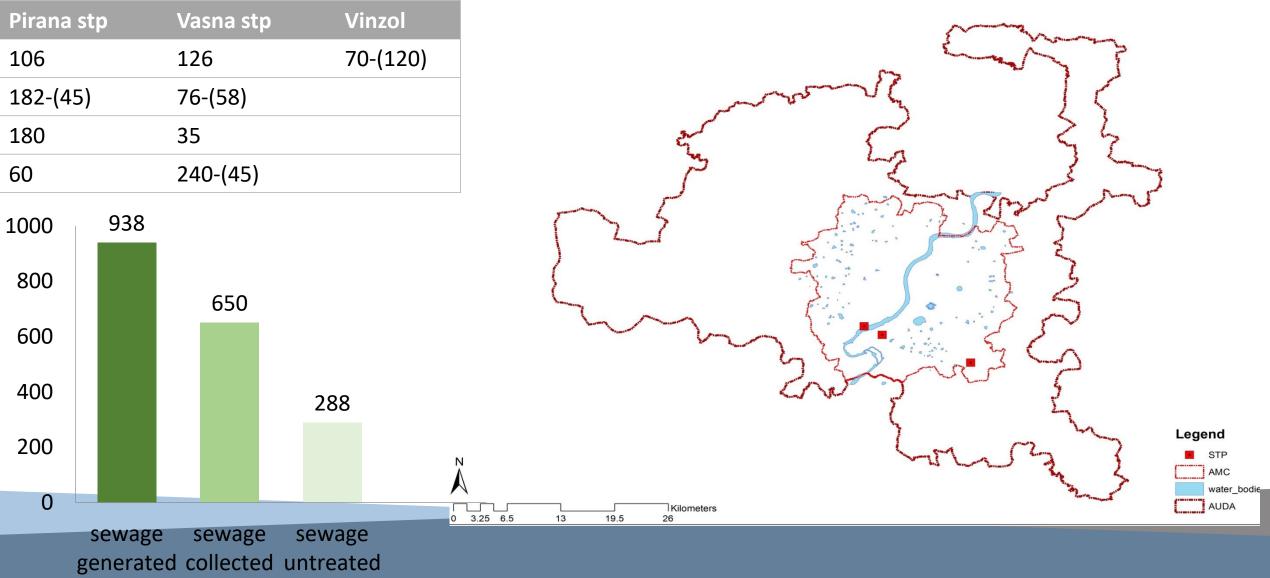
and environment.

Maximum reuse in **Urban**

landscape,

no wider use of treated water

Tertiary treatment plant


WASTE WATER REUSE IN AGRICULTURE

06/07/2018

WASTE WATER TREATMENT

Source- CSP 2021

Quality-Treated water

Parameters	Standard for effluent to be discharged	Effluent from Pirana
pH value	5.5 – 9.0	7.65
Suspended solids(mg/l)	100	26.65
TDS(mg/l)	2100	1131
COD(mg/l)	250	81.58
BOD(mg/l)	30	18.21

Source- Part-A of General Standards for discharge of Environmental Pollutants, GSR 801 (E) EPA 1993

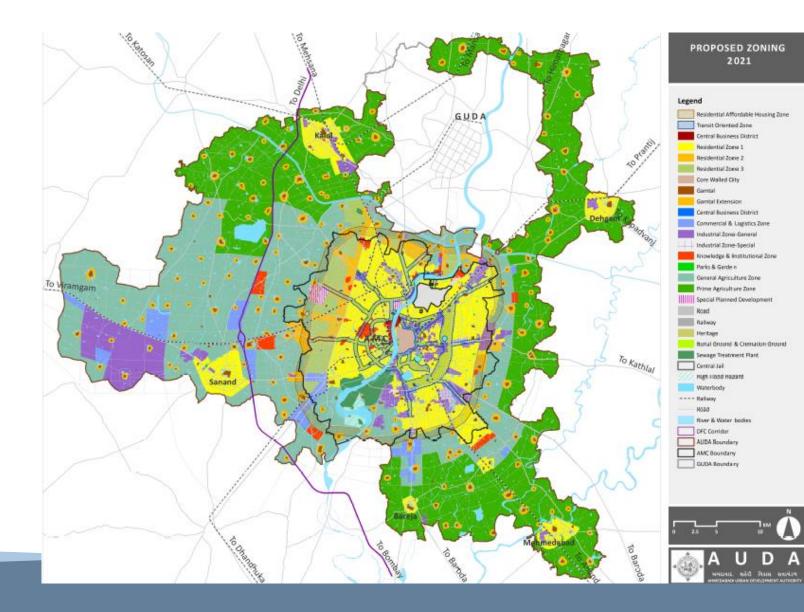
Quality-Discharged effluents

Waste water Quality

GPCB results

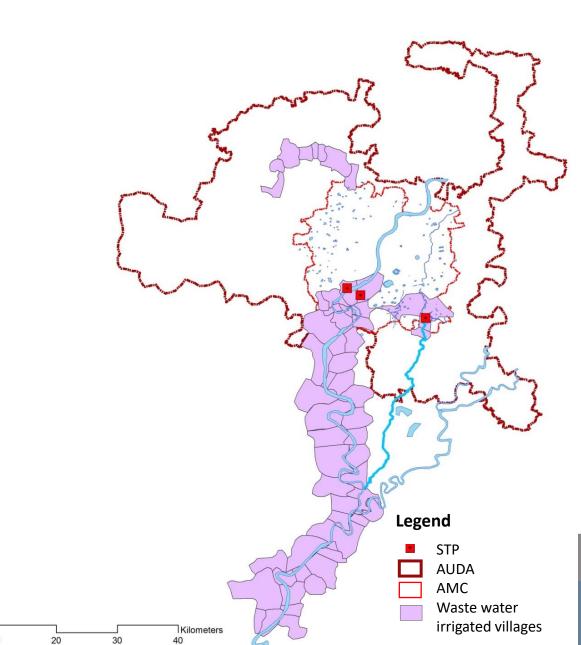
Divor	Leastion	Parameters *								
River	Location	рН		D.O.		B.O.D.		C.O.D).	
Sabarmati	Vasna - Narol Bric	lge	8.19	3.37		51.33		211.67		
Sabarmati	Vautha village		8.04	Nil		49.00		202.00		
Sabarmati	Miroli		7.86	0.0		67.00		213.00		
Sabarmati	Varsang(primary	survey)	urvey) 2.5 Gyaspur village			1				
					Parar	neters	Pres	ent level	Perm	issible limit
CAG Reports 2012					BOD(khari	sabarmati,)	207ı mg/	mg/l,320 l	150n	ng/l
Parameters				As		0		0.1		

Parameters	
BOD	87
Fecal coliform	4300
Total coliform	24000


Source- Urban waste water and agricultural reuse challenges in India (IWMI)

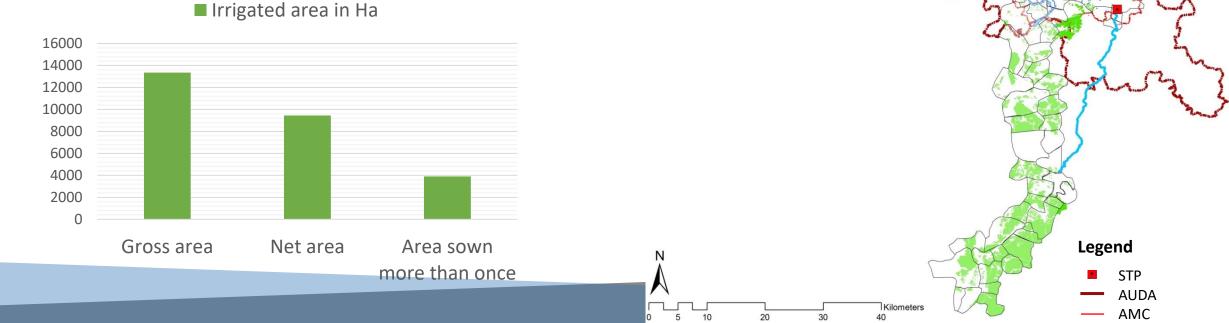
Gyaspur village		
Parameters	Present level	Permissible limit
BOD(sabarmati, khari)	207mg/l,320 mg/l	150mg/l
As	0	0.1
Cd	0.01	0.01
Cr	0.9	0.1
Cu	1.6	0.2
Pb	0.2	5.0
Zn	0.1	2.0

Current waste water irrigation scenario


- Total AUDA area- 1866 sqkm
- % of agricultural area- 30.5%
- Total agricultural area in AUDA-569.13sqkm
- Area irrigated using waste water-336sqkm

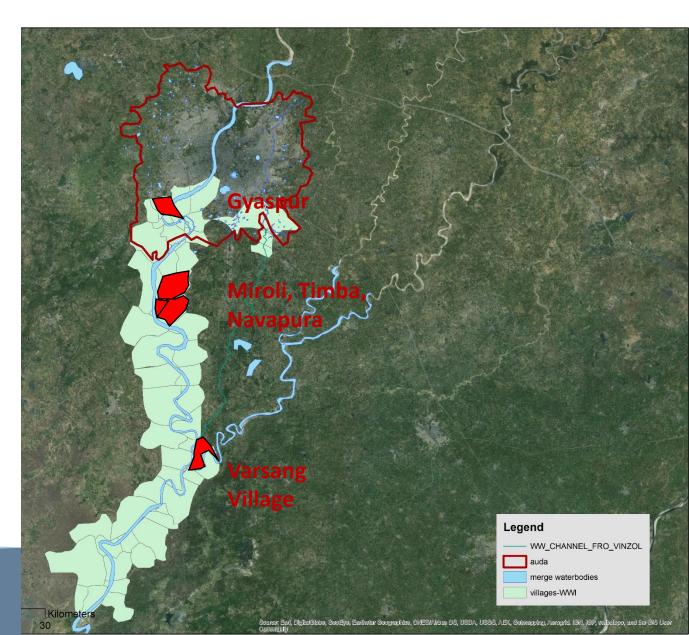
Current waste water irrigation scenario

- Total AUDA area- 1866 sqkm
- % of agricultural area- 30.5%
- Total agricultural area in AUDA- 569.13sqkm
- Area irrigated using waste water- 336sqkm



Current waste water irrigation scenario

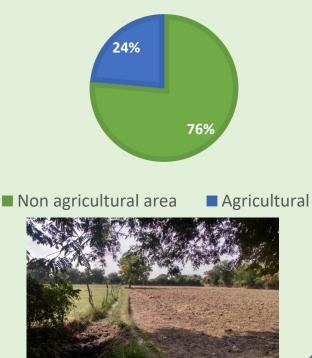
- 45 villages practice waste water agriculture contribute to 45% of total agriculture
- Mainly cotton ,paddy, vegetable and wheat



Waste water irrigated areas

S.N o	Village	Total net irrigated area	Net ww irriga ted area	Farm ers	Ratio of WW irrigated to total irrigated
1	Miroli,timb a,Navapura	1083	1083	500	1
2	Varsang	281	141	300	.5
4	Gyaspur	219	100	150	.456

Source-Waste water ittigatiopn:alka parechas report


Profile of surveyed villages

GYASPUR

Total no of farmers- 150

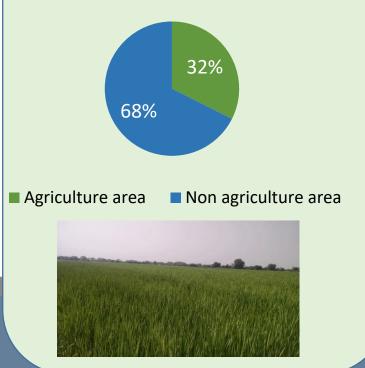
Area

Gyaspur- 709.08 Ha Irrigation system-Flow irrigation Crops grown-Rice, wheat



MIROLI, TIMBA, NAVAPURA

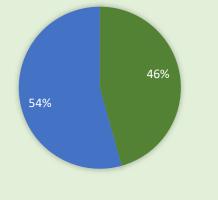
Total no of farmers- 500


Area

Miroli- 1153.27 Ha,Timba- 1034.1 Ha Navapura- 307.83Ha Total area- 2496 Ha Irrigation system-Flow irrigation Crops grown-Rice, wheat

VARSANG

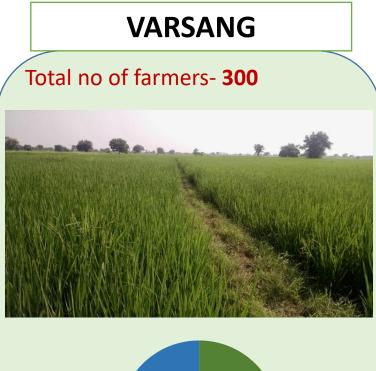
Total no of farmers- 300 Area Varsang- 141Ha Irrigation system-Flow irrigation Crops grow- Rice, wheat, dhivela, cotton



Profile of surveyed villages

GYASPUR

Total no of farmers- 150



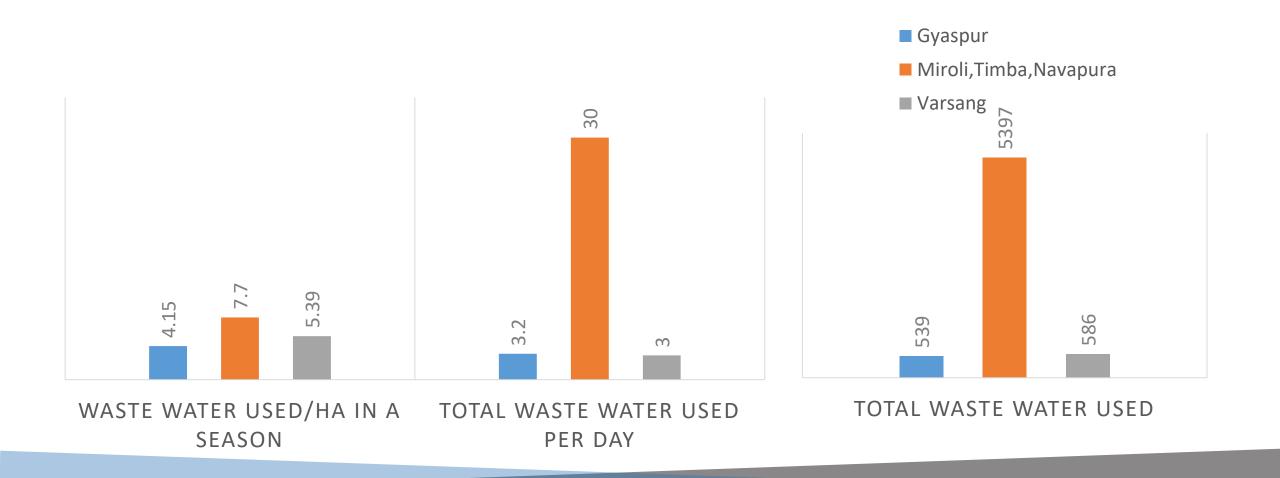
■ Water water irrigated ■ Fresh water irrigated

■ Water water irrigated ■ Fresh water irrigated

MIROLI, TIMBA, NAVAPURA

Total no of farmers- 500

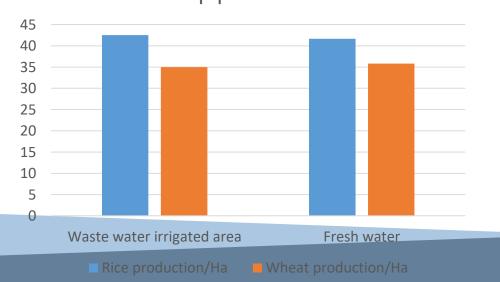
Villages	Gyaspur(ML)	Miroli, Timba and Navapura (ML)	Varsang (ML)	-
Total WW used for irrigation in a season	539	5396.46	586	•
Total WW used for irrigation in a season/Ha	5.39	7.71	4.15	
Total WW used for irrigation in a Day	3.0 MLD	29.98 MLD	3.25 MLD	
Total FW used for irrigation			1109	
Total FW used for irrigation per Ha			7.92	


Water usage Varsang

- Total WW used for irrigation in Varsang/Ha
- Total FW used for irrigation in Varsang/Ha

4.16

7.92


Comparison of fresh and waste water production (Varsang)

PH of Waste Water – 2.5

PH of Fresh water- 7.5

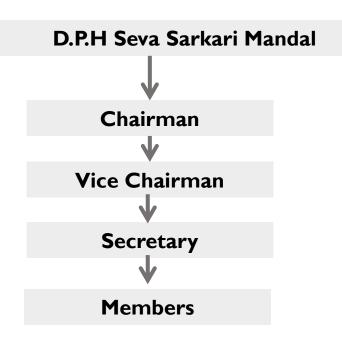
Crop production

- Average crop production of Rice- 50 qntl/Ha
- Average crop production of Wheat- 35 qntl/Ha

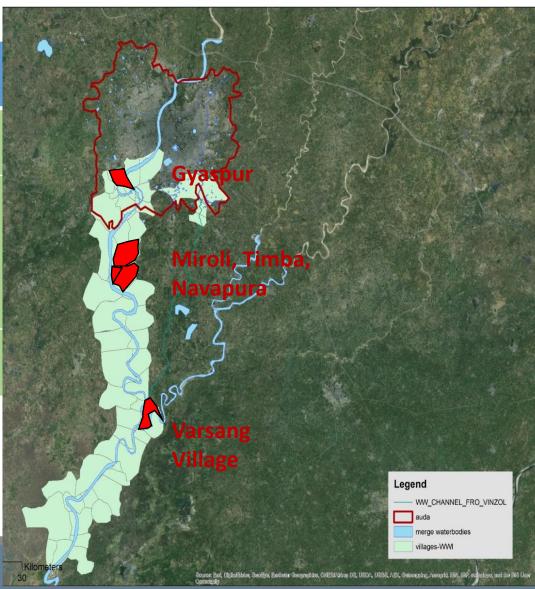
Crop production

Irrigational system

Miroli,timba,navapura



Institutional structure


TOTAL OF 500 FARMERS ARE THERE

Conclusion from survey

Impacts	Gyaspur	Miroli, Timba, Navapura	Varsang
Air	Acid and foul smell, Rusting-High	Acid and foul smell	Foul smell- Less intensity
Soil	High salt accumulation that most of them stopped their agricultural activities	Salt accumulation – But manageable by using Gypsum powder	Very less salt accumulation
Health	Skin Rashes Breathing problem	Skin Rashes	Nil

- Reduction in health and Environmental impact
- Improved crop production

Fotal Waste water consumed for agriculture every day is **36.23MLD** in five villages i.e. **5%** to total waste water collected

Why it is still neglected ?

Absence of targeted approach National level

NO implementing or monitoring arm

NO guidelines or made a mandate

Quality impacts

- Presently 11.5% waste water generated in Australia is reused which is 103000ML/year
- In Northern Adelaide Plains one of the largest reclaimed water schemes in the southern hemisphere provide **108000ML** conveyed by **100km** pipeline.

Crops grown

A wide range of fruit and vegetables which are beans, broccoli, cabbage, capsicum, carrots, cucumber, eggplants, lettuce, melons, onions, parsnips, pears potatoes etc

Implementation body

Joint venture between the Virginia Irrigators Association (representing the growers), Water SA (the state water authority responsible for wastewater treatment) and a private company

Environmental impact

35 % water being recycled at Bolivar WWTP,reduces the discharge of harmful nutrients into the marine environment, reduces demand for groundwater extractions and contributes to reducing South Australia's dependence on pressured surface water systems

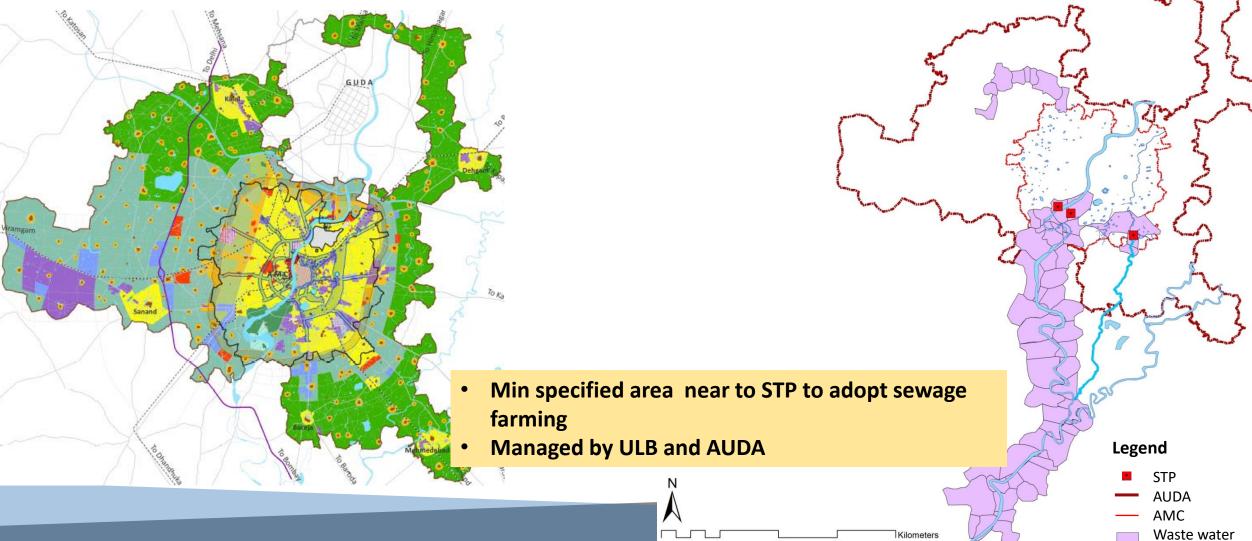
What is to be done ? Possible ways

GOVERNMENT LEVEL

- Water Conservation mainly focusing on waste water reuse practices by Ministry Of Water Resource
- Corresponding State Level Policy based on ground condition and future possibilities
- Guidelines formation

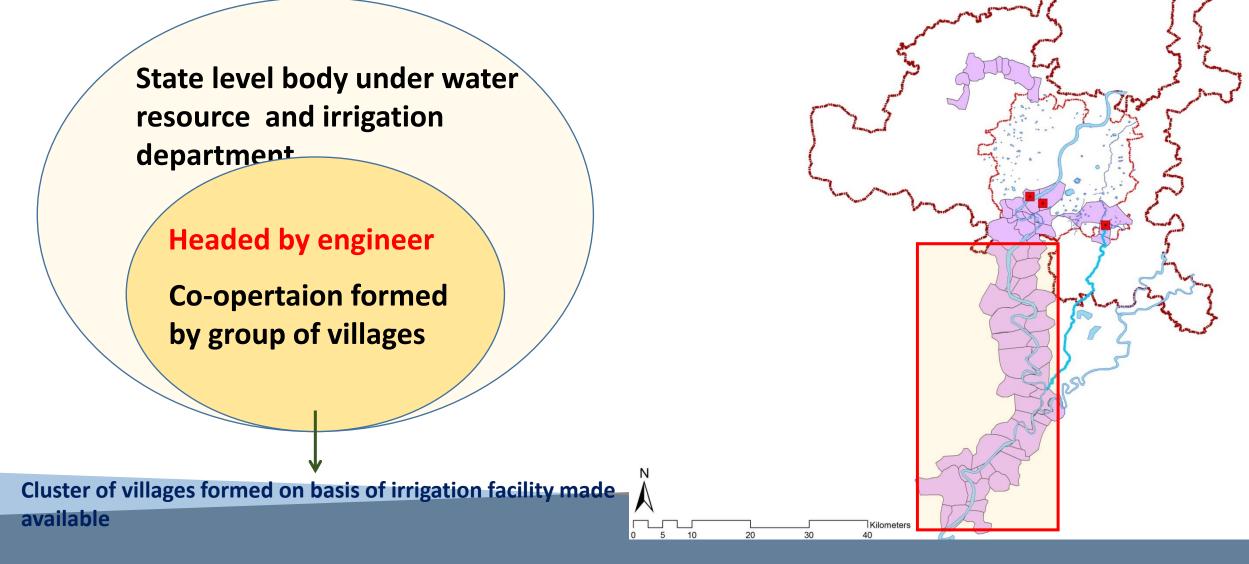
UNDER WASTE WATER IRRIGATION

- Formation of data base
- Formation of waster water users group in each village


CRITERIA FOR FORMATION OF VILLAGE LEVEL WASTE WATER USERS GROUP

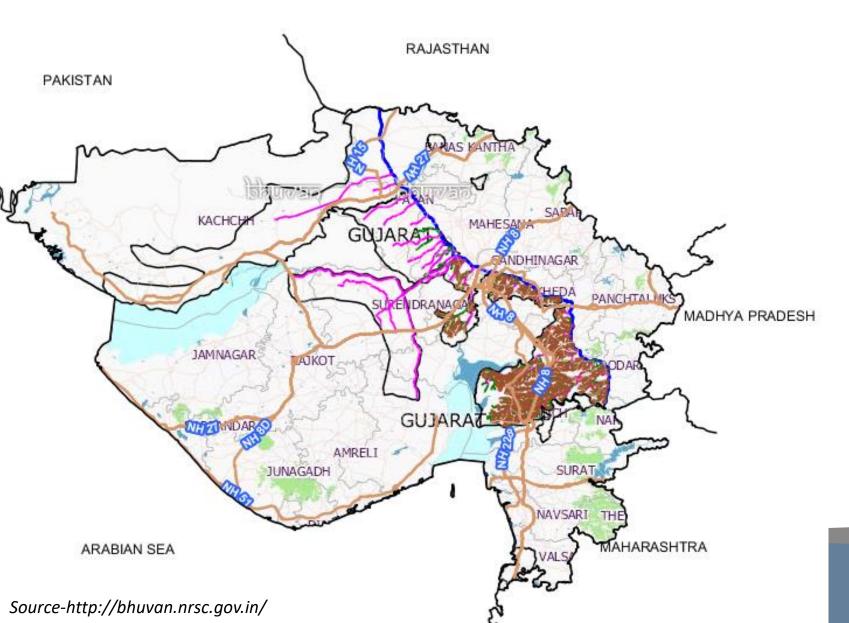
- Farmers with min Land holding of 0.3ha only depended on waste water
- Cluster of villages formed basis of irrigation facility made available

What is to be done Ahmedabad context?

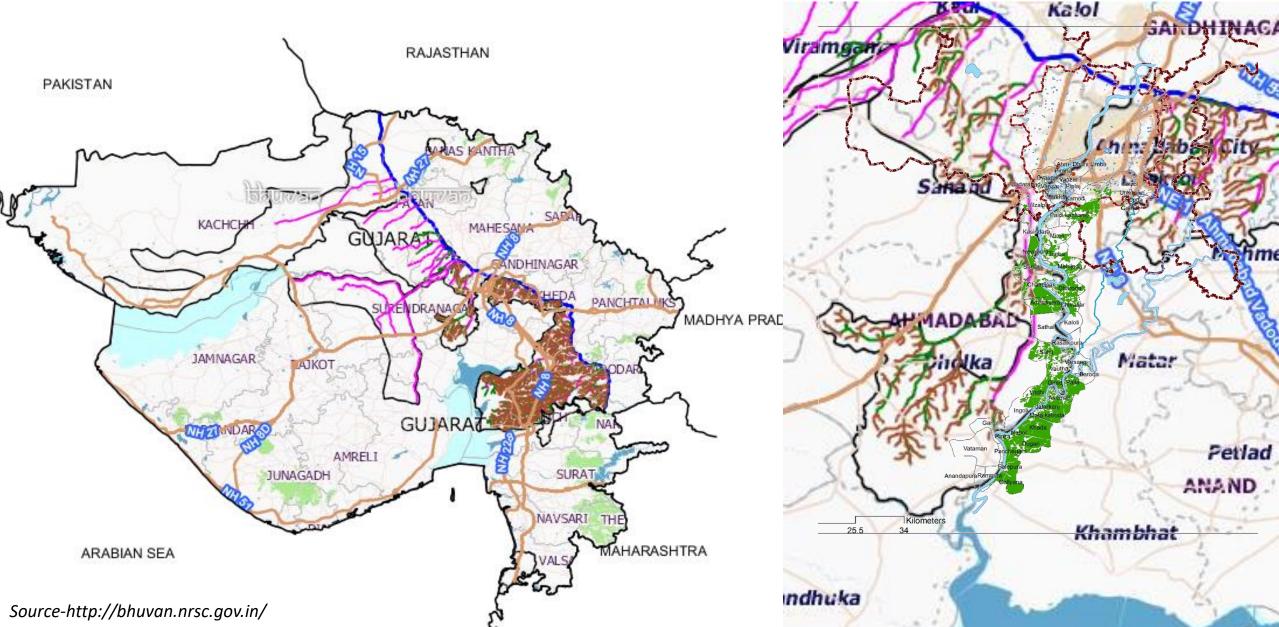

40

irrigated villages

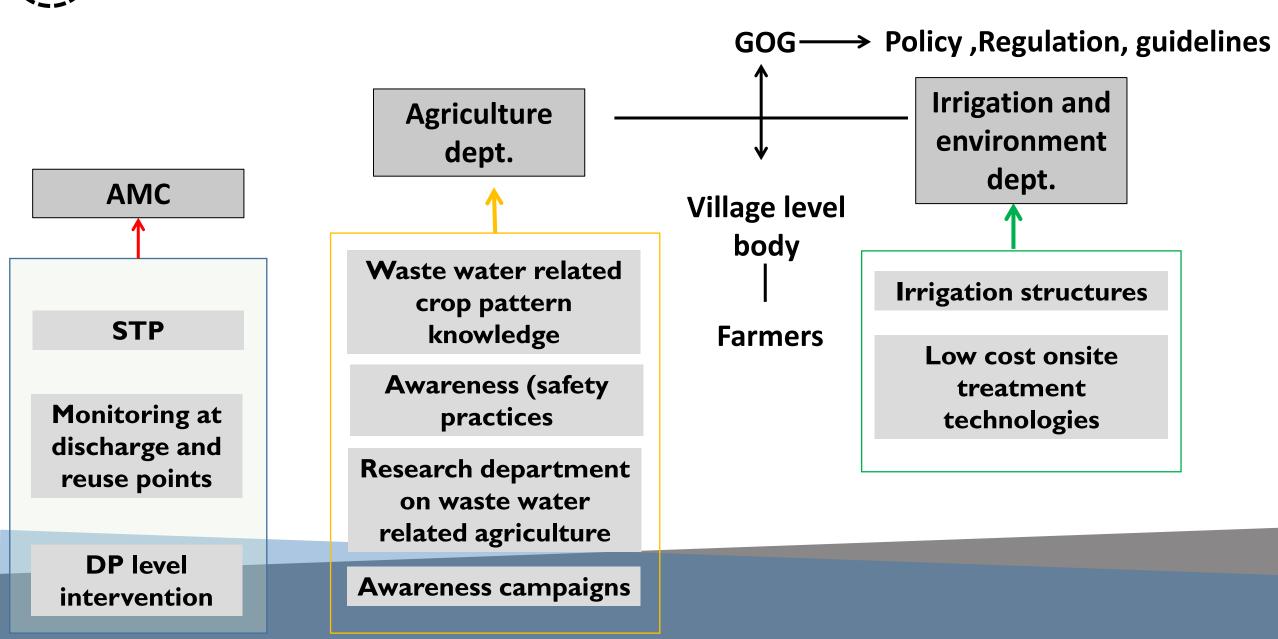
20



What is to be done outside jurisdiction AMC AND AUDA ?



Present area under irrigation department



Present area under irrigation department

Suggested institutional components and their activities

Guidelines- Crop restriction and treatment

Treatment required

Type of crops	WHO	California	USAID	Recommended
Food crops where recycled water contacts the edible portion of the crop, including all root crop	series of stabilization ponds	Disinfected Tertiary Recycled Water	Secondary Filtration Disinfection	Tertiary
Food crops where edible portion is produced above ground and not contacted by recycled water (rice, wheat etc)	Retention in stabilization ponds for 8-10 days	Disinfected Secondary	Secondary Filtration Disinfection	Secondary Filtration Disinfection
Orchards with no contact between edible portion and recycled water	Not less than primary sedimentation	Undisinfected secondary recycled water	Secondary Disinfection	Secondary Disinfection
Non-food-bearing trees	Not less than primary sedimentation	Undisinfected secondary recycled water	Secondary Disinfection	Secondary Disinfection

• California title 22

• USAID guidelines

Guidelines- Crop restriction and treatment

Treatment required

Type of crops	WHO	California	USAID	Recommended
Fodder crops (e.g. alfalfa) and fiber crops (e.g. cotton)	Not less than primary sedimentation	Undisinfected secondary recycled water	Secondary Disinfection	Secondary Disinfection
Food crops that undergo commercial pathogen-destroying processing before consumption by humans (e.g. sugar beets)	Not less than primary sedimentation	Undisinfected secondary recycled water	Secondary Disinfection	Secondary Disinfection
Ornamental nursery stock	Not less than primary sedimentation	Undisinfected secondary recycled water	Secondary Disinfection	Secondary Disinfection

Source-WHO guidelines

- California title 22
- USAID guidelines

Guidelines- Reclaimed water quality and onsite monitoring

Reclaimed water quality and onsite monitoring				
Type of crops	Recommended treatment	Reclaimed water quality	Onsite Monitoring (GPCB)	
Food crops where recycled water contacts the edible portion of the crop, including all root crop	Tertiary	 4 mg/l BOD No detectable fecal coli/100ml3 	BOD - weeklyColiform - daily	
Food crops where edible portion is produced above ground and not contacted by recycled water (rice, wheat etc)	Secondary Filtration Disinfection	 10 mg/l BOD No detectable fecal coli/100ml3 1 mg/l Cl2 residual(min.) 	 BOD - weekly SS - daily Coliform - daily Cl2 residual -continuous 	
Orchards with no contact between edible portion and recycled water	Secondary Disinfection	 BOD- 30 mg/l SS- 30 mg/l 200 fecal coli/100ml 1 mg/l Cl2 residual (min.) 	 BOD - weekly SS - daily Coliform - daily Cl2 residual -continuous 	
Non-food-bearing trees Source-WHO guidelines • California title 22 • USAID guidelines	Secondary Disinfection	 BOD- 30 mg/l SS- 30 mg/l 200 fecal coli/100ml 1 mg/l Cl2 residual (min.) 	 BOD - weekly Coliform – daily Cl2 residual -Continuous 	

Guidelines- Reclaimed water quality and onsite monitoring

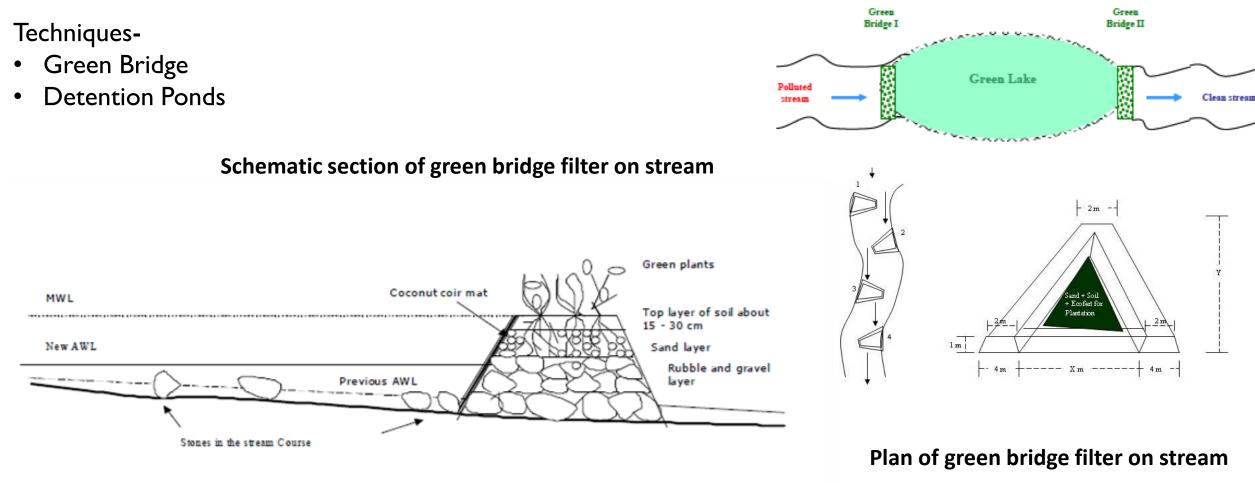
Reclaimed water quality and onsite monitoring

Type of crops	Recommended Treatment	Reclaimed water quality	Onsite Monitoring (GPCB)
Fodder crops (e.g. alfalfa) and fiber crops (e.g. cotton)	Secondary Disinfection	 BOD- 30 mg/l SS- 30 mg/l 200 fecal coli/100ml 1 mg/l Cl2 residual(min.) 	 BOD - weekly Coliform – daily Cl2 residual - continuous
Food crops that undergo commercial pathogen-destroying processing before consumption by humans (e.g. sugar beets)	Secondary Disinfection	 BOD- 30 mg/l SS- 30 mg/l 200 fecal coli/100ml 1 mg/l Cl2 residual(min.) 	 BOD - weekly Coliform – daily Cl2 residual - continuous
Ornamental nursery stock Source-WHO guidelines California title 22	Secondary Disinfection	 BOD- 30 mg/l SS- 30 mg/l 200 fecal coli/100ml 1 mg/l Cl2 residual(min.) 	 BOD - weekly Coliform – daily Cl2 residual - continuous

• USAID guidelines

Guidelines-Irrigation techniques

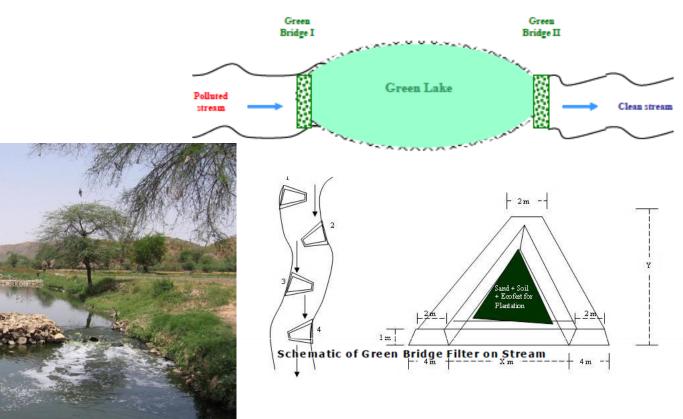
Irrigation technique	Factors affecting choice	Spatial measures for waste water application
Flood	Lowest cost Exact levelling not req	Protection for fieldworkers, crop handlers and consumers like
Furrow	Lowest cost Exact levelling req	 boots, shoes and gloves Min dis of 50-100m from houses and roads
Spray and springler	Medium water use efficiency Levelling not req	 and roads Anaerobic waste water should not be used because of odour nuisance
Subsurface and localized (drip, trickle and bubber)	High cost High water use efficiency	 New technologies reduces crop contaminations like spray and drift but the maintenance is much higher Localized irrigation- Selection of non clogging emitters, Filtration for clogging of emitters

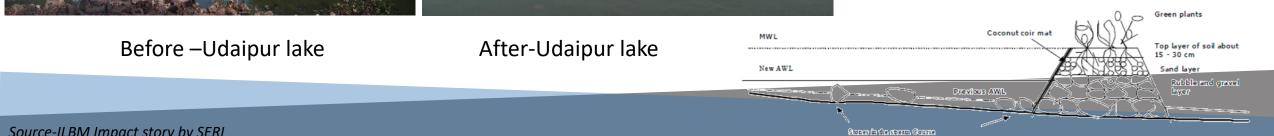


Sc

Guidelines-Health

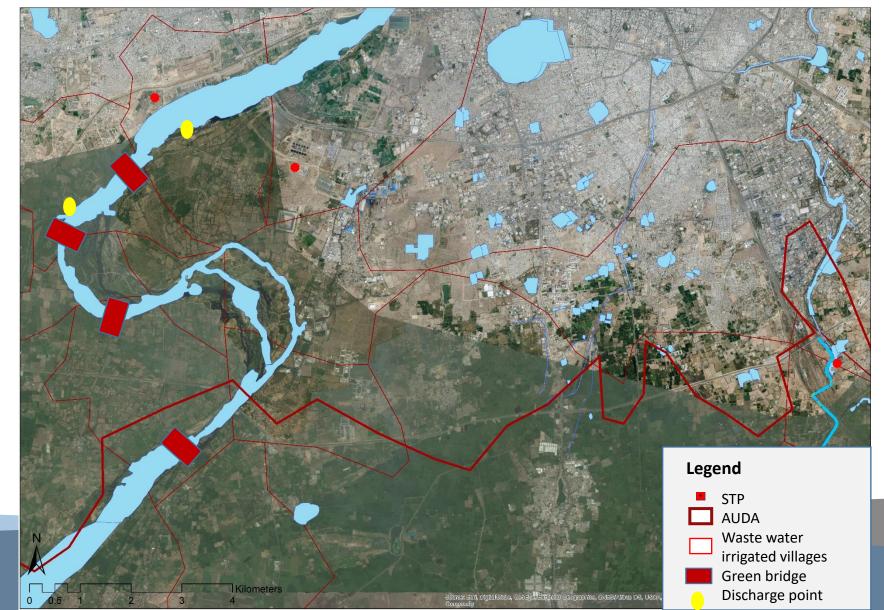
Exposed group	Health hazard	Health based target	Protection measures
Consumers, workers and local communities	Excreta-related diseases	Eradication of Excreta related disease (10-6 DALY)	 Wastewater treatment Excreta treatment Health and hygiene promotion Chemotherapy and immunization
Consumers	 Excreta-related Diseases Foodborne trematodes Chemicals 	 Eradication of Excreta related disease (10-6 DALY) Absence of trematode infections Tolerable daily intakes as specified by the Codex Alimentarius Commission 	 Produce restriction Waste application/timing Depuration Food handling and preparation Produce washing/disinfection Cooking foods
Workers and local communities	 Excreta-related Pathogens Skin irritants Schistosomes Vector-borne pathogens 	 Eradication of Excreta related disease (10-6 DALY) Absence of skin disease Absence of schistosomiasis Absence of vector borne disease 	 Access control Use of personal protective equipment Disease vector control Intermediate host control Access to safe drinking-water and sanitation at aqua cultural facilities and in local communities Reduced vector contact (insecticide-treated nets, repellents)





Techniques-

- Green Bridge
- **Detention Ponds** •

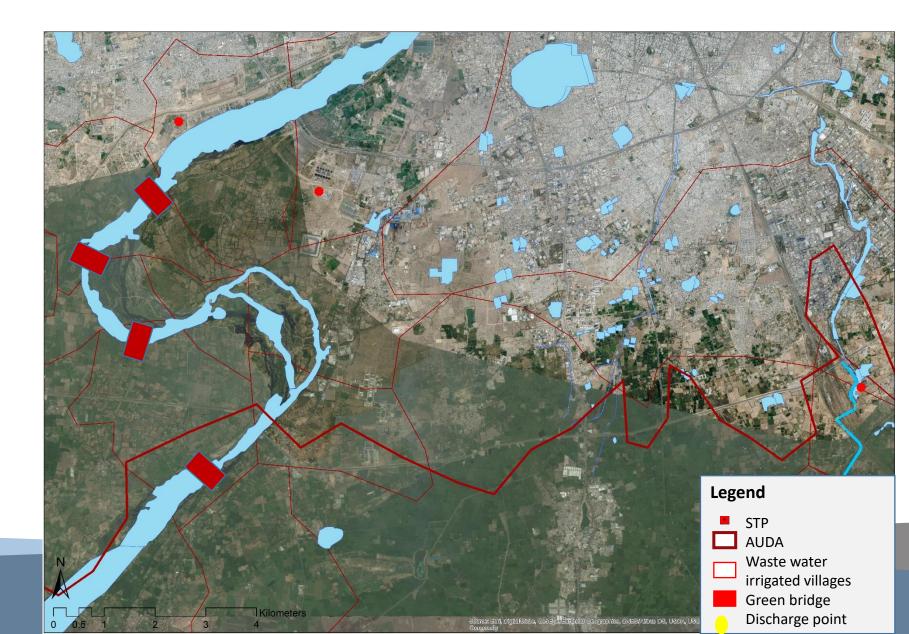


Recommended position of the green bridge

- Basically 4 new green bridge is proposed, of area 10 -12 sqm
- First bridge is located next to the discharge points pirana
- Next green bridge is recommended next to outlet point near Vasana
- Green bridges are placed in a distance of 1.5 km

Recommended position of treatment downstream

- Detention ponds are recommended to wards the downstream.
- The position varies according to the organizational formation.


Expected results

 Increased level of dissolved oxygen 150% - 1200%

•Eco toxicity will be reduced substantially

•Ambient air, improvement in water quality and substantial reduction in foam in the river

•Pollution-reduction facility without using a single unit of electricity

Green Bridge Costing and Probable funding options

- Each bridge of 1210sqm which can treat up to 242MLD of waste water
- Min area of bridge to treat 880MLD should be 4400sqm

	• •• ••		
Activity		Cost (lakh)	Funding
			agency
Green Bridge	Installation Cost	880	Irrigation department
	Operation & maintenance cost	11.11 per annum	Irrigation department
	water quality testing & supervision	32.12 per annum	Irrigation department
	Total O& M cost	43.23 per annum	Irrigation department

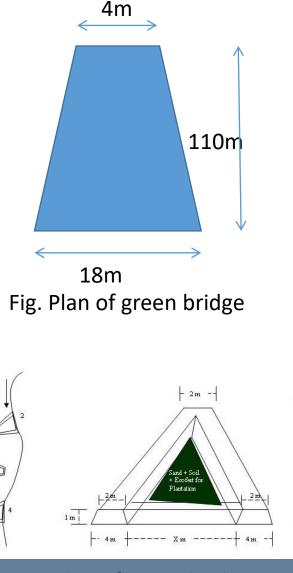


Fig. Plan of green bridge

National level approach focusing on waste water reuse- can be a Program/ Mission

> **Guideline formulation** for waste water reuse in agriculture

> > Institutional framework from state level to community level

> > > Provision of proper infrastructure to ensure quality and accessibility

Total of **413 MLD** waste water can be reused for agriculture, if all the above steps are followed

Water Positive

Water Mitigation Efforts Under Review

Positive Water Impact Process

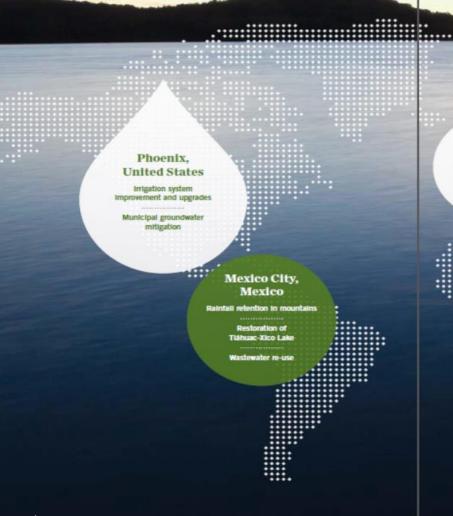
The pilot process often progressed in a nonlinear manner, but these were the steps we covered for each location:

Select Pilot Sites

Identify "Area of Influence"

Understand Impacts and Risks

Identify Optimal Watersheds for Restoration

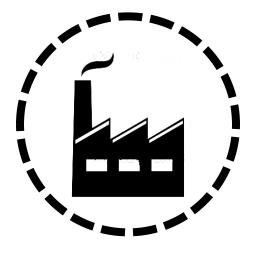

a and a new service

Identify Restoration Activities

Calculate Benefit Associated with Each Restoration Activity

Estimate Costs Associated with Each Restoration Activity

Source- Strive for positive water impact Source- Strive for positive water impact

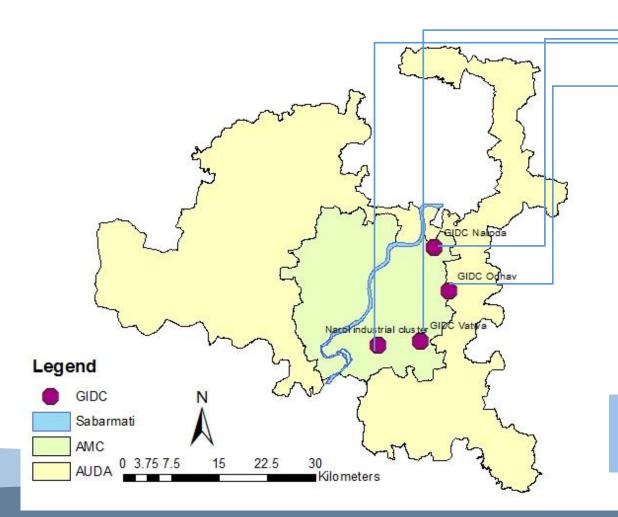


- Ensuring clean water flow through natural ecosystem
- To sustain their ecological health
- Ecosystem services upon which we all depend
- Examining water balance in each water shed.

Striving for Positive Water Impact

Thank you

Wastewater reuse in industry

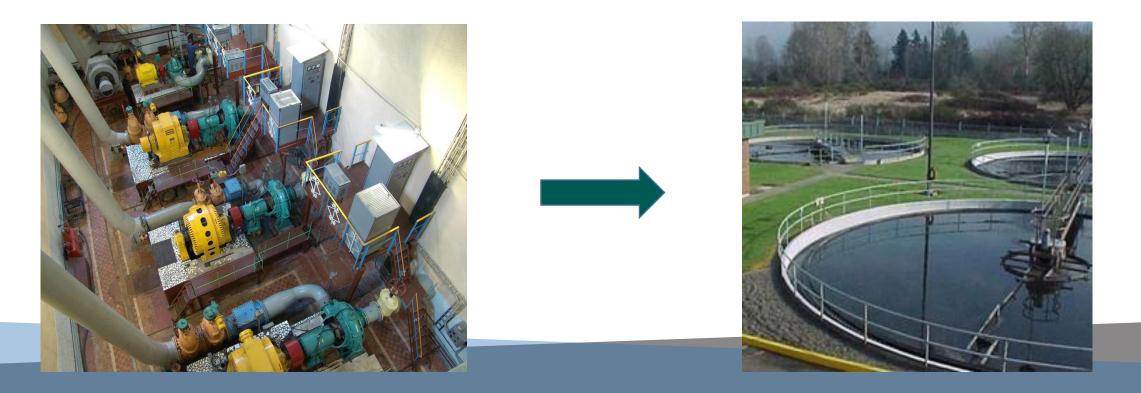

<u>Issues</u>

- I. Majorly all the industrial estates use fresh water from ground thus resulting in stress on ground water resource.
- Less capacity of CETP's against waste water generated in industrial cluster causing lower quality of treated waste water which in turn pollutes Sabarmati river and Increase the O&M cost of CETP

Need of Project

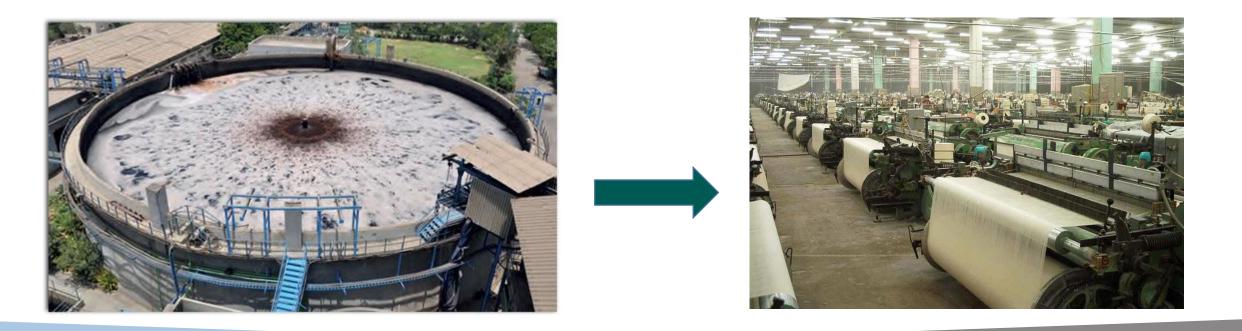
- To meet huge water requirement due to industrial development, recycle and reuse of water is essential
- Saving Fresh water that can be used for other potable uses
 - To increase **non potable** use of waste water

OVERVIEW OF INDUSTRIAL ESTATE IN AHMEDABAD


INDUSTRY	AREA	NO OF INDUSTRIA L UNIT	Water Requiremen t and source	CETP Capacity
Narol industrial area	127	100+	150 MLD from ground directly	100 MLD
			bore wells	

Thus total water requirement by all the industrial cluster combined is 200 MLD

Source: www.vavtvaassociation.org,Kinari Panchal-Incentives and disincentives of wastewater,www.narodaassociation.org


PROJECTS TO BE UNDER TAKEN

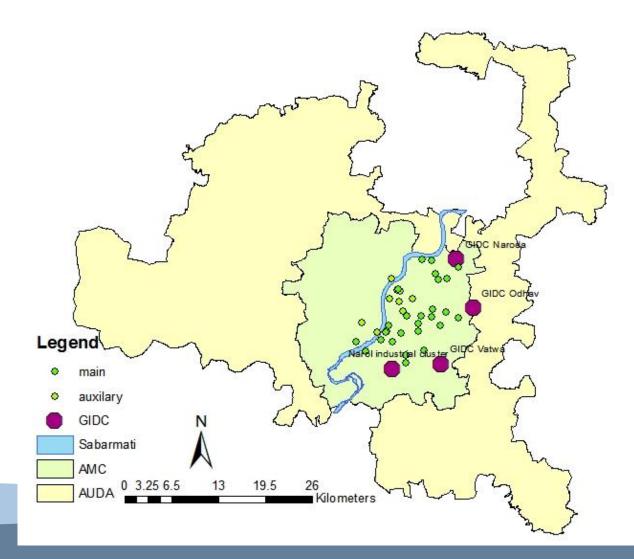
1. Supply of raw waste water/secondary treated water from Pumping station/STP to CETP for **DILUTION**

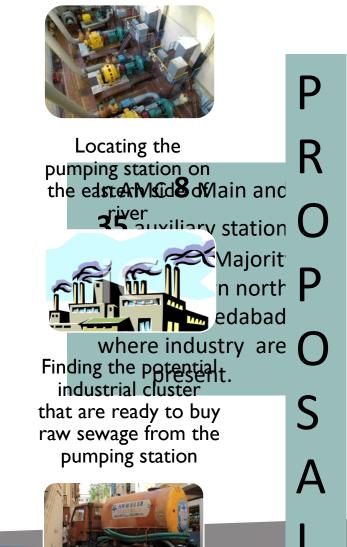
PROJECTS TO BE UNDER TAKEN

2. Supply treated waste water from Sewage Treatment plant to industrial estate

PROJECTS TO BE UNDER TAKEN

3. Waste water Reuse for **Power plant**





Source:http://www.vatvaassociation.org/?page_id=1179, https://www.linkedin.com/company/torrent-power

After successfully implementing all the projects we will be able to save 90 MLD fresh water i.e 43 % of industrial water usage.

PROJECT 1 : SUPPLY RAW SEWAGE /Sec. TREATED WW FROM PUMPING STATION/STP to CETP FOR DILUTION

Finding the methods to supply sewage

Source: Primary survey, CSP Ahmedabad

PROJECT 3 : SUPPLY RAW SEWAGE /Sec. TREATED WW FROM PUMPING STATION/STP to CETP FOR DILUTION

Present Condition : Naroda

- Naroda GIDC estate is buying 1.2-1.5 MLD raw sewage from near by pumping station from AMC at the rate of Rs 2.60/kl
- AMC has provided a **separate pipe line** to supply raw sewage to Naroda.
- The waste water is mixed to the effluents produced from industries and then this mixed sewage enters into CEPT and is being treated.
- Because of this dilution the *load on CETP reduces* and it gives better result.
- New AUDA STP proposed near new Naroda will provides 3 MLD secondary treated waste water for dilution purpose at the rate of Rs 2.8/KL

Present Condition : Odhav

- I.5 MLD CETP (Operational at I MLD)
- 0.6 MLD industry and 0.4 MLD domestic
- **Rs 50/KL** for running CETP (O and M cost)
- After addition of domestic sewage the micro filters used in CETP last long as TDS content in the industrial effluent decreases.
- Odhav GIDC estate **does not buy waste water** for dilution as it itself produces .4 MLD domestic sewage (due to presence of residential area within GIDC) which helps in dilution of the industrial effluents

Present Condition : Vatva

- Waste Water for dilution 4 MLD (pre-chlorinated) to reduce TDS from Vinzol STP
- 60000-70000 Rs for pumping (RS I I/unit electricity)
- Pipe line laid by Vatva industrial association
- Rate Rs 4.73/KL
- Rs 30-35/kl is treatment cost of CETP

PROJECT 2 : Others instances of Resue of sewage for dilution in INDIA

CASE I

Two Cetp's in Andhra Pradesh uses domestic water for dilution of effluents i.e.

- The Patancheru cetp(1994), capacity of 7.5 MLD
- Jeedimetla in Ranga Reddy district (1989), capacity 5 MLD

Impacts - The Gteborg University study pointed out that the **industrial effluent is mixed with human sewage** within the plant **to improve biological treatment efficiency**. There is a **risk** that pathogens will be exposed to antibiotics for prolonged periods. Ciprofloxacin is genotoxic and induces horizontal transfer of resistance between different species of bacteria, effects that may be observed at concentrations as low as 5-10 g/l. Therefore, the recipient waters and the treatment plant itself may be spawning grounds for resistant bacteria," the study said.

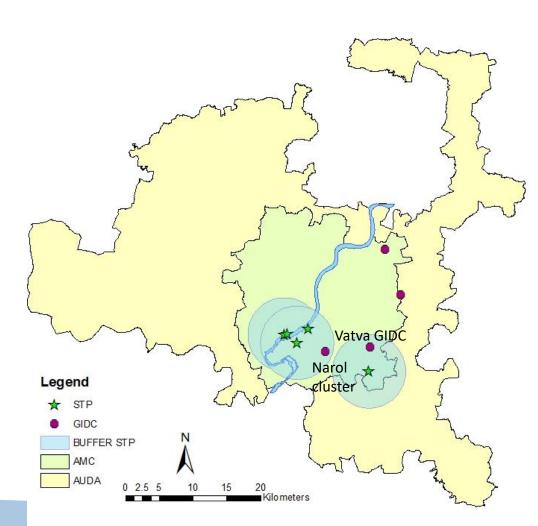
CASE II

Tarapur CETP (Maharashtra): At the time of last inspection of the plant on 26/27.10.2004, the treated effluent was not meeting the standards in terms of COD, TSS, TDS, NH3-N and SO4. Inspecting team also suspected dilution of waste with fresh water by operating agency.

CASE III

One of the CETP in Delhi had a proposal to add 300m3/day of domestic sewage to the total effluents in order to dilute the TDS and provide continuous seeding of microorganism.

Source: http://www.downtoearth.org.in/coverage/what-treatment-6696, http://cpcb.nic.in/upload/Publications/Publication_24_PerformanceStatusOfCETPslinIndia.pdf


https://books.google.co.in/books?id=psf56CPmZsYC&pg=PA281&lpg=PA281&dq=domestic+sewage+used+for+dilution+in+to+CETP&source=bl&ots=iXoUP7nF2h&sig=lBAmTH8NFTgUMsqZGgVKZy1J6Ps&hl=en&sa=X&ved=0CEYQ6AEwCGoVChMlkcCiqcHayAIVDEyOCh02_wBt#v=onepage&q=domestic%20sewage%20used%20f

As of now NO industrial cluster requires more sewage water for dilution

But the Dilution of effluent with the help of domestic sewage is not a good way to make reuse of water.

With the help of dilution ,the industries are encouraged to let go the treatment levels as they think dilution will help them reduce their hazardous effluent characteristics

PROJECT 2 : SUPPLY TREATED WATER FROM SEWAGE TREATMENT PLANT

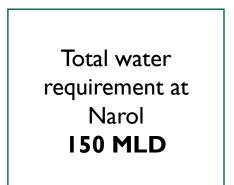
According to the location of STP we would be taking up waste water reuse projects for Narol and Vatva industrial cluster

Also According to quantity of water the Narol and Vatva estates have the highest demand of water

We will also try to analyse the cost of treated waste water, if it is supplied to Naroda and Odhav GIDC estate

NAROL TEXTILE CLUSTER

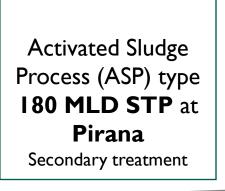
Present Scenario of Narol Textile cluster:


- All the textile industries in Narol depend on ground water
- Each industry is having their separate bore wells
- The cost of water comes to be around **Rs 12 per kilo litre** (majorly electricity cost for pumping water from ground)

Thus the price of waste water should be such that it **should not differ much** from the **present fresh water cost** to make industry use this treated water

NAROL TEXTILE CLUSTER

Water quality parameter for textile cluster


Parameter	Values
PH	6-8.5
hardness	2
turbidity	2
Colour(Hazen unit)	5

IS:201 1992

Type of STP near by and outlet parameter

Sr no.	Outlet Parameter	unit	Plant output
I	BOD	Mg/L	20
2	COD	Mg/L	100
3	Total suspended solid	Mg/L	30
4	Fecal Coli Forms	No.s/100ml	1000-10000
5	pН	-	7-8.5
6	Residual chlorine	Mg/L	.5

Pirana STP has 3 stream of 60 MLD each

Source: Primary survey

TECHNOLOGY REQUIREMENT OF TEXTILE INDUSTRIES

First the existing STP of ASP type has to be **updated** to achieve the **norms** required to **feed water in into the tertiary treatment plant**

Following **elements** have to be added to upgrade the ASP plant.

. Installation of new Equalization tank

2. Addition of coagulant dosing system for removal of colour

3. Up gradation to Biological nutrient removal BNR(CHPEEO recommended)

> To achieve the required organic matter /nutrient removal as per the required quality

4. Addition ofAlum dosingsystem

To achieve the required organic matter removal as per the required quality

Minimum quality of treated sewage at biological treatment outlet (after augmentation) /UF feed

Sr no.	Parameter	Units	Values
I	pН	-	658.5
2	BOD	Mg/I	20
3	Total Suspended solid	Mg/I	30
4	Total Nitrogen	Mg/I	<10
5	Total Phosphorous	Mg/I	<

Quality of finally treated sewage after RO

Sr no.	Parameter	Units	Values
I	pН	-	7-8
2	BOD	Mg/I	<2
3	Total Suspended Solid	Mg/I	<
4	Total dissolved Solid	Mg/I	<50

Tertiary treatment plant-Elements.... <u>casestudy.xlsx</u>

- Ultra filtration(UF) feed tank
- UF system
- Ultra filtration permeate tank
- Reverse osmosis (RO) system
- RO permeate tank
- RO reject tank
- UF reject tank
- UF /RO building
- Treated water distribution tank with pump house.
- Other civil works

Land requirement

- Existing Plant Area = 1 1 5000 square meter.
- To set up tertiary treatment plant approximately 30000 meter square area will be required which is available in vicinity of the existing STP.

Cost

- Capital Cost for tertiary treatment Rs 2 crore/MLD
- O and M Rs 7 crore/year
- Total cost for upgradation of existing ASP and installing TTP and related infrastructure = Rs 163 crore
- Transmission network cost =Rs 8.79 crore
- Total Capital cost=Rs 171.79 Crore

Business Model

- This project can be done either by **EPC or PPP model**.
- For these, compatibility both the models is done and most appropriate model will be selected.

BUSINESS MODEL - PRICE OF WASTE WATER

For arriving at a suitable treated waste water cost following assumptions were made

Sr no.	Heads	
I	Regular maintenance (% of hard cost pa)	4.05 %
2	Escalation in water expenses pa	10 %
3	WPI Inflation pa	7 %
4	Corporate Tax rate (% of Profit Before Tax)	35 %
5	Depreciation rate (Written Down Value)	0.15
6	Admin Expenses (% of revenue pa)	Ι%
6	Admin Expenses (% of revenue pa)	۱ %

Sr no.	Heads	
I	Construction Begins	2016
2	Period of Construction (years)	2
3	Construction Ends	2018
4	Phasing of Construction	
	[Year I]	0.5
	[Year 2]	0.5
5	Operation Begins on	2018
6	Period of Concession (years)	15
7	Operation ends on	203

WATER PRICE ESCALATION USING WPI INFLATION RATE

Sr no.	Avg Inflation	%
I	2012	9.30
2	2013	10.92
3	2014	6.37
3	2015	5.76

SOURCE: WWW.TRADINGECONOMICS.COM | MINISTRY OF STATISTICS AND PROGRAMME IMPLEMENTATION (MOSPI), INDIA

FORECASTED WPI INFLATION RATE

Sr no.	Avg Inflation	%	Sr no.	Avg Inflation	%		Sr no.	Avg Inflation	%
I	2016	6.1	I	2016	4.47		I	2016	5.7
2	2017	5.8	2	2017	4.49		2	2017	5.6
3	2018	4.46	3	2018	4.46		3	2018	5.2
3	2019	5.6	3	2019	4.46		3	2019	5
		FORECAST BY EUI			FORECAST BY OEC	D			FORECAST BY IM

BUSINESS MODEL - PRICE OF WASTE WATER

Arriving at a suitable treated waste water cost and Business Model -

Sr no.	Heads	Project IRR	Equity IRR
I	Equity 100 %, Debt 0	12%	12%
2	Equity 0 %, Debt 100 %	14%	0
3	Equity 75_%, Debt 25%	12%	13%
3	Equity 25 %, Debt 75%	13%	19%
4	Equity 50 %, Debt 50 %	I 3%	I 5%

Thus from above table we can see that if a private player puts Equity of 25 % and AMC would take loan for rest of 75 %

WE WOULD GET THE MOST SUITABLE PPP MODEL FOR THE PROJECT

	For Equity 25	%,Debt 75 %	
Cost of water	Project IIR	Equity IRR	
RS 10	4%	-5%	
RS I I	5%	-1%	
RS 12	7%	2%	
RS 13	8%	5%	
RS 14	9%	8%	Intrerest rate on
RS 15	10%	11%	loan is 12 %
RS 16	11%	14%	
RS 17	12%	16%	
RS 18	13%	19%	
RS 19	14%	21%	
RS 20	15%	24%	

Waste water cost has to be Minimum **Rs 17** if the interest on loan has to be paid

Thus selecting **Rs 18** as the cost of fresh water to be on safer side

Other Risk in project (as discussed with industrial representative)

- Industry are **not** having facility to **check the quality** of water they are using.
- Thus industry are **concern** with the quality of the treated water that will be produced **after tertiary treatment**.
- Industries also want a *buffer of 2-3 days* of water so that in case of *sudden failure* of the system ,they can still continue production.

Probable Solution

- Strong monitoring system should be proposed which will look after the quality of treated water and update the industries for the same
- Otherwise a online monitoring meter can be installed which will check the quality and forward the results to industries. For this TOC meter can be installed
- Some storage mechanism for water have to be constructed in order to mitigate the risk of failure of the system to provide water.

ISSUES IN PROJECT : INFERENCE

- Narol is **not a GIDC cluster**, it is **not** having a **piped network** through which treated waste water can be supplied to industries.
 - Extra cost has to be incurred to supply waste water, thus constructing piped network in whole of Narol
 - This will increase the treated waste water cost to More than Rs 18 and fresh water cost is only Rs 12
- This Rs I2 of fresh water is mainly the electricity charge occurred due to pumping. The cost of
 electricity is only Rs 8.46/unit which increases I6 Paise in around 6 months. Thus the fresh water
 cost will have a very gradual increase.
- So industries will not at all be willing to buy treated waste water until restriction on ground water usage is implemented and fresh water cost becomes higher.

PRESENT POLICIES FOR GROUND WATER EXTRACTION

Revised Model bill (2002) for ground water used by the Ministry of Water Resources (MoWR)

- The salient features of the Bill was State Governments were to **acquire powers** to restrict the **construction of ground water abstraction structures** (including wells, bore wells, tube wells etc.) by individuals or communities for all uses except that of drinking water.
- The Gujarat State Govt. informed that the draft Bill is **under process of finalization** and suitable legislation will be enacted shortly

AMC policy on Ground water extraction

- If a industry wants to dig bore well then they have to take permission from AMC to do so.
- If a industry is having existing bore, first it has to seal that bore well and then only it can dig new bore well

Vatva GIDC

Present Scenario of Vatva GIDC estate:

- Present fresh water cost to industries in Vatva estates depends on the size of connection and type of industries
- For ex. engineering base industry having connection size of .5 diameter = Rs 500/month
- Thus approximate cost of water comes up to **Rs IO/KL**
- Vatva industrial Association claims that it is suppling cheapest fresh water as compared to all the GIDC estates in Gujarat

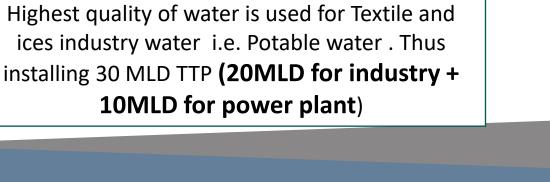
VATVA GIDC ESTATE

Water Based industry is listed below

Type of industry	NO.	% water requirement	Maton Domond of
Intermediate	100	10	Water Demand at Vatva GIDC 20 MLD
Dyes	500	40	
Textiles	13	40	
lces	75	5	Vatva GIDC estate has total 2500 industrial unit
other	12	5	

Water quality standard of Potable water

parameter	Unit	Value
PH	-	6.5 to 8.5
Colour	Hazen	5
Turbidity	NTU	5
BOD	Mg/I	2 mg/l


Source:CPHEEO,kinari Panchal-incentives and disincentives of waste water(Thesis CEPT),CSP AHMEDABAD

Land requirement

- Existing Plant Area= **40,500 square meter.**
- To set up tertiary treatment plant approximately
 15000 meter square area will be required which is available in vicinity of the existing STP.

Cost

- Capital Cost for tertiary treatment Rs 2 crore/mld
- O and M = Rs 3.5 crore/year
- Total cost for upgradation of existing ASP and installing TTP of **30 mld** and related infrastructure = Rs **81.5** crore
- Transmission network cost = Rs 5.5 crore
- Thus Total Cost = **Rs 87 crore**

Source: Abstracted from Complied case studies, tender document Ahmedabad

Business Model

	Sr no	Heads	Project IRR	Equity IRR	Cost of water
	I	Equity 100 %, Debt 0	8%	8%	
	2	Equity 0 %, Debt 100 %	11%	0	Rs 18 with
J	3	Equity 75 %, Debt 25%	9%	9%	escalation of 5 % per
ľ	3	Equity 25 %, Debt 75%	10%	%	annum
٦	4	Equity 50 %, Debt 50 %	9%	9%	

Thus from above table we can see that if a private player puts Equity of 25 % and AMC would take loan for rest of 75 %

Then project IRR IS COMING TO 10 % and Equity IRR is coming to 11 % and interest itself is 12 % thus its not feasible to do project .

To make this project feasible either we have to either increase the capacity of the treatment plant or increase the treated waste water cost

Case I: If tertiary treatment plant is made of 40 MLD instead of 30 MLD then

Heads	Project IRR	Equity IRR
Equity 25 %, Debt 75%	12%	15%

Case 2: If cost of treated waste water is increased to 20 Rs/KL from 18 Rs/KL

Heads	Project IRR	Equity IRR
Equity 25 %, Debt 75%	12%	15%

Inference

This project will not at all be feasible if the fresh water cost is not increased and rules and regulation against ground water extraction are not implemented

Future Scope: Cost of treated waste water if supplied to Odhav GIDC estate

Present Scenario

- 4 bore wells
- 9 individual bore(charged and metered)
- 5.5 MLD water supplied
- Cost of fresh water is Rs 17/kl

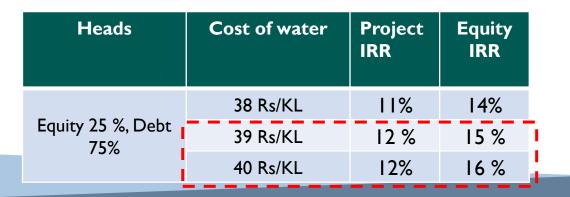
Future Proposal

AMC tie up with Odhav GIDC to provide 5.5 MLD Narmada water

- Rs **4/k** will the cost of fresh water
- Pipes already laid for Rs 15 crore
- 10 % increment every year (causing failure for project) as the association is not ready to accept that price

If treated waste water provided by Vinzol STP

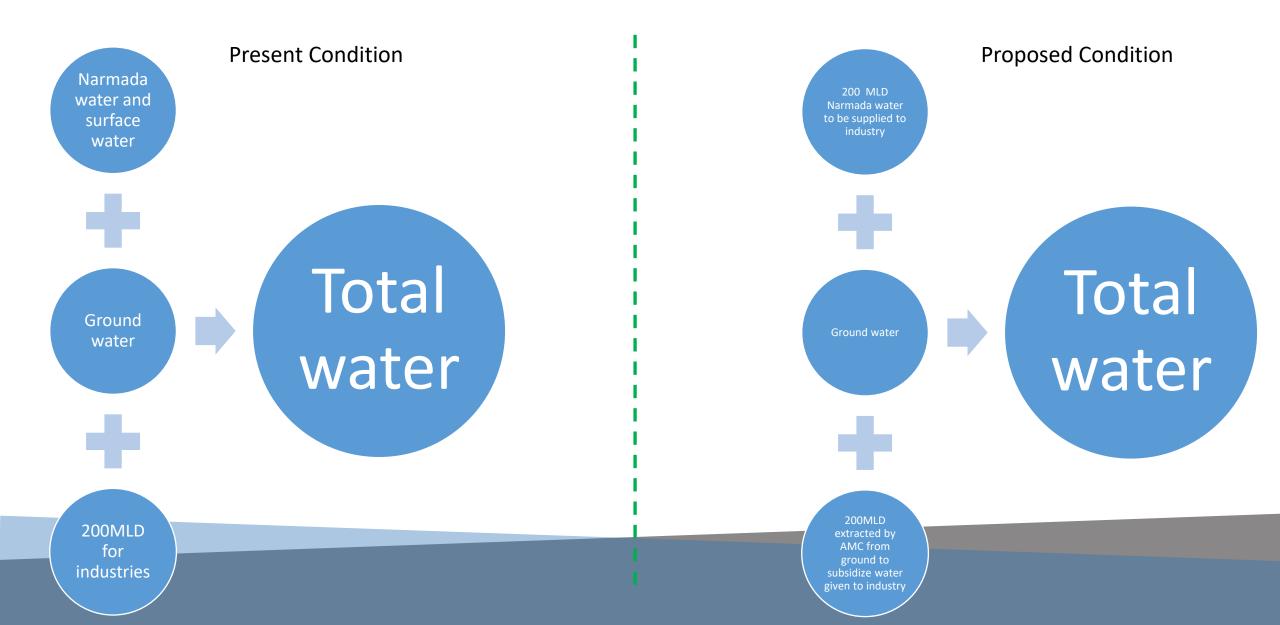
Heads	Cost of water	Project IRR	Equity IRR
	45 Rs/KL	11%	12%
Equity 25 %, Debt 75%	47 Rs/KL	12%	14%
, 378	48 Rs/KL	12%	15%


The treated water cost is to much as compared to fresh water cost

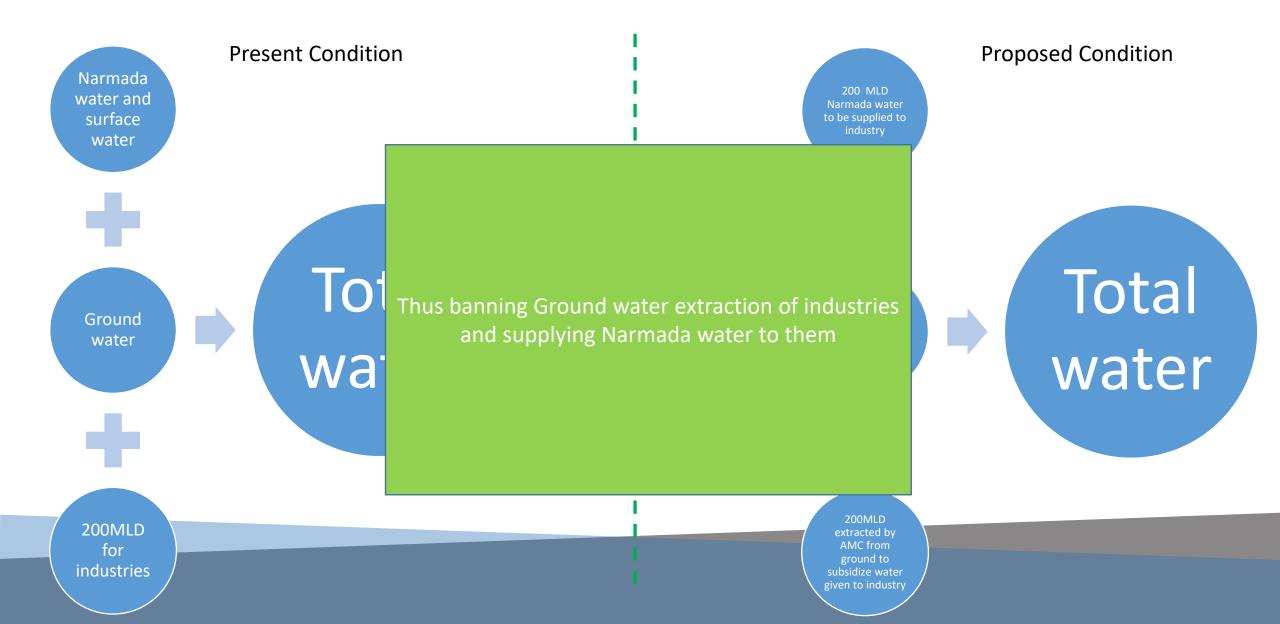
Future Scope: Cost of treated waste water if supplied to Naroda GIDC estate

Present Scenario:

- Present fresh water cost to industries in Naroda depends on the size of connection and type of industries
- For ex. engineering base industry having connection size of .5 diameter = Rs 500/month
- Thus approximate cost of water comes up to $Rs \ 20/K$
- After all this GIDC is gaining profit of **Rs 8 /KL**
- Total water requirement is 10 MLD


If treated waste water provided by Vinzol STP

The treated water cost is to much as compared to fresh water cost


WHAT IF ???????

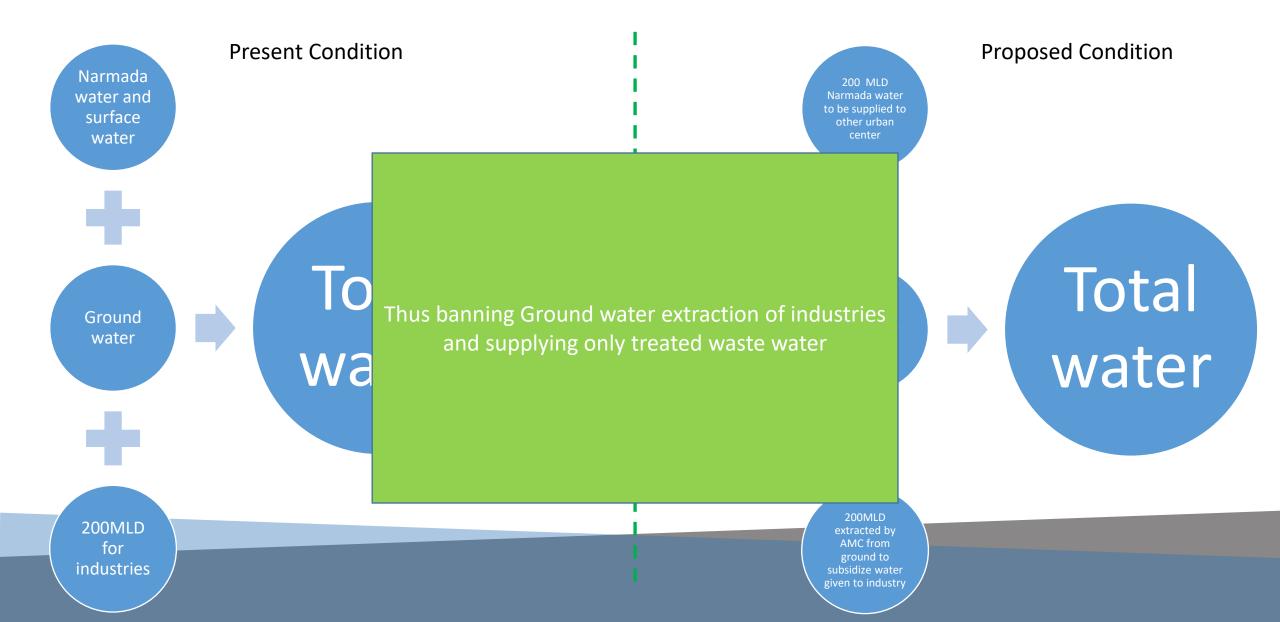
Scenario 1

MHAL IL 555555

Scenario 1

AMC Narmada water rate = Rs 6.25	/KL
----------------------------------	-----

- Rate of extracting ground water = Rs 8 /KL
- Therefore cost of 200 MLD Narmada water = 0.12 Crore
- Cost of 200 MLD water if extracted from ground = 0.16 Crore


AMC selling these water at 14rs/kl to industry = 0.28 Crore Net profit = 0.16 Crore

Treated waste water cost at 5 % Escalation							l .	
Year	0	1	2	3	4	5	6	7
Rate	18	18.9	19.85	20.84	21.88	22.97	24.12	25.33
Narmada water cost at 10 % Escalation								
Year	0	1	2	3	4	5	6	7
Rate	14	15.4	16.94	18.634	20.49	22.54	24.80	27.28

Thus after 4 years the Cost of Narmada water and Treated water will be approximately same. Then industry themselves will shift to treated waste water.

MHAL IL 555555

Scenario 2

WHAT IF 555555

	Current	Proposed
Narmada	400	200
Other surface	300	300
Ground water (domestic)	300	500
Ground water (industries)	200	0
Reuse of waste water	0	200
TOTAL	1200	1200
Total fresh water sources (including Narmada and gr water)	1200	1000
Fresh water saved/ can be used for ither users		200(MLD)

This has to be accomplished by increase in electricity charges for industries for any connection used with bore wells

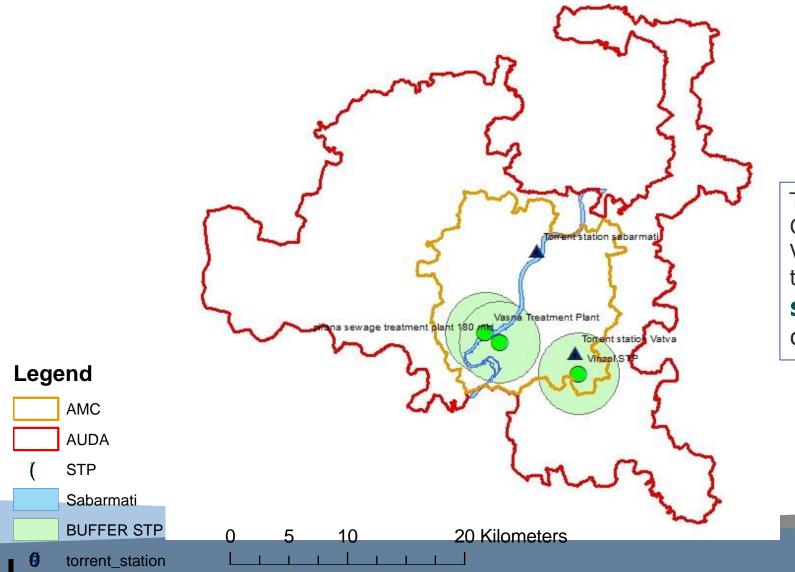
Electricity cost			
PRESENT	PROPOSED		
Rs 8.46 /unit	Rs 15.46/unit		

OR

Prohibiting use of electricity for water

Cost on Narmada water saved = 0.12 crore Cost of extracting ground water= 0.16 Loss = 0.4 crore

This loss can be compensated by selling of waste water


Thus question should be raised that Whether AMC should Supply Narmada water to industries??? Or Whether Narmada water should be Supplied to Other urban centre???

There is no one Answer to this and question should be raised to AMC and State Authority

The most Important thing to notice in Ahmedabad is that Water is not at all being termed as a resource and this can be clearly seen in water prices as the cost of water is only the **cost of electricity** that is required to extract the water from ground.

Water itself has no price in Ahmedabad

Project 3 : WASTE WATER REUSE IN COOLING/BOILER FOR TORRENT POWER PLANT

Torrent Power has a 100 MW Combined Cycle Dual Fuel Power Plant located at Vatva.The station consists of two gas turbines each of 32.5 MW and a **steam turbine of 35 MW**

Capacity.

Source:http://www.torrentpower.com/

TORRENT POWER PLANT

- Water requirement : II MLD
- Distance from the Vinzol STP plant : 7.9 km
- Treatment requirement for the cooling tower : Lime softening or RO
- Treatment require for the Boiling water : Demineralization
- Water to be provided directly from the proposed tertiary treatment plant at Vinzol

Parameter for cooling water

Thus Selecting RO Technique

Sr No	unit	value	
PН	-	6.8-7	
BOD	Mg/I	<5	
Chloride	Mg/I	<175	
TDS 3000 mg/l 1000 mg/l 500mg/l	Mg/I	2 3.5 6	DHEE

Source: CPHEEO CHAP 7, Compiled case studies

Water quality standard for the boiler water

Parameter	unit	value
Total hardness	mg/l	I
PH value		8.5-9
Dissolved Oxygen	Mg/I	.1
Silica	Mg/I	5

Treated waste water from Vinzol STP **(tertiary treated using RO)** will only be used for cooling purpose as the water quality required for boiler grade water requires higher level treatment.

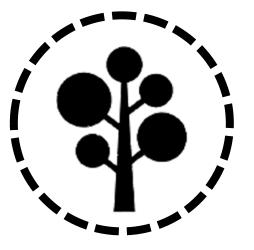
Cost

- Cost of tertiary treatment has already being calculated in industrial use of water.
- The cost of treated water to be supplied to torrent would come up to Rs 29/KL because of more distance from STP

Source: CPHEEO CHAP 7

In case of torrent also the fresh water cost is very low as compared to the waste water treated cost thus making the project un feasible unless and until the fresh water cost is increased

Thus looking towards the present condition of Ahmedabad reuse of waste water for industrial use don't seem to be feasible at all because of the free ground water extraction by industries resulting in low cost of water.


If the reuse has to be made feasible following things have to be implemented

- I. Ban on ground water extraction with the help of policy
- 2. Increase in electricity cost to make fresh water cost high
- 3. Otherwise directly put ban on use of electricity for water
- 4. Assurance of treated water quality by AMC

END

Source:https://www.capetown.gov.za/en/Water/Pages/Control-of-industrial-effluent-discharge-.aspx

WASTE WATER REUSE IN GARDENS

AHMEDABAD GARDENS

Developed open green spaces are 7.99 % of total land use. North Zone Mother Dairy- 10 Amc-5 201 New West Zone AMC gardens Reliance Ltd.- I West Zone 182.76 Ha Open Plt- 3 **Central Zone** Ahmedabad Ashima Ltd-Possession With Auda- I Amc- 6 East Zone Gardens 18 Torrent Ltd- I Civil Works Comp N Garden Mother Dairy- 6 Amc- 4 Mother Dairy- 25 AUDA gardens Development Work Remain- 7 Jagnath Mandir Trust- I Mother D-13 Amc- 16 Amc- 14 89.39 Ha Agriculture South Zone Forest Md- II No Data Public Amc-5 📕 Vacant Smuti Mandir Trust-

Source : AUDA DP, 2021 and CSP, 2012

FUNCTIONING OF GARDENS

Sanctioning Authority

Municipal Commissioner, Deputy Municipal Commissioner, Recreational, Cultural & Heritage Committee and Standing Committee.

Program Implementation

Subsidiary programs are implemented by Director of Parks & Garden

Work supervision

Works are supervised by Section Officers, Garden Inspectors and Supervisors.

Work execution method

Works are executed departmentally as well as by Tender/ Offer/ Quotation through contractors.

Revenue generation

from auction of fallen trees wood & grass etc

CATEGORIES OF PARK WASTE WATER GENERATION: 938 MLD

Sources Municipal / Domestic waste water Storm water discharges Hotel & Offices Agricultural runoffs Landfill leachates Industrial waste water

> Regional park More than **89.0** Ha Upto I hr Catchment

Impact

Ground water pollution Eutrophication of lakes & other water bodies

Degradation of river water quality Impact on public health

City level AI City level :AUDA: I Ro Avoiding c

Treatment

Reuse / Recycle Avoiding contamination in water bodies

Decentralized approach for reducing pressure on civic bodies

Parimal Garden

Private Management: Torrent Power Ltd

- Area of the garden 36421 Sqm
- Bore well used for all water usages – Irrigation, I drinking water fountain, 2 toilets
- 10'x12' water tank size
- Refill of tank 3-4 times / day
- Maintenance 7 days a week
- 22 workers
- Cleaning between 12pm 2pm
- 4am 10pm working hours
- Garbage taken early morning by I truck/day

LAW GARDEN Private Management: Ashima Ltd.

- Area of garden 41012 Sqm
- Bore well used for all water usages
 - Irrigation, 1 drinking water fountain, 2 toilets
- Water pumped I in 2 days
- Refill of tank 2-3 times / day
- **5000 L** quantity of tank in 2 days = **2,500L** in 1 day
- Maintenance 7 days a week
- All electricity charges borne by Ashima
- 20 workers
- Cleaning between 12pm 2pm
- 4am 10pm working hours
- Garbage taken early morning by I truck/day

Gul Bhai Tekra Garden AMC Garden

- AMC water supply pipelines
- 2 tank- one for toilet
- 650 l per tank
- 2 hr supply
- Tankers for water supply in case of lack of water
- Aftr 10-15 days, officers come
- 3 men workers
- 2-10 kaka work there for park
- AMC electricity
- 5.30- 6= opening timing

Vijay Char Rasta Mother Dairy Garden

- Mother dairy
- Municipal water supply
- Amul contract- maintain and provide salary to the workers
- Morning and evening- 6-8 hr
- I toilet
- Drinking- 1000 I mother dairy
- 5-6 workers, 2 main gardeners
- Compost pit- 6 by 4 feet, 3 feet deep
- After that manure is used for plants.

TECHNOLOGY ANALYSIS

PROJECT	Packaged STP (MBBR)	Phytorid Technology	DEWATS Technology
COMPONENTS	 Air Blower Unit Electrical Control Console Flow Proportioning Chamber Service Walkway/Grating Secondary Clarifier With Chlorination 	 Sewage Collection Tank Settler/ Sceen Phytorid Bed Treated Water Storage 	 Settler Anaerobic Baffled Reactor Anaerobic Filter Planted Gravel Filter
CAPACITY	3,000 To 500,000 Gallons Of Wastewater Per Day	l kld Per Day	3 Kld Per Day
AREA	30 Sq.M	I-2 sqm/KLD	8 sqm/KLD
PARAMETERS	v	• BOD: 40 to 130 mg/lit	 Bod: 80- 95% Cod: 80-90 % Total Suspended Solids: 75- 95 %
LANDUSE	 Remote Housing Developments And Neighborhoods Schools Apartment Complexes Industrial Facilities Parks 	 Residential Houses And Neighborhood Slaughter Houses 	 Parks / Lawns Residential Houses And Neighborhood Slaughter Houses
BENEFITS	 Fast Process Recovery Easy Of Operation Small Footprint Required Lower Competitive Investment And Operating Cost 	 No Waste Water At Surface-reduced Odour Propagation Of Insects Is Also Controlled. Works on gravity No electric power requirement Cost effective 	 Cost effective O n m expenses are negligible Minimum electric requirement Smaller footprint Facilites recycle and reuse of wate No foul odor and no mosquito nuisance

Case studies PACKAGED TREATMENT PLANT (MBBR)

PROJECT	Decentralized STP at Navrang garden	Leh-ladakh's first sewage treatment plant	Harbauer india pvt. Ltd. (Seaterra-program/)	Anna university	Packaged STP	Packaged STP
LOCATION	Ahmedabad, Gujarat	New delhi	Mcloughlin point site in esquimalt.	Chennia, Tamil Nadu	Kolkata, west bengal	Navi mumbai
Tech.TYPE	MBBR sewage treatment plant	Tertiary treatment	Secondary treatment	MBBR sewage treatment plant	Tertiary treatment	
IMPLEMENTING ORGANIZATION	Ahmedabad Municipal Corporation	Biotic water solutions pvt ltd	Core area wastewater discharge	Aqua revolutions	Unitech water technologies pvt. Ltd.	Alaknanda technologies pvt. Ltd.
DESIGN CAPACITY	I0 KLD	30 mld	I24 MLD	0.5 - 20 ton / hour		
AREA	200 sqm	500Sq.mt	1400 sq.mt	700 sq.mt	1000 sq.mt	800 sq.mt
CAPITAL COST		Rs 1,400 crore	Rs. 179 million.			Rs. 9600.0 Crore

Inferences

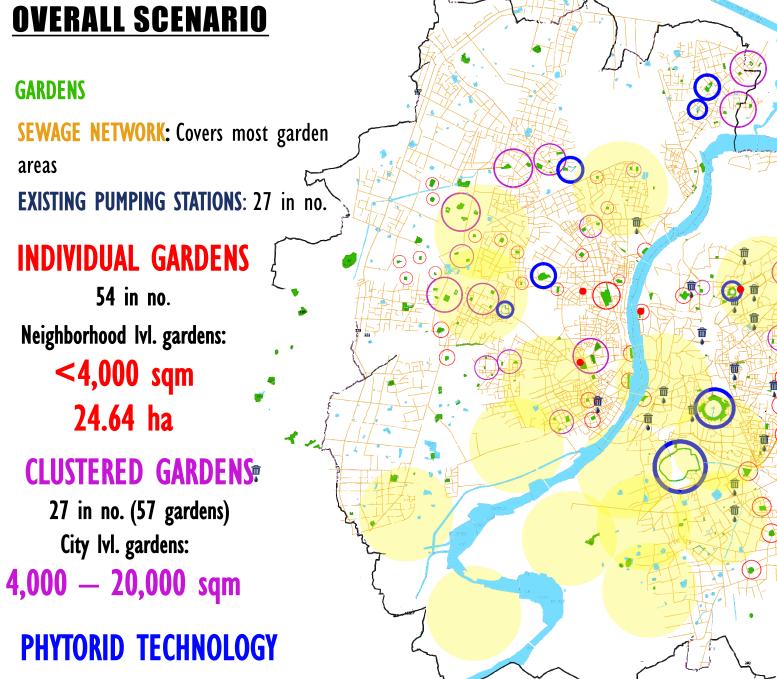
- Less Footprint Required
- Compact Space
- Less Excess Sludge
- Treat High Bod Waste Water

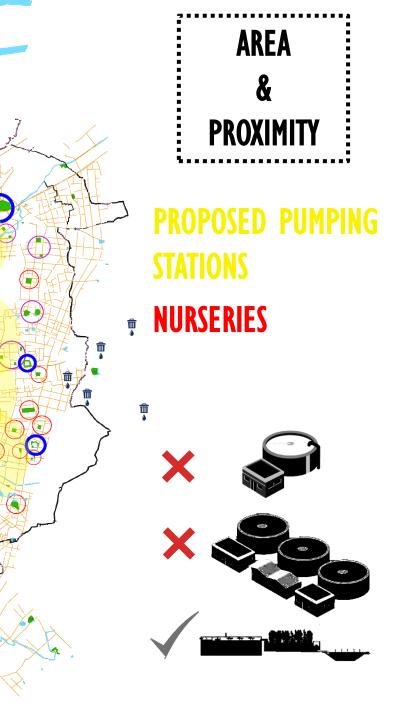
Case studies PHYTORID TREATMEN PLANT (Constructed Wetland Technology)

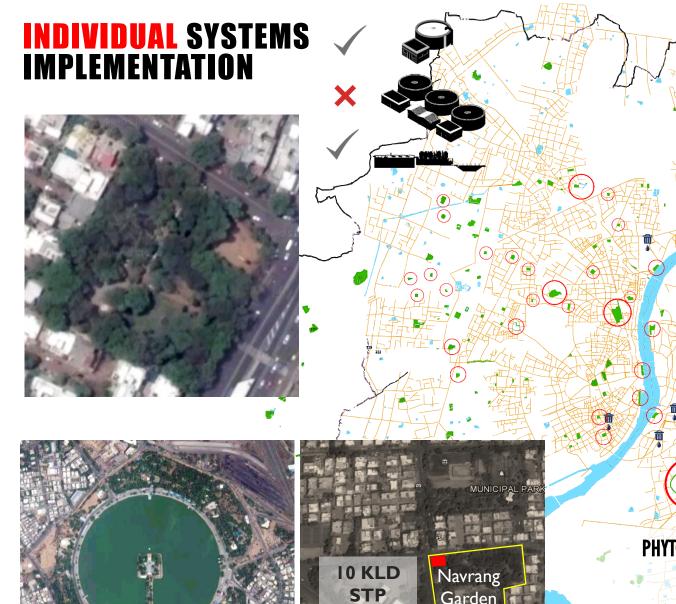
PROJECT	Premier Auto Ltd.	Lonar Lake, Maharashtra	Telibandha Lake	Kalian Campus University	Panjabrao Krishi Vidyapeeth, (COA)	Matheran hill station
LOCATION	Maharashtra	Maharashtra	Raipur	Mumbai	Nagpur	Maharashtra
ТҮРЕ	Commercial	Lake	Lake	Institutional	Institutional	Hotel, Commercial
IMPLEMENTING ORGANIZATION	NEERI, Nagpur	NEERI, Nagpur	NEERI, Nagpur	Council Of Sceintific And Industrial Research	NEERI, Nagpur	NEERI, Nagpur
DESIGN CAPACITY	150 KLD	500 KLD	2 MLD	50 KLD	8-10 MLD	20 KLD
AREA		30,000 sqm	110,000 sqm	35 sqm	35 sqm	

Inferences

- Good Quality Of Treated Water
- Produce Recyclable Water.
- Reduce Disinfection Cost.
- Solution To Sludge Bulking Problem


Case studies - DEWATS


WASTEWATER TREATMENT PROJECT	Adarsh College	Friends of Camphill	Bankers Colony	Kachpura village	Aravind Eye Hospital	Constructed wetland for wastewater treatment at Indian Agriculture Research Institute
	DEWATS	DEWATS	DEWATS	DEWATS	DEWATS	DEWATS
LOCATION	Maharashtra	Bangalore	Bhuj, Gujarat	Agra, UP	Pondicherry, Chennai	New Delhi
ТҮРЕ	Institutional	Individual/ Residential	Community	Community	Institutional	Institutional
IMPLEMENTING ORGANIZATION	Kualgaon Badlapur Municipal Council, GTZ (now GIZ), Ecosan Services Foundation and funded by Mumbai Metropolitan Regional Environment Improvement Society.	CDD Society, Bangalore	Hunnarshala Foundation, Municipality of Bhuj and Kutch Navnirman Abhiyan, funded by American India Foundation and Care today group.	Centre for Urban and Regional Excellence (CURE), Agra Nagar Nigam (ANN) and USAID.	CDD Society, Bangalore	Water Technology Centre, Indian Agricultural Research Institute (IARI), Pusa, New Delhi
DESIGN CAPACITY	7 KLD	9KLD	30KLD	50KLD	320 KLD	2.2 MLD
AREA	57 sqm	I I 0 sqm	300 sqm		2690 sqm	I.42 Ha
OPERATIONAL SINCE	2008	2003	2006	2010	2003	2012
CAPITAL COST	Rs 4 Lakhs	Rs 5.5 lakhs	Rs 14-15 lakhs	Rs 10-11 lakhs	1.12 crore	I.2 Crores
O & M	Rs 60000-80000 per year	Rs.5000-8000 per year	Rs 1-1.5 lakhs/year	Rs 70,000-80,000/year	2.5-3 Lakhs per year	Rs. 1,335 (annual)
		AMEROBIC BAFELD REACTOR				Celenar Tentere al Celenar


Treatment cell- 2

331 At

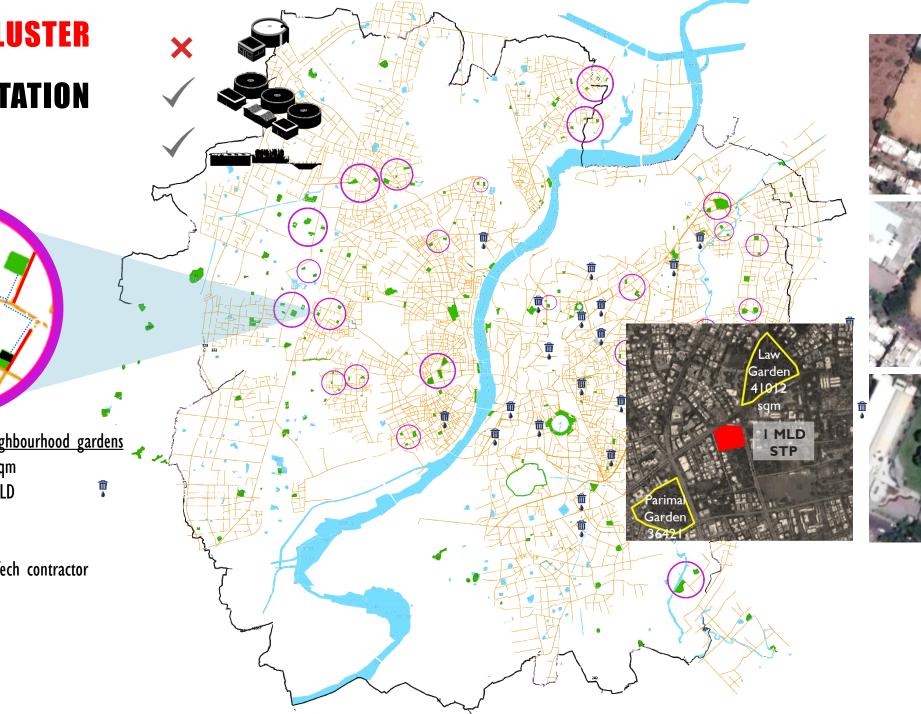
OVERALL SCENARIO

Garden

6,875 sqm

Navrang Cir

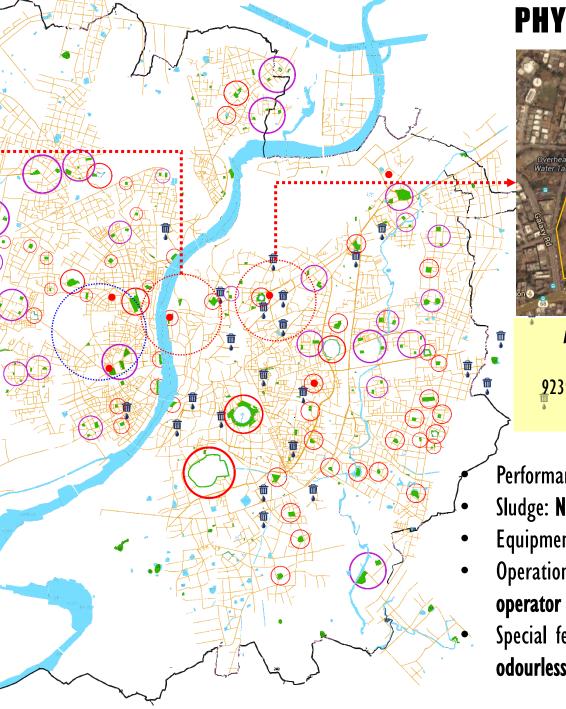
MBBR TECHNOLOGY: Neighbourhood <u>garden</u>


Garden area: 22296.9 sqm STP capacity req: 150 KLD STP area req.: 300 sqm Cost of Tech.: 40 Lakhs Management: AMC + Tech contractor

2.5 km

PHYTORID TECHNOLOGY: Kankaria lake Garden area: 122014.13 sqm Phytorid capacity req: 850 KLD Tech. area req.: 8,500 sqm Cost of Tech.: 250 Lakhs Management: AMC + Tech contractor

MBBR TECHNOLOGY: Neighbourhood gardensGarden area: 17592.8 sqmSTP capacity req: 120 KLDSTP area req.: 240 sqmCost of Tech.: 30 LakhsManagement: AUDA + Tech contractor



STP (MBR) SAMPLES

Lal Darwaza Garden water requirement: 32375 sqm x 7 L = 2,26,625 KLD (STP: 200 KLD)

- Performance BOD Removal: 80-95%
- Sludge: Negligible
- Equipment Requirement: Pump, MBBR STP, sand filter, carbon filter, water storage
- Operational Characteristics: Unskilled operator
- Special features: Plant species and odourless operations
- Impurity removal rates: BOD- 21 mg/l, COD- 54 mg/l

PHYTORID SAMPLES

 Chakudia

 Nursery

 State

 State

 Anand Park & Lake water

 requirement:

 2239 sqm x 7 L = 64,673 KLD

Performance BOD Removal: 80-95% Sludge: Negligible

(Phytorid: 65 KLD)

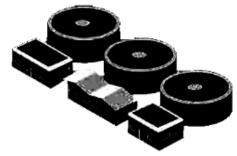
- Equipment Requirement: Gravity Flow
- Operational Characteristics: Unskilled operator
- Special features: **Plant species and** odourless operations

IMPLEMENTATION PROCESS – 1 MLD STP Navrang Nursary

Packaged type: pre fabric- rasala nature park (nursery) by Shivam and corporation

- Treatment of sewage treatment plant of 45, 000 lph of 1 mld to be manufactured.
- 10 yeas capex and opex with electricity billing = 4.13 crore
- 625 sq.mt plot area
- Huge space, less power
- Inside the nursery, close to sewer line
- Sludge storage filter press, back filters
- Total Project Cost 4.37 Cr.
- 2.12 Cr- Capex, 2.1 Cr- Opex
- Civil Cost: 5-10 %
- Except Civil Works, Everything Fabricated
- 4 Months Time To Complete The Project.

Storage Tank For Treated Water



Aeration Tank

4 BLOWERS

STP (MBR) COST ANALYSIS

MBBR STP

Land requirement per MLD in ha: 0.04 ha Capex per MLD (INR): 6.5-8.1 /MLD 0&M cost: 0.86 mil/yr/MLD

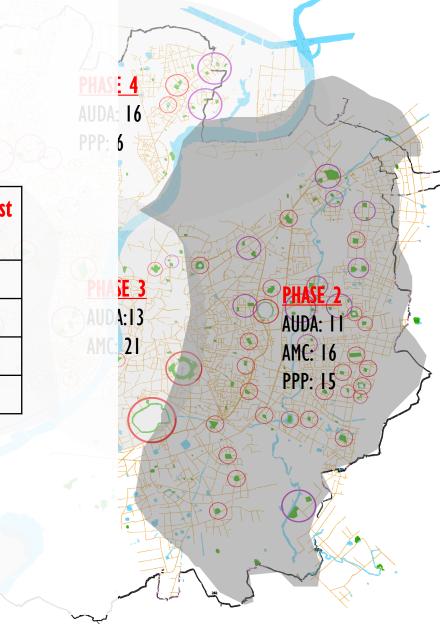
Total Garden Area: 24.64 ha Total Capacity required: 1.7 MLD Total no. of STPs: 43 (individual) 26 (clusters-55 gardens) Total Cost: 1.3 cr x 98 = INR 127.4 cr.

Source : Draft URDPFI guidelines, 2014 (Vol. 1)

PROJECT COSTING

INR			
127.4 cr.			
66.3 cr.			
193.7 cr.			
(15,000 X1.7X365)= 93 lacs			
(34,000X12)=4.08 lacs			
97.08 lacs			
0.97 cr. For 10yrs.			
194.6 cr.			
(3.2 X Rs. 8000 X 365) = 93.4 lacs (0.93 cr. For 10 yrs)			
l gardens: reated water)			

PHYTORID COST ANALYSIS


Phytorid Technology Capacity: 25 KLD Land requirement: 3 sqm Civil costs: INR 11,41,334 Solar pump, pipes etc.: INR 50,000 Plantation cost: 11,116 O&M cost: INR 72,000 /yr Total cost: INR 12,74,450 /yr

Total Garden Area: 22.41 ha Total Capacity required: 1.5 MLD Total no. of STPs: 11 (individual) 1 (clusters-2 gardens) Total Cost: 5.1 cr. x 13 = INR 66.3 cr.

Source : NEERI & CSIR, Ministry of Drinking Water & Sanitation, Government of India, 2015

PROJECT PHASING

Management	AMC	Amul	Other Private	Total Cost
Phase I	5	8		E 1360
Phase 2	19	10	5 AU	A: 82160
Phase 3	16		15 AM	5 1360
Phase 4	7	9 -	6	590

<u>PHASE 3 & 4</u>

Ecology of rivers, streams ponds can be effectively managed by letting better treated waters incrementally along their length.

PHASE 2

Lesser investment is required for the **sewer pipelines** because maximum area is having sewer lines.

Phase I

To Handle Waste Water Firstly So That It Does Not Gets Mix With **Agriculture Area** And To Avoid soil Pollution.

AMC Functions

- Providing garden space Water supply for AMC and Private gardens
- Solid waste collection from all gardens
- Granting permission to conduct activities in AMC gardens
- Providing new trees and plants to all gardens

Renovating the existing condition of AMC gardens

- Providing decentralized packaged small scale STP
- Providing waste water to parks for non-potable uses
- Supervising STP on site and check on ground water use.

MANAGING THE GARDENS

Private Contractor

Torrent Power Ltd. Ashima Ltd. Relience Ltd. Adani Power Amul Mother Dairy Vadilal Ice-cream Civil Works Comp & Garden Real estate companies

- Contracting out small STPs to Industries and Central STP
- Reduction in electricity consumption with removal of bore well
- Efficient and environmentally feasible watering system

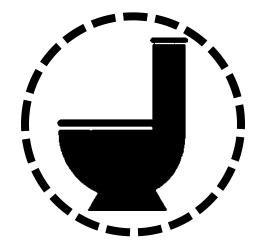
Duties of Private Contractor

Garden plants maintenance Providing staff for maintenance Operation of garden amenities (water features, landscape features, toilets, drinking water fountains) Repair works Maintaining STP/Phytorid

- Reuse of waste water for gardening
- Using waste water in toilets and water features
- All maintenance of garden except STP

POSSIBILITIES OF FINANCIAL SAVING

Saving on ground water pumping cost by removing the use of bore well by 30%

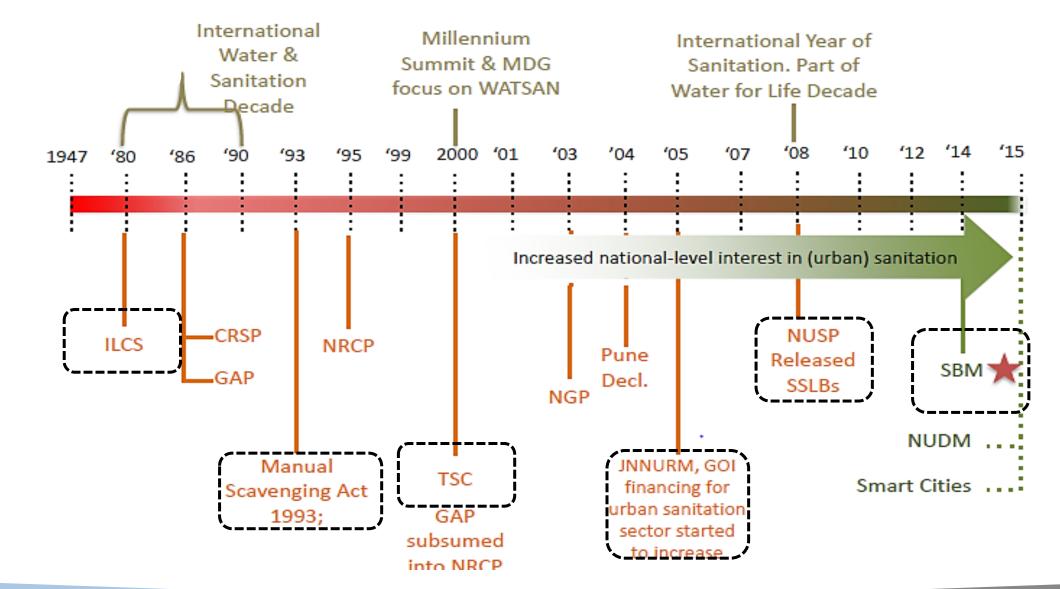

Reduction of pipeline layout & maintenance reduces with increase in on-site sanitation system

Reducing the sludge amounts at main STP at Pirana, Vasna and Vinzol, hence reducing the treatment cost

Policy level intervention to make the waste water reuse mandatory at city level through AMC

Though there is no scarcity of fresh water, yet there is a need to provide abundant clean treated water to the consumers

Introducing the concept of waste water reuse as a social awareness in order to practice it successfully in cities


SANITATION

Sanitation Condition of a city makes an impression on one's mind as the image of a city.

With the nation focusing towards **CLEAN INDIA** this sector plays a major role in it.

So with time, the provision and management of these facilities should increase.

Source: http://waterfund.go.ke/safisan/Downloads/Sanitation%20Policies%20and%20Programs%20in%20India.pdf

National Urban Sanitation Policy

Service Level Benchmark Standards

CPHEEO & URDPFI Guidelines

Policy and Guidelines

Awareness generation and behavioural change about sanitation Open defecation free cities.

Integrated city wide sanitation

Strengthening national, state, city and local institutions to accord priority to sanitation, its implementation and 0&M.

Excess to proper sanitation facilities for poor communities.

Sanitary and safe disposal.

Coverage of Toilets: 100% This indicator denotes the extent to which citizens have access to a toilet (whether individual or community) in a service area.

Coverage of Sewage Network Services: 100%

This indicator denotes the extent to which the underground sewage (or sewerage collection) network has reached out to individual properties across the service area.

Talks about sanitation regarding its planning, design and management

Source : NUSP, 2008, Service Level Benchmarks, CPHEEO guidelines, URDPFI guidelines

Integrated Low Cost Sanitation

- To stop manual scavenging and promote sanitation
- To convert 6 lakh dry laterines to low cost pour flush toilets

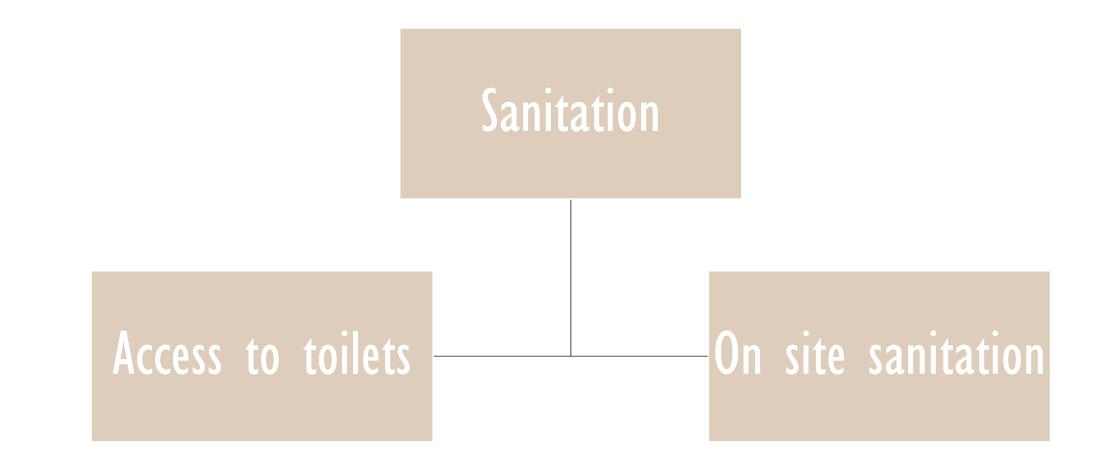
MGSM

• Open Defecation Free Community

JNNURM

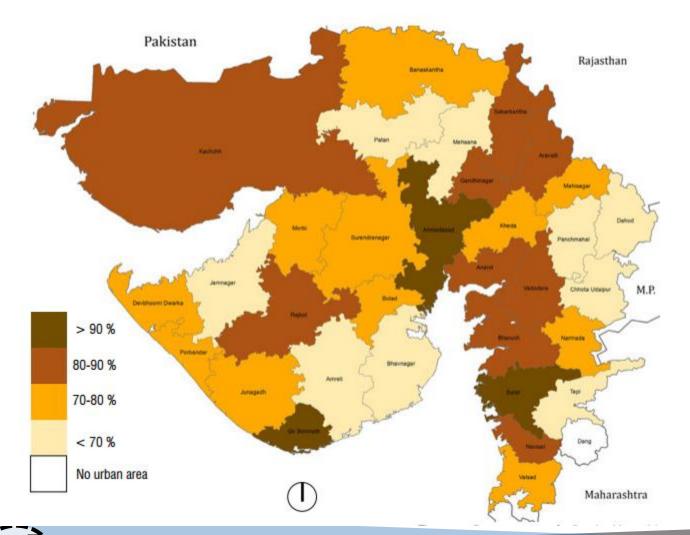
- Reform based project funding grants with state shares. WatSan ~ 70% funding and sanitation
- all urban poor access to toilets.
- In-house toilets linked to sewerage / septic tank
- Community toilets

SWATCH BHARAT


- Elimination of open defecation
- Eradication of Manual Scavenging
- Individual toilets
- Community toilets
- Public toilets

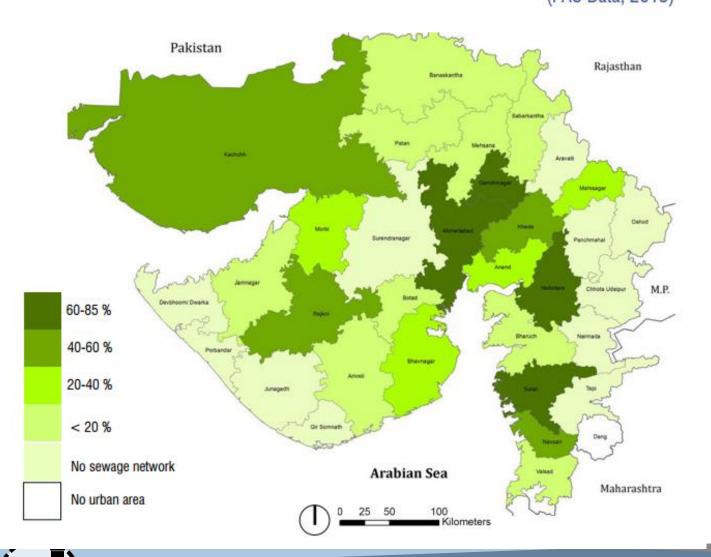
SMART CITIES MISSION

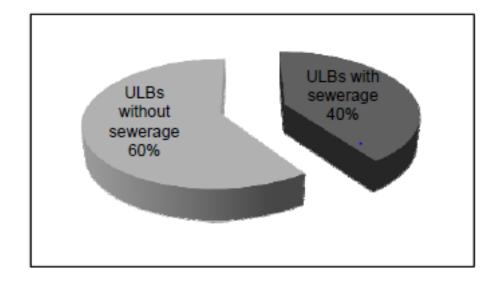
- Main component of sanitation in smart cities project is treatment of waste water.
- No specific comment is present on public toilets or individual toilets


Source : JNnURM Report, SBM Report, ILCS Report, Smart City Guidelines, MGSM Guidelines

Coverage of Toilets by District

(PAS Data, 2013)

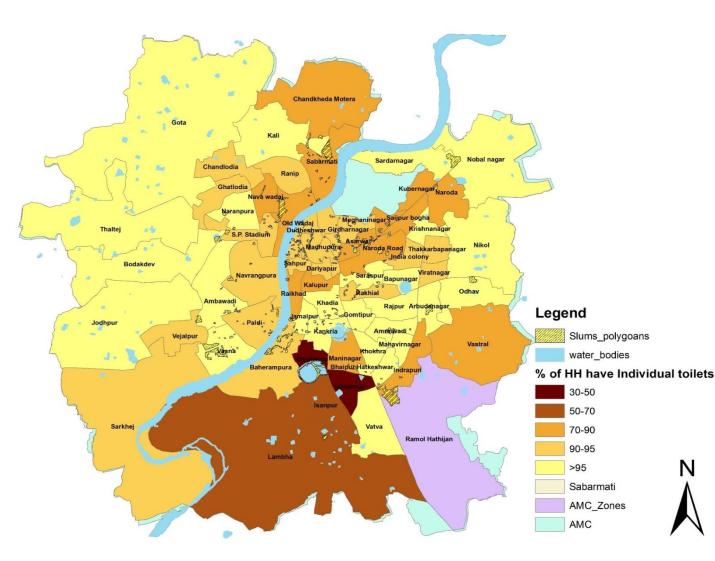

Toilet Coverage in Gujarat



In Gujarat 64.4 per cent slum households have toilet facility within the premises, but 21.26 per cent slum house holds defecate in open and 14.33 per cent public facilities

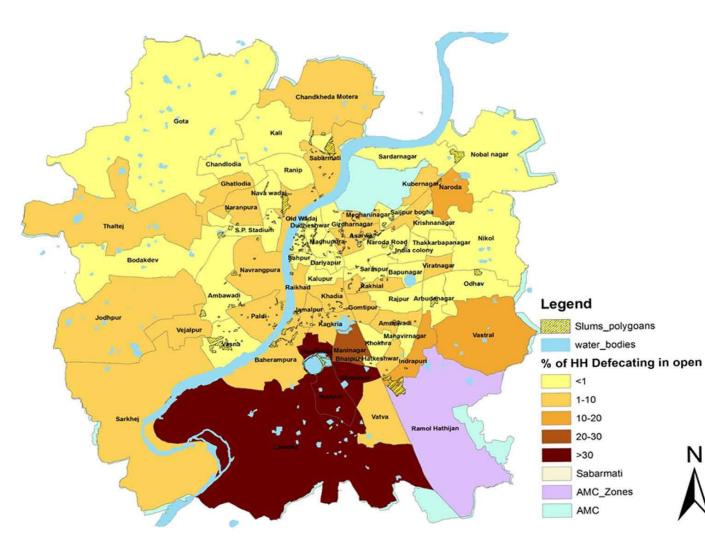
Source : PAS Mapbook, 2013, Census Data, 2011

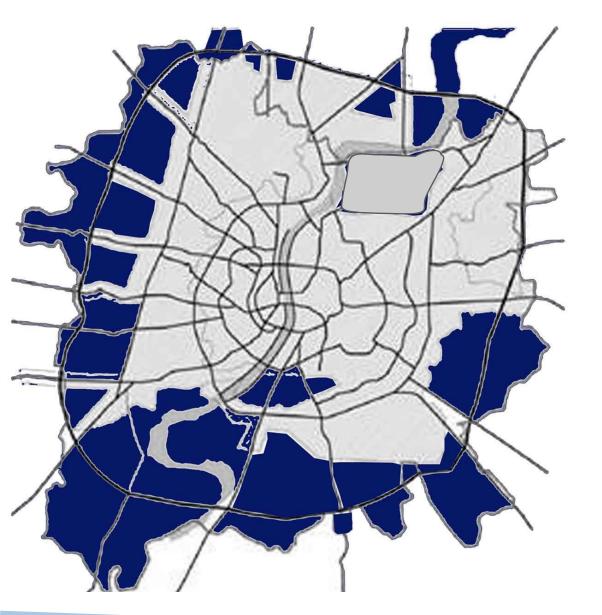
Coverage of Sewage Network in ULBs by District (PAS Data, 2013)


Sewerage Coverage

Network Coverage in Gujarat

Source : PAS Mapbook, 2013, Census Data, 2011


Present Scenario of Ahmedabad


Total 93.4% HH have individual toilets in the city.

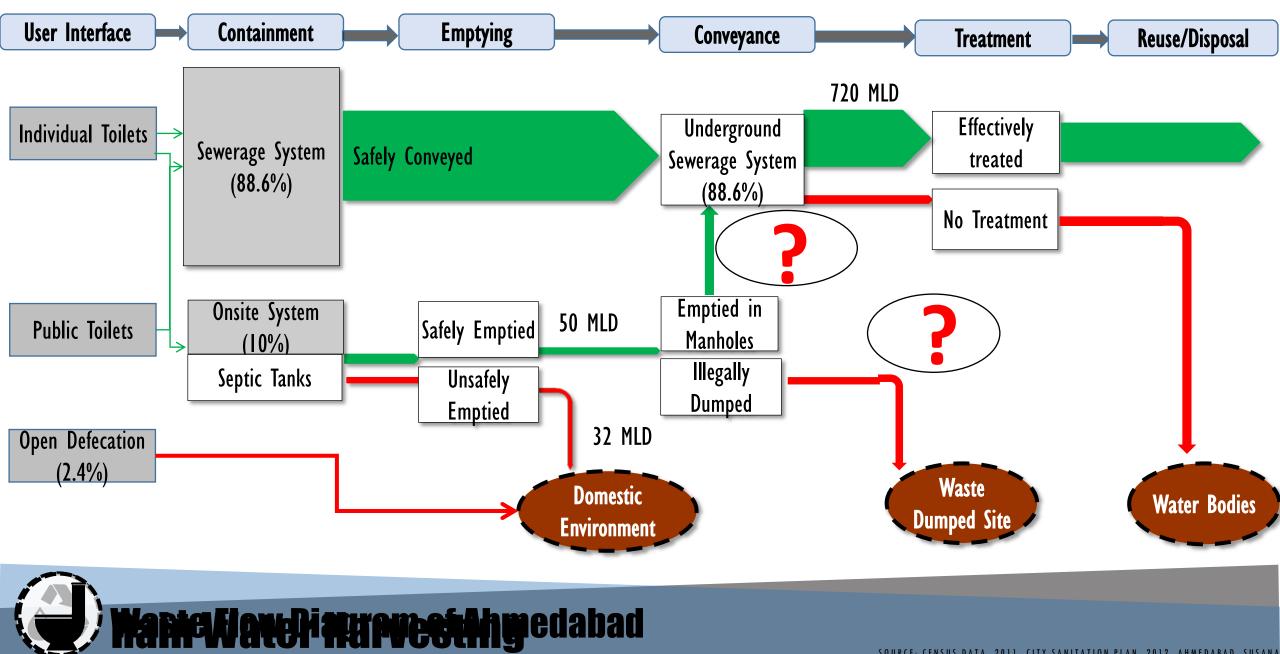
Total 28300 HH are defecating in open

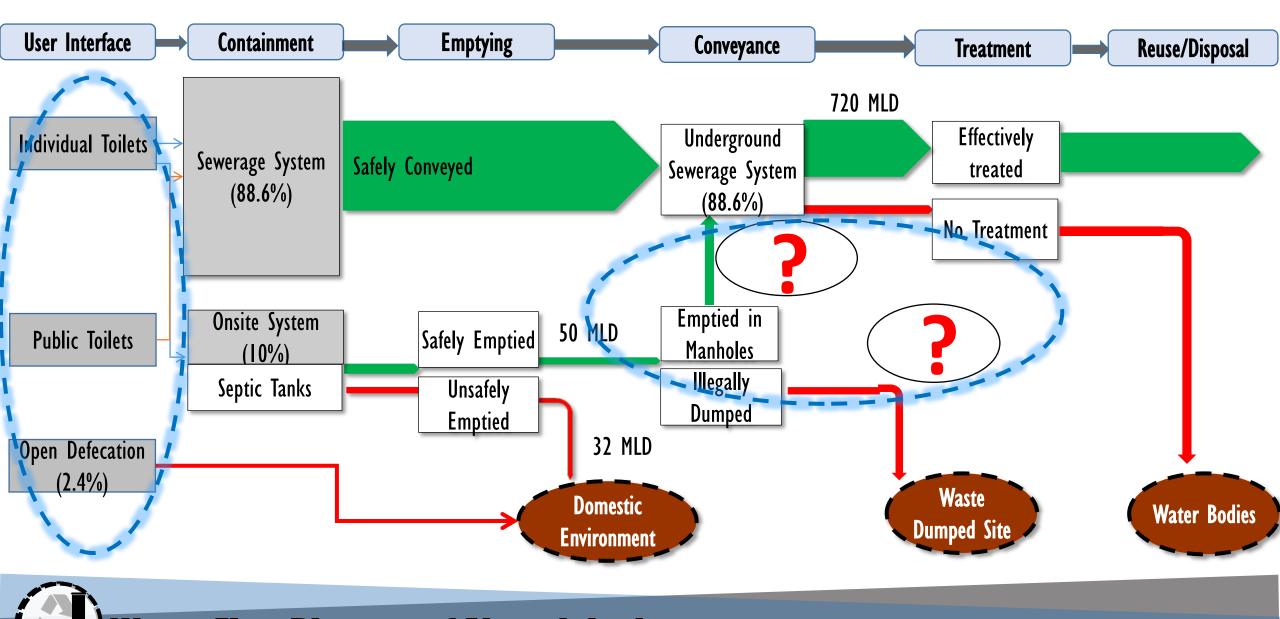
88.6% Households have access to sewerage system

10% Households use On Site Sanitation

Initiatives include provision of individual toilets to households, provision of community and pay & use toilets in the city, measures for cleaning and removal of open defecation spots and preventing their resurfacing

Sr No.	Description	Proposed Im	Block Cost	
		2016	2021	(lakhs)
1	Construction of Individual Toilets	51946	-	2078
2	Refurbishment of existing public/pay and use toilet	4750	-	2969
3	Construction of new toilet seat	1784	972	3445
4	Refurbishment of existing men's urinal	1182	-	369
5	New Urinals women	975	162	711
	Total			9572




AUDA prepared a detailed project report (DPR) for expansion of sewerage network in western and eastern extensions of

Ahmedabad city.

NO	Description	Proposed Improvement		Unit	Block Cost
		2016	2021		(lakhs)
1	Refurbishment of existing sewerage network	337	-	km	12516
2	Provision of Sewerage Connection	564053	305075	No.	-
3	Provision of Sewerage connections in slums	64975	-	No.	-
	Total				12516

Wantellatelli Harvestehyedabad

Lack of Public Toilets


Hygiene Problems due to Open Defecation in Slums

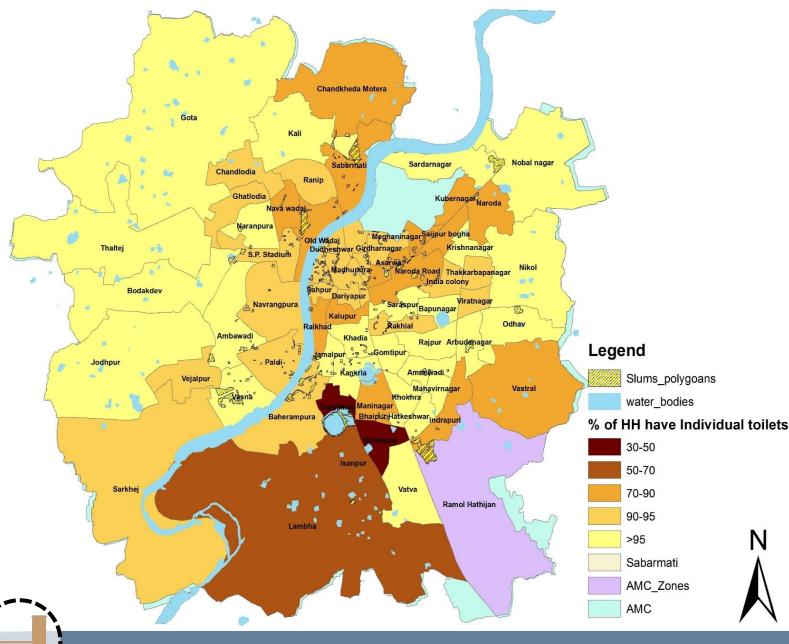
Lack of Regular Operation and Maintenance of Public Toilets

Weak Institutional Capacity for providing Suction Emptier Vehicles

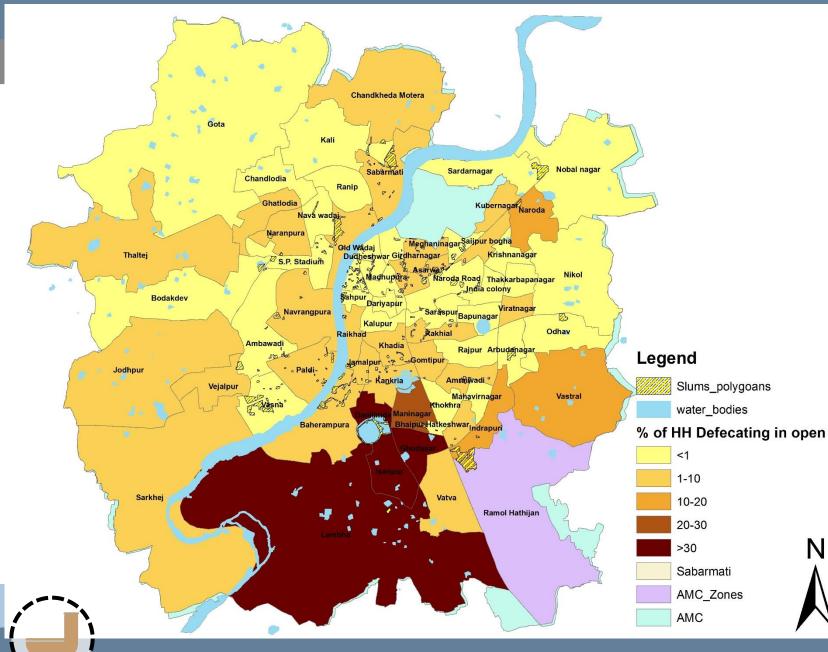
Improper Design of Septic Tanks

Improper Design of Septic Tanks

Lack of Public Toilets

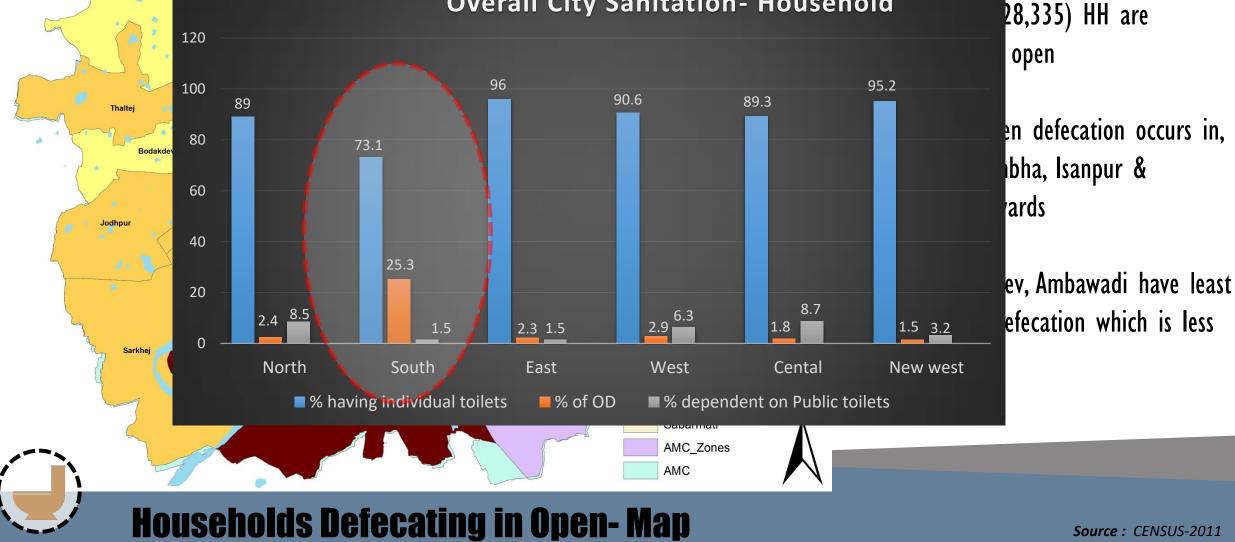

Hygiene Problems due to Open Defecation in Slums

Lack of Regular Operation and Maintenance of Public Toilets Weak Institutional Capacity for providing Suction Emptier Vehicles Improper Design of Septic Tanks

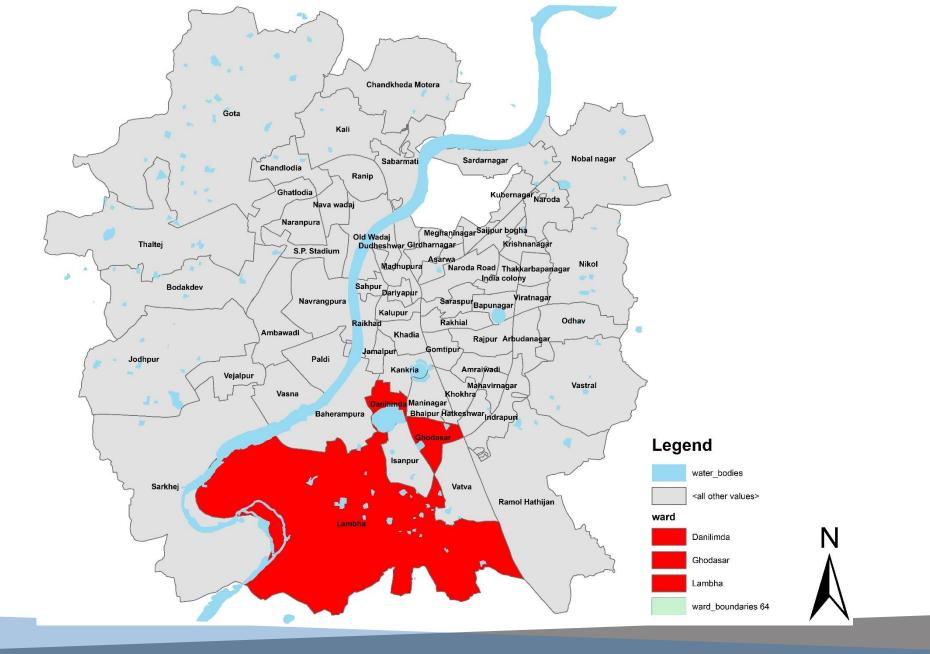


- Total 93.4% HH have individual toilets in the city.
- Ward Danilimada and Ghodasar have least individual toilets at HH level which is less then 50%.
- New west zone have maximum % of Individual toilets.

^{7/2}Household with Individual Toilet - Map


Source : CENSUS-2011

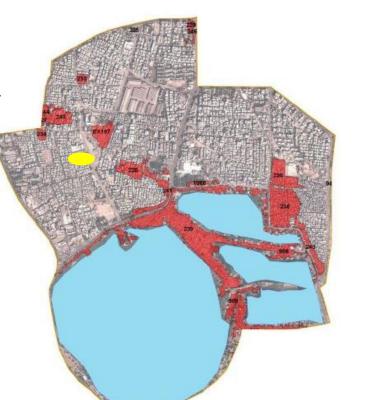
- Total 2.4% (28,335) HH are defecating in open
- Maximum open defecation occurs in, ghodasar, lambha, Isanpur & Danilimada wards
- Gota, Bodakdev, Ambawadi have least % of open defecation which is less then 1%.


Households Defecating in Open-Map

Overall City Sanitation- Household

Chandkheda Motera

Source : CENSUS-2011



Study Area

Danilimda

- Bhakt Vallabh
- Dhola Na Chapra
- Bhandariya Kuva Ni Chali
- Bharvad Vas
- Bhil Vas Na Chapra
- Sojatwala Ni chali
- Gajanand Na Chapra
 / Kanu Bechar Na Chapra
- Govindbhai Ni Chali
- Millat Nagar
- Navabkhan Na Chapra
- Patel Vas Na Chapra
- Shah Nagar Na Chapra
- Suryanagar Na Chapra
- Thakor Vas Na Chapra
- Vadivas
- Tirkarvas
- Musa Miya Ni Chali
- Ektanagar

Ghodasar

- Kantinagar
- Ramwadi
- Bhilwas
- Laxmanbapa Ni Chali
 - Laxman Nagar Ni Chali

Danilimda

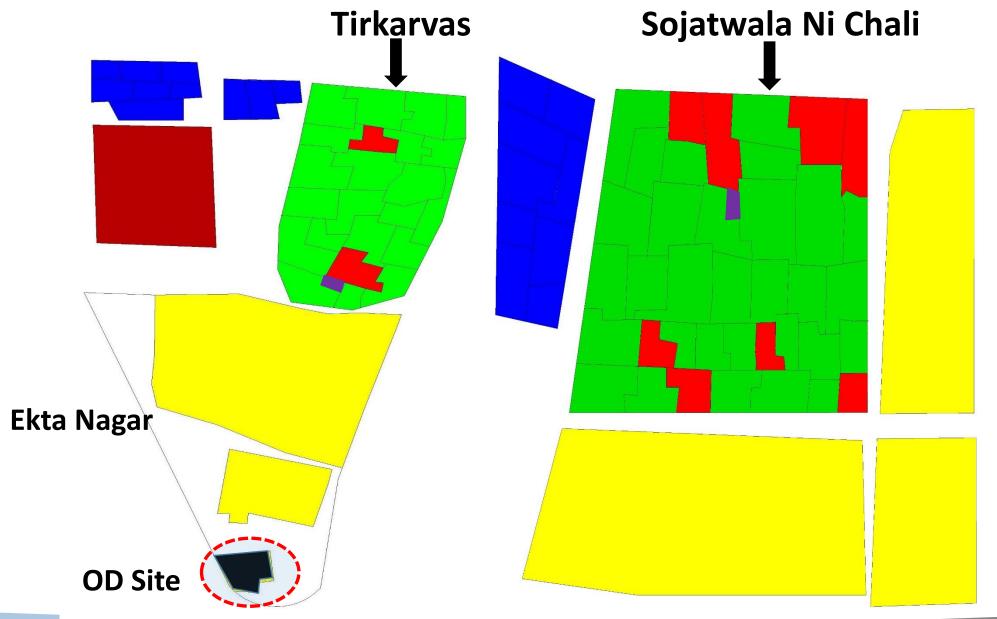
Tirkarvas

Population	110
No. of households	25
HH with ind. toilet	21
HH dep. On community toilet	2
HH resorting to OD	2

Sojatwala Ni Chali

Population	121
No. of households	31
HH with ind. toilet	23
HH dep. On community toilet	5
HH resorting to OD	3

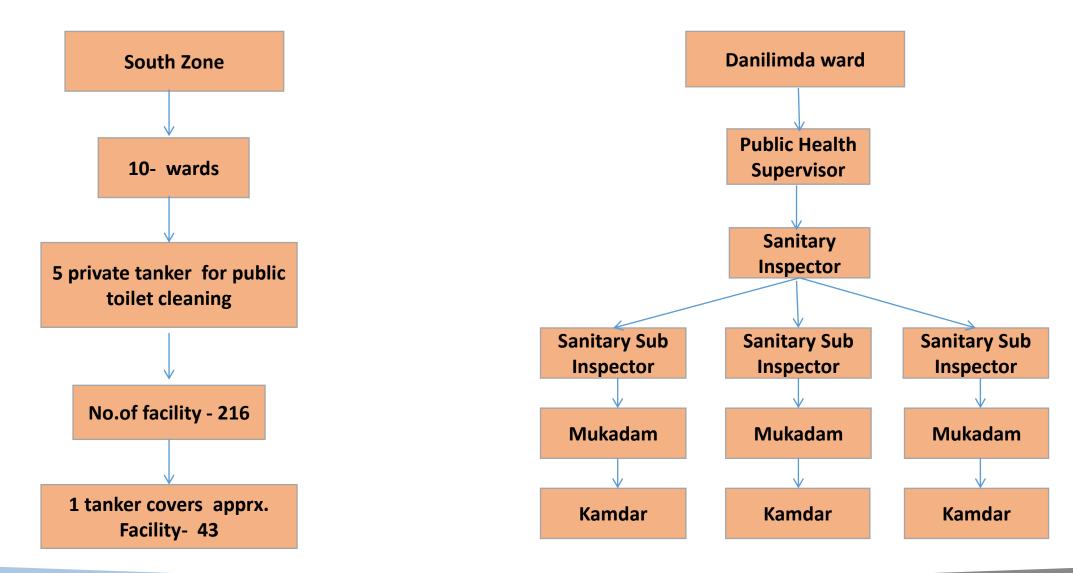
Ghodasar


Bhilvas

Population	71
No. of households	17
HH with ind. toilet	12
HH dep. On community toilet	4
HH resorting to OD	2

- Land ownership- Own
- 100% water connection but 0% in toilets
- Have **no space** to built individual toilets

- Land ownership- Own
- 100% water connection 0% in toilets
- **Have space** to built individual toilets



Source : Primary survey

Tirka	irvas	Sojatwala	a Ni Chali	Bhilvas	5
No. of Seats	8 (4 each)	No. of Seats	3 (No section for female)	No. of Seats	4 (2 each)
No. of users	30-40/day	No. of users	20/day	No. of users	15-20/day
User within the community- 7-8/day Maintenance	7-8/day	User within the community- 7-8/day	7-8/day	User within the community- 7- 8/day	12-15/day
	 Lack of space and for individual 	Maintenance	AMC Non-functionality 	Maintenance	ΑΜС
Reason for Open Defecation:	 toilets Mainly done by children No daily cleaning No water connection Worst condition of CT 	Reason for Open Defecation:	 Non-functionality of CT Lack of space and money for individual toilets Mainly done by children No daily cleaning No water connection 	Reason for Open Defecation:	 lack of money for individual toilets Poor condition of CT No daily cleaning No water connection
		_			

Community Toilets

Institutional Framework

Source : Ward office- Danilimada

- There are total 43 Community Toilets in the Ward.
- Municipal corporation constructs it, maintains and handle the complains regarding it.
- There is only one Nuisance Tanker (I driver and 2 cleaners), for the entire ward. Driver carries the log sheet which is reviewed and signed by the Sanitary Sub Inspector daily.
- The Nuisance Tanker is given on contract basis.
- No Daily monitoring and supervision is done by the Sanitary Inspector.

Danilimda-Analysis

Source : AMC, primary survey

Construction

Land	100% by corporation
Design & Estimation	By NGO
Building Structure(Capital cost)	100% by corporation
Water supply, Electricity Bill & Drainage	Bill pay by NGO
No. of Seats	8

Years	Capital expenditure (Rs)
Year-1	8,00,000
Total	8,00,000

0 & M

100 % maintenance of sanitary block done by NGO

Maintenance include cleaning ,repairing and collection of user charges.

Years	O & M (Rs)	Receipt(Rs)
Year-1	-	-
Year-2	1,85,760	1320
Year-3	1,95,048	1386
Year-4	2,04,800	1455
Year-5	2,15,040	1528
Year-6	2,25,792	1604
Year-7	2,37,082	1685
Year-8	2,48,936	1769
Year-9	2,61,383	1857
Year-10	2,74,452	1950
Total	20,48,295	14,555

- salary of cleaner
- salary of care taker
- cleaning material
- electricity bill
- water supply bill

Construction

Land	100% by corporation
Design & Estimation	By Engineering Department
Building Structure(Capital cost)	100% by corporation
Water supply, Electricity Bill & Drainage	Bill pay by corporation
No. of Seats	8

Years	Capital expenditure (Rs)
Year-1	5,00,000
Total	5,00,000

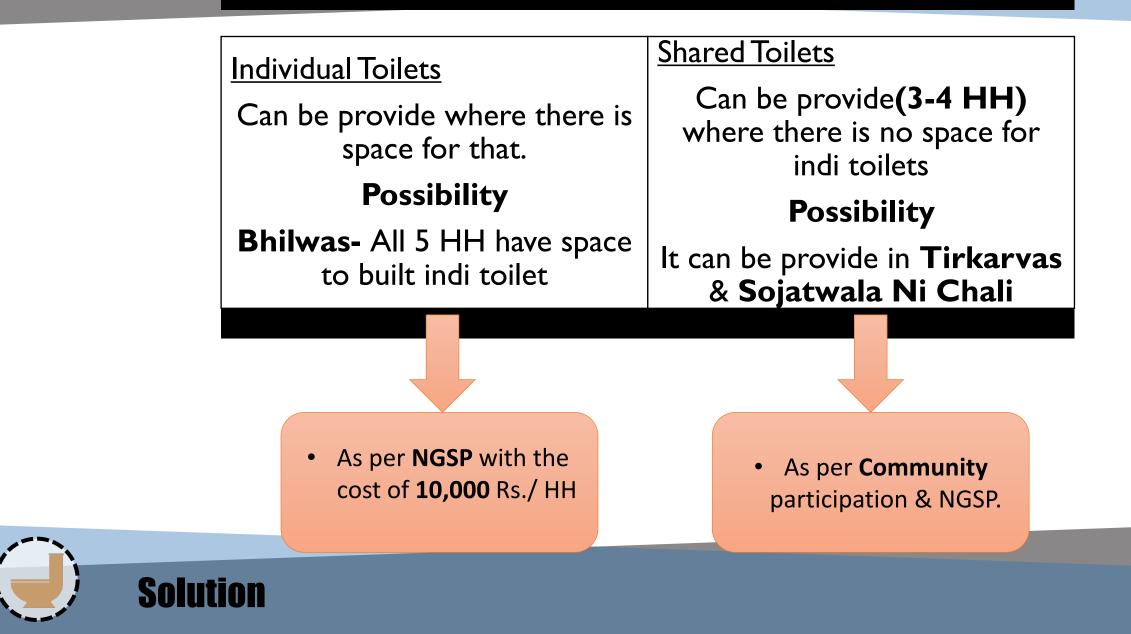
0 & M

100 % maintenance by corporation

Maintenance include cleaning ,repairing and collection of user charges.

Years	O & M Expenditure(Rs)
Year-1	-
Year-2	96,000
Year-3	1,00,800
Year-4	1,05,840
Year-5	1,111,32
Year-6	1,16,689
Year-7	1,22,523
Year-8	1,28,649
Year-9	1,35,082
Year-10	1,41,836
Total	10,58,550

- salary of cleaner
- cleaning material
- electricity bill
- water supply bill



Difference

Source : Primary survey

Private Toilets

Tendering system:

- There should be qualifying criteria for O&M contract of public toilets. Which is very less at present.
- Equal emphasis given to financial & technical qualification, which is not there.
- Due to this, experienced & large size agency will get O&M contract.

Contract system:

- Specification of cleanliness standards
- The contract documents should specify the cleanliness standards which the agency has to achieve.
- Provision of accountability & penalty for bad cleanliness and mis-management of toilet.

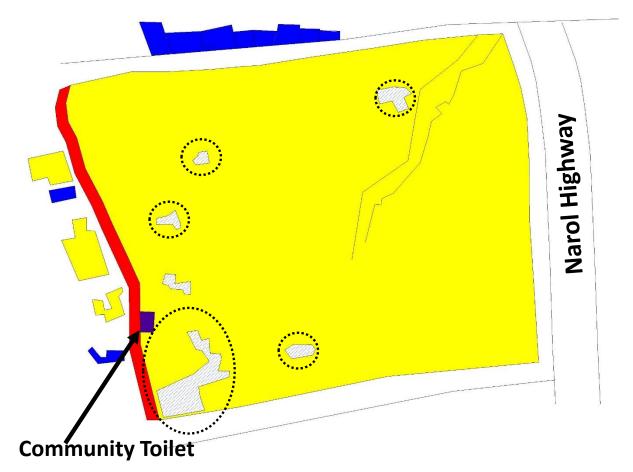
Centralized information system

		<image/> <section-header></section-header>	water	ther values> r_bodies N ther values> bha irmati
		HH with ind. toilet	196 54	1%
		HH dependent on public toilets	11 39	%
		HH resorting to OD	152 42	2%
		No. of Community Toilets	2	
Lami	Dha	No. of Day & Use tailets	1	

Source : Census-2011, Slum Free City Action Plan Under Rajiv Awas Yojana

No. of Pay & Use toilets 1

- No. of Huts- 700
- Land ownership- Govt.
- Source of water- Tanker(4-5)
- No sewer lines
- **IIO** HH have ind. Toilets as per NGSP
- No. community toilet-
- More than **70%** are defecating in open



Source : Primary survey

- No. of Seats-10 (5 each), 2 Bathrooms
- No. of users- 300/day
- Maintenance- by **Private**
- Chargeable
- Timing- 6 am 6pm

Reason for open defecation:

- No individual toilets
- Only I community toilet for more than 300 users
- **Timing** issue
- Community toilet is chargeable

Source : Primary survey

Option-1	Option-2	Option-3
 100% individual toilet 	 100% Community toilet 	 50% individual 50% Community

- **Option-I**:- In this each HH will have individual toilet connection.
- **Option-2**:- All the HH will have access to community toilets with sufficient seats
- Option-3:- some of will have individual facility and some of will have community toilets

Option-3

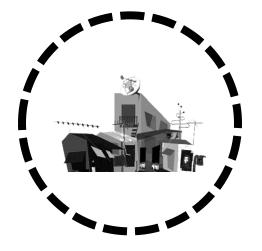
• 55% individual

45%
 Community

- Total no. of users for community toilets= 200(No space to built indi. toilets)
- For proper maintenance better to provide small but more than one community toilets within the community.
- Users will be fixed for each toilet
- For each Block no. of users will be
 50
- So will have **4** new community toilets

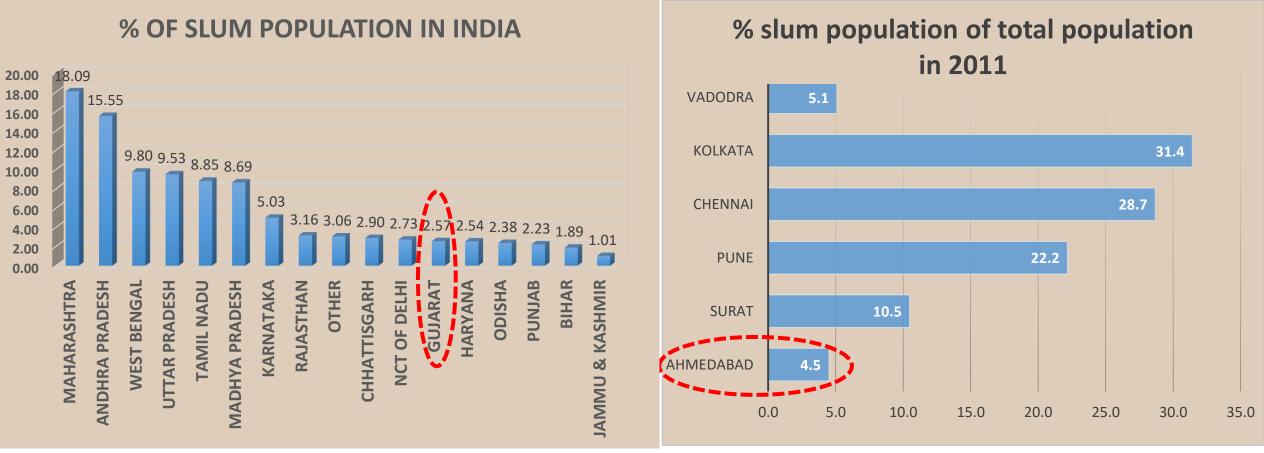
- In Sarinyavas 55% HH have space for individual toilet
- For rest of 45% will be provided by new community toilets
- There will be provision of 4 new community toilets.
- Timimgs-24*7
- Free of cost
- Community will keep the key of that toilet

Description	Unit cost Rs.	Total Lakhs
Construction of New Community toilet (Septic tank + Soak pit)	3,25,000	3,25,000*4 = I 3 lakhs
Construction of New Individual toilets	15,000	I 5,000*200 = 30 lakhs



Source : Slum Free City Action Plan Under Rajiv Awas Yojana

Sr. No	Description	2015-16	2016-17	2017-18	2018-19	2019-20	Total
1	Restoration of Existing Public & Pay & Use Toilets						28 .3Cr.
2	Construction of individual Toilets-						51.4 Cr.
3	Construction of new Public & Pay & Use Toilets-						22.3 Cr.
							102 Cr.



SLUM SANITATION

SLUM SITUATION

- In total population, rank of Gujarat is 9th in India with 5% of total population.
- In slum population, rank of Gujarat is 12th in India with 2.57% of total slum population.
- Ahmedabad holds 1st rank in total population (9.22%) share and 2nd in slum population (14.92%) surat is 1st

SLUM CONDITION IN AHMEDABAD

ACCORDING TO CENSUS

- Census defines, slum as a residential areas where
 dwellings are unfit for human habitation by reasons of
 dilapidation, overcrowding, faulty arrangements and
 design of such buildings, narrowness or faulty
 arrangement of street, lack of ventilation, light, or
 sanitation facilities or any combination of these
 factors which are detrimental to the safety and health
- A compact area of at least 300 population or about 60-70 households.
- With this definition and criteria **2.5** lakh peoples of Ahmedabad are living in slum.
- Slum contains 4.5% of total population of Ahmedabad.

ACCORDING TO AMC STUDY

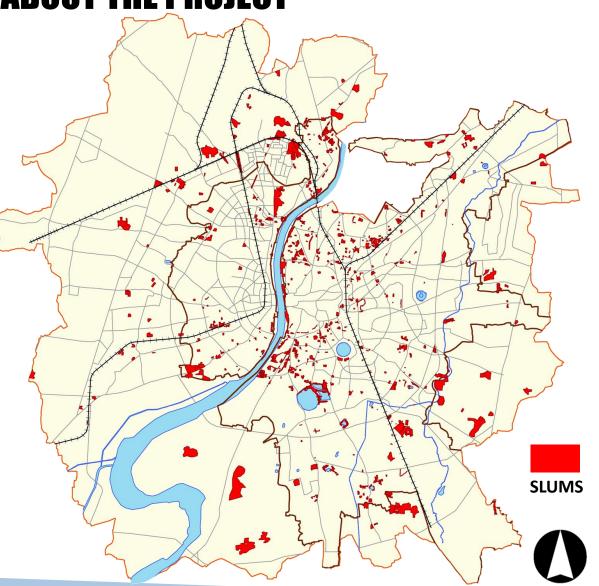
- A slum is a compact settlement of at least 10 houses that are built mostly with non-durable materials and poor construction, temporary nature, crowded together with inadequate sanitary and drinking water facilities.
- According to this definition there are 691 slum settlement and 7.27 lakh slum population.
- Slum contains [3.] % of total population of Ahmedabad.

Source : Slum Free City Action Plan: Ahmedabad Municipal Corporation

Source : census India 2011, Slum Free City Action Plan: Ahmedabad Municipal Corporation

Source CENSUS INDIA,

1971 19	IN AHMEDABAD	91 200 Individual toilet scheme (1990)	01	Present
Slum survey (1974)		 80:20 scheme was modified and introduces 9 AMC contribution 90% and 10% by beneficiar 	ies	
 Slum census carried out in 1976 Family card was issued to all the slum dwellers. 	Toiletscheme(1980-81)• 80:20• ndividualtoilet	 Scheme reaches to approx. 14000 families till Slum Networking Project Objective: integrate slums with cit Main component: Physical infrastr Scheme reaches to 47 slums with 	(1996) y & city infrastructure ructure, land tenure for 10 years, community development etc.	
 No of pockets – 1200 No of huts – 82177 Resolution all these slum dwellers are eligible for legal individual services. 	 scheme was introduced State/AMC contribution 80% and 20% by beneficiaries Scheme reaches to approx. 3000 families in slum over 10 years of period due to rigid specification and complex procedure 	Won Dubai International Award	 AMC-NGO Slum Survey Pocket level survey carried out for all slums. Service level: Water Cons:35% & toilet: 34% in slums NOC Schem To reach slums where services not provided due to slums develor or SNP covered slums (High court order) Unique scheme to overcome the issue of tenure and ownership 	ne (2002) p after 1976
Resolution Later on AMC has taken 1976 slum census as cut off date. Hence, eligible for alternative provision in case of eviction			 Nirmal Gujarat Scheme Program & USP (2006) With the goal of becoming open defecation free city, this introduced by state under urban year Nirmal Gujarat Approx. 80000 individual toilets has been constructed in 6 BSUP under JnNURM (Construction of 18976 new housing unit for RAY- Prepare of Slum free city Advised to the station survey for al DPR preparation for Slum Free City Action Plan 	scheme was years 2005-12) urban poor
/>				



Source : AMC diary, Slum Free City Action Plan: Ahmedabad Municipal Corporation

			Remarks
Ι	Slum Clearance (unofficial name)	Gujarat Slum Clearance Board	Implementing formal housing programs for low-income groups and upgrading slums area
2	Environmental Improvement of urban slums (EIUS)	AMC	
3	Urban Community Development Program	AMC	UCD runs different activities related to public health, education, employment and public awareness. In collaboration with different Government Sponsored NGOs.
4	Slum Improvement Partnership (SIP)	AMC	Comprehensive up gradation through improved health, education, skills upgrading, access to final mechanisms and physical infrastructure
5	Deen Dayal Upadhyay Antodaya Yojana (SNP)	AMC	Upgrading/improving infrastructure in slums in partnership with local residents, NGOs , private sector, etc. along with integration of the slums with the city's infrastructure within a finite period.
6	500 NOC Scheme	AMC	The scheme aims at providing slum residents with a No Objection Certificate (NOC) that allows them to apply for legal individual sewage and water connections for their house. "500" relates to the amount the applicant has to pay to get the NOC."
7	JnNURM	AMC	Under JnNURM scheme BSUP & IHSDP were related to slum development
8	Swarnim Jayanti Mukhya Mantri Shaheri Vikas Yojana (SJMMSVY)	AMC	Garib Samruddhi Yojana, Rajiv Awas Yojana (RAY), Water Supply, and Drainage

ABOUT THE PROJECT

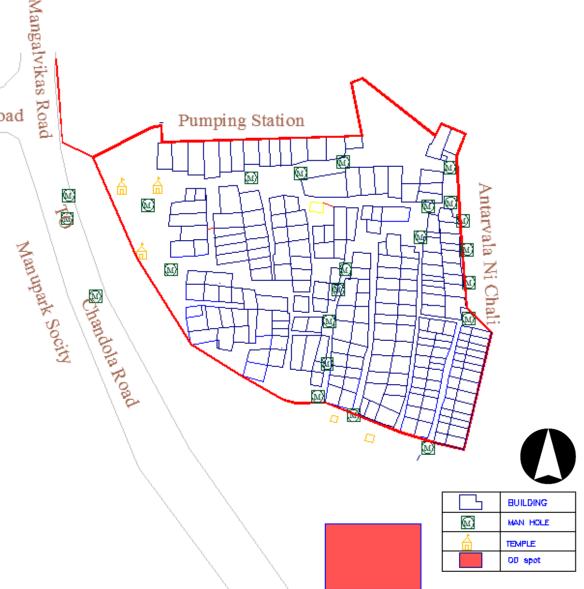
- According to AMCs definition of slum there are 691
 Slums pockets in AMC boundary.
- Out of them **176** slums are on government land which contains 31% of total slum HH and 18.5lakh sqm land.
- Project objective is provision of basic services like water and sanitation in case of slums located on government land and peripheral area.

Project life Expected life of project is 4 years.

Source : census India 2011, Slum Free City Action Plan: Ahmedabad Municipal Corporation

WHY IS THE PROJECT REQUIRED?

- Out of Total 12.711akh HH in Ahmedabad 1.681akh HH are living in slum.
- Total 1.68lakh HH are living slum and out of them 19% HH are defecating in open.
- 125 slums doesn't have water supply connection
- 319 slums doesn't have individual water connection
- 145 slums doesn't have under ground sewerage in vicinity.
- I24 slums doesn't have I00% coverage of under ground sewerage network.
- Slums which are located on government land are considered as illegal settlements and location of those land are too important for government strategically as well as financially.



Source : census India 2011, Slum Free City Action Plan: Ahmedabad Municipal Corporation

CASE : 1 EKTA NAGAR

- Ektanagar is an 50 to 60 year old slum settlement located in Danilimbda ward having Alishan Road the area of 0.6 hectare.
- There are 221 huts in Ekta nagar.
- Population of the slum is nearly about 1100.
- Population density is 1833 person/hectare.
- The land of the slum is owned by government.
- Government had declared that land is reserved for ESR.
- The residents are mainly engaged with labour work.
- Some of them are also engaged in illegal work.

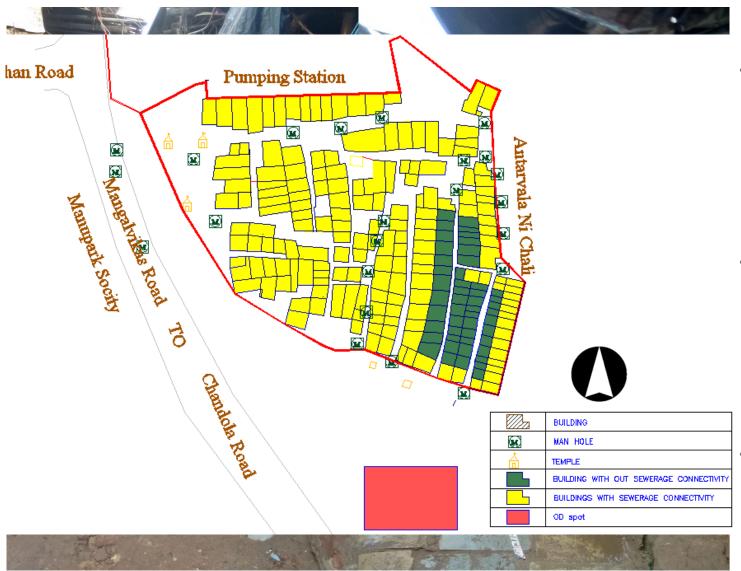
TOILET COVERAGE

• Existing situation

- I. 60 toilets are constructed under NGSP scheme
- 2. Approx. 100 HH are defecating in open
- Problems
 - I. Defecation spot is 100m away
 - 2. Women safety
 - 3. Some toilets are not connected with sewerage line.
 - 4. Low mentality of sharing.
- Proposals
 - I. Provide share toilets where possible
 - 2. Provide community toilet
 - 3. Provide individual toilets.

TOILET COVERAGE

- Existing situation
 - I. 60 toilets are constructed under NGSP scheme
 - 2. Approx. 100 HH are defecating in open
- Problems
 - I. Defecation spot is 100m away
 - 2. Women safety
 - 3. Some toilets are not connected with sewerage line.
 - 4. Low mentality of sharing.
- Proposals
 - I. Provide share toilets where possible
 - 2. Provide community toilet
 - 3. Provide individual toilets.



ABOUT WATER SUPPLY

- Existing situation
 - I. Main source of water supply is municipal water.
 - 25 water connection with 4 stand post (6 taps).
 - 3. Daily 90 mins. Water supply.
 - 4. Average 800 liter water from every tap.
 - 5. Extra water fetched from DHOBI GHAT (150m away)

Problems

- I. Daily supply of water < 25 lpcd
- 2. Existing connections are illegal
- 3. Illegal connection decrease the pressure and so the discharge.
- 4. Usage of motorized pump causes pressure problem

ABOUT SEWERAGE

- Existing situation
 - I. Most of houses have accessibility to sewerage.
 - 2. Main line passes through many streets.
 - 3. In case of connected HH only toilets are connected with it.
- Problems
 - Some streets are too narrow to laid down sewage network.
 - 2. Only toilet connection with sewerage can not provide sufficient velocity to flow.

Solution

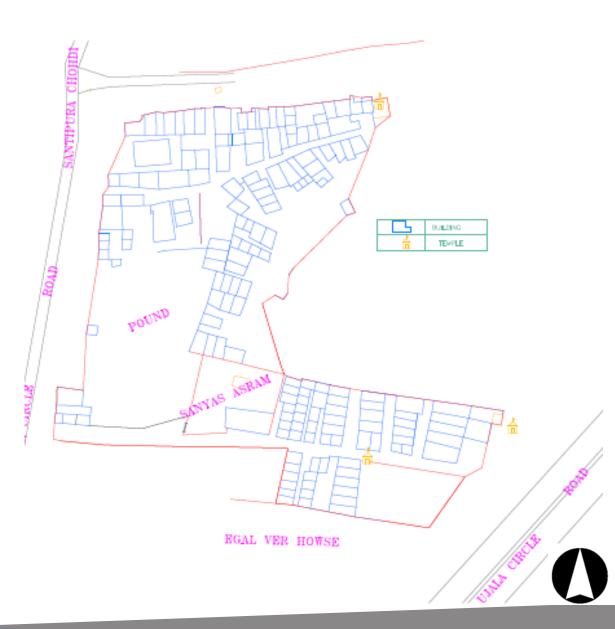
- Remove encroachment from streets.
- 2. Connect the bathrooms (chokdi) with sewerage network.

OPTIONS FOR WATER SUPPLY

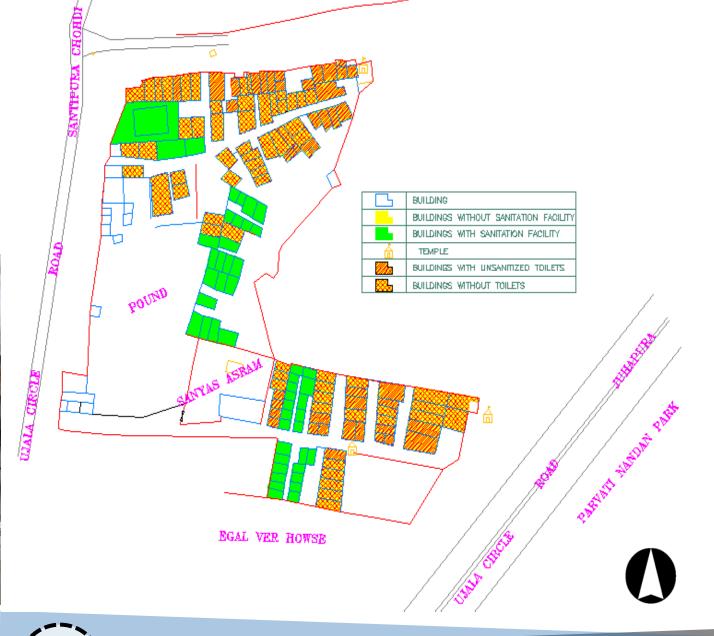
Options	Intervention	Advantages	Disadvantages	Cost
Make encroached stand post public	 With current discharge rate and supply of timing 137 more taps will be required. But by making encroached connections public we can increase 69 more taps. 	 No additional capital cost will required Eliminates usage of pumps. 	 Beneficiaries can not be charged. It will create conflicts between users. Possibility of encroachment. Maintenance of stand post will be on ULB. It will creates naissance point 	 It will increase revenue expenditure.
Provide individual water connection	 <u>Requires additional</u> <u>pipe network of</u> 500 meter. JPGRADATION 	 Water charges can be implemented on users. No conflicts between users. Removes possibility of encroachment. 	 <u>Requires high capital</u> <u>cost.</u> <u>Using of pump can</u> <u>causes damage to</u> <u>pipelines and</u> <u>contaminate the water.</u> 	• <u>400000 for</u> <u>laying pipe line</u> <u>network.</u>

Requirement in sanitation sector

- Connect the toilets with sewerage line which are not connected.
 - 9 toilets are not connected with under ground sewerage network.
 - Narrow streets are the main reason for it.
- Provide share toilets
 - There are 81 huts having space problem for construction of toilet.
 - For those houses provide share toilets between two houses.
- Construction of individual toilets
 - There are 46 huts have space for toilet construction.
 - Construct individual toilet in those houses.
- Construction of sewerage network
 - Central part of slum is not connected with sewerage network..


COST ESTIMATION

PROVIDE SEWERAGE NETWORK & CONNECT THE TOILETS WITH SEWERAGE LINE			SECTOR	PROPOSAL	ESTIMATED COST
TOILET UNITS 9		9000	WATER SUPPLY	Provide individual water connection	400000
Units	1000 verage line 100 meter 1200 per meter	120000		Provide sewerage network of 100 meter	I 20000
PROVIDE SHARE & INDIVID TOILET UNITS 83			SANITATION	Construction of 46 individual and 37 share toilets.	664000
UNIT COST	8000	664000	TOTAL		1184000
TOTAL664000PROVIDE INDIVIDUAL WATER CONNECTION					
Units Unit cost	500 m 800 per meter	400000			



CASE: 2 SHANKARPURA

- Shankarpura is a 30 year old slum settlement located in Sarkhej ward having the area of I hectare.
- There are 173 huts in Shankarpura.
- Population of the slum is about 900.
- Population density is 900 person/hectare.
- The land of the slum is privately owned.
- The slum is authorised as they are getting municipal tax receipt.
- The residents are mainly engaged with labour work.

ABOUT TOILET

- Existing situation
 - I. 26 toilets are constructed under NGSP for free.
 - 2. 20 toilets are constructed 3 years ago under 90:10 scheme.
 - 3. There is pay & use toilet.
- Problems
 - Residents are not using pay & use toilet because of charges taken by them.
 - 2. Toilets are not connected with sewerage network.
 - 3. There is no sewerage network in vicinity.

ABOUT WATER SUPPLY

- Existing situation
 - I. No municipal water supply.
 - 2. 3 private tube wells.
 - Charges 300rs/month and gives water from 8am to 11am.
 - 4. Many people fetches water from peripheral areas 0.5km from their houses for free.
- Problems
 - I. There is no water supply network in vicinity.
 - 2. For most of residents water charge is not affordable.
 - 3. Water of one tube well is saline.
 - 4. After paying charges they are not getting sufficient water.

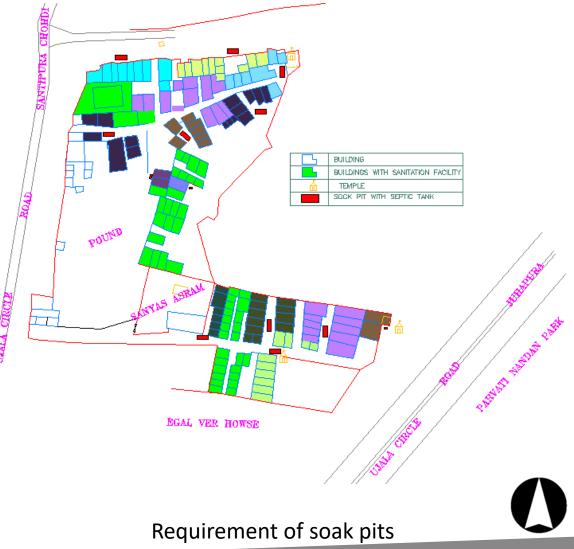
SLUM UPGRADATION

ABOUT SEWERAGE

- Existing situation
 - I. There is no under ground sewerage network
 - 2. They are releasing the brown water in open .
 - 3. They are releasing their waste water in nearby pond through open drain.
- Problems
 - I. There is no main sewerage line in vicinity.
 - 2. Slum is located on lower level then road network.

OPTIONS FOR WATER SUPPLY

Possible options	Advantages	Disadvantages	Future intervention	Cost
<u>Water supply to</u> individual HH from tube wells	 <u>Settlement will have</u> <u>network ready for</u> <u>future</u> <u>Supplied water can be</u> <u>charged to</u> <u>beneficiaries.</u> 	 <u>Capital cost will be</u> <u>high.</u> <u>O&M should be</u> <u>done by ULB.</u> 	 Laying of water supply network. Provision of tube wells with sufficient pumping capacity. 	<u>7,80,000</u>
Water supply to stand post from tube well	 Low capital cost compared to other options. 	 Beneficiaries can't be charged. Causes chaos on the stand post. 	 Provision of tube well with pumping machinery 	6,25,000
Water supply to community toilets from tube well	• Low capital cost compared to other options.	 O&M should be done by ULB. 	 Provide a tube well with pumping machinery 	I,25,000


OPTIONS FOR SANITATION

SLUM UPGRADATION

OPTIONS	ADVANTAGES	DISADVANTAGES	FUTURE INTERVENTION	COST
INDIVIDUAL TOILET WITH SOAK PITS AND SEPTIC TANK	 O&M will be done by users 	 Higher initial cost Requires individual water connection 	 Construction of 64 individual toilets and 110 soak pit with septic tank 	18,32,000
PROVIDE INDIVIDUAL TOILETS WITH SHARE SOAK PITS AND SEPTIC TANK	 <u>O&M will be done</u> <u>by users</u> <u>Lowe initial cost</u> <u>then other option</u> 	• <u>Requires individual</u> water connection	 <u>Construction of</u> <u>64 toilets and 11</u> <u>soak pits with</u> <u>septic tank</u> 	<u>10,62,000</u>
PROVIDE COMMUNITY TOILET	 No additional water supply will require. 	 Community participation became must for O&M. Existing toilets will be of no use. 	 Construction of 2 pair toilets each with 8 toilet seats including tube well with machinery 	I 5,80,000

INDIVIDUAL TOILETS WITH SHARE SOAK PITS AND SEPTIC TANK

- There are 46 HH having individual toilets but not connected with sewerage system and 64 HH doesn't have toilets too.
- For that we have to provide individual toilets and share soak pits with septic tanks.
- It will require 64 toilets and 11 soak pits.
- 8 big size tanks in between 10 HH and 3 for in between 5 HH.
- Dimensions (in meter) of soak pits for 50 users = 5*2*1.24
- Dimensions (in meter) of soak pits for 20 users
 = 2.3*1.1*1.8
- Septic tanks will require cleaning at interval of 3 year.

Source : Manual on Sewerage and Sewage Treatment Systems, 2013, Part A: Engineering

PROJECT FINANCE

For financing this project the main sources of fund are grants from central and state government.

SECTOR	WORK	GRANTS	PUBLIC PARTNERSHIP IN CapEX	PUBLIC PARTNERSHIP IN OpEX
	Laying water supply network	70:20:10 schemeAMRUT	-NIL-	-NIL-
Water supply	Tube well with machinery	 AMRUT Swarnim Jayanti Mukhyamantri Shaheri Vikas Yojana 	-NIL-	
sanitation	Individual & share toilets	 Swachh Bharat Mission Mahatma Gandhi Swachhata Mission. Swarnim Jayanti Mukhyamantri Shaheri Vikas Yojana 	-NIL-	
	soak pits with septic tanks	AMRUTMGSM	-NIL-	
SIUM UPGRADATION				

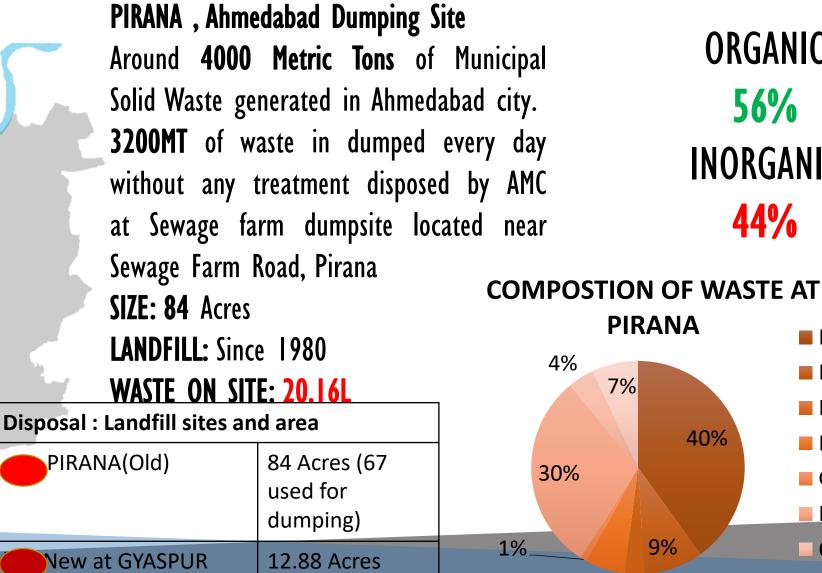
PROJECT FINANCE

	Per HH expenditure	HH	TOTAL		ULB	State	Center
Water supply in case I	3000	14713	4.41	Water supply in case I	0.44	0.88	3.09
Sanitation in case I	11000	10711	11.78	Sanitation in case I	0.80	8.57	2.41
Water supply in case 2	5000	9751	4.88	Water supply in case 2	0.49	0.98	3.41
Sanitation in	14000	9167	12.83	Sanitation in case 2	1.38	7.33	4.13
case 2	1000	7107	12.05		3.11	17.76	13.04
		44342	33.91				

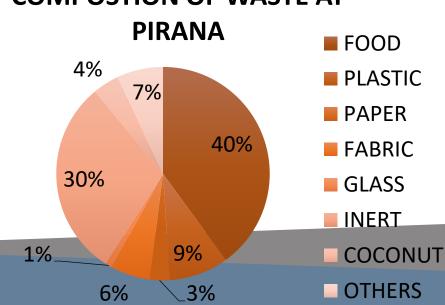
- Based on an amendment to the Bombay Municipal Corporation Act 1949 in 1970s, AMC is obligated to spend at least 10 percent of its annual budget for improving basic services in slums
- According to case study applying it to rest of the slums by taking per HH expenditure.
- Project will get it's major funds through grants of state and center under various schemes initiated by them, which is 50% from state government and 40% from central government.

Source : Slum Free City Action Plan: Ahmedabad Municipal Corporation

RECLAIMING DUMP SITE


TRANSFER STATIONS

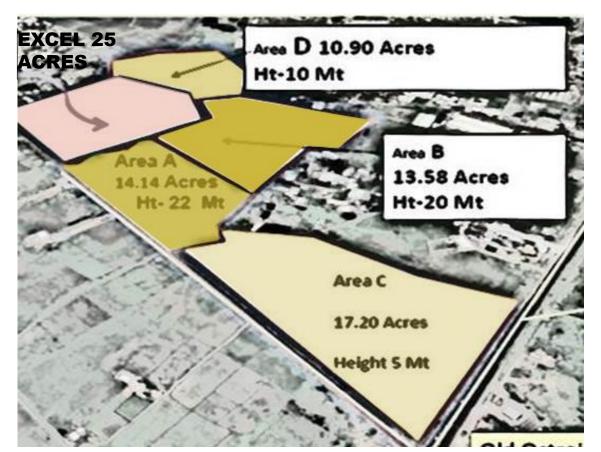
GYASPUR NEW


DUMPING SITE

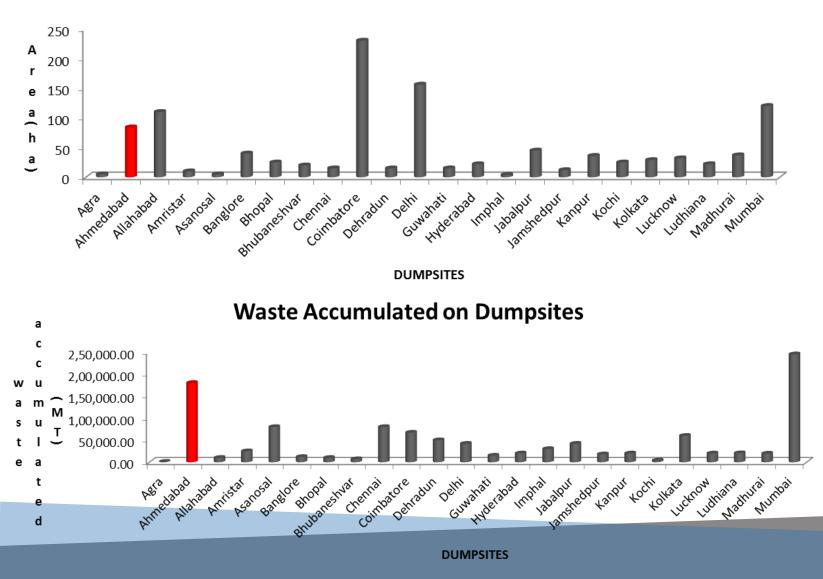
PIRANA DUMPING SITE

PIRANA DUMPING SITE

ORGANIC 56% INORGANIC 44%

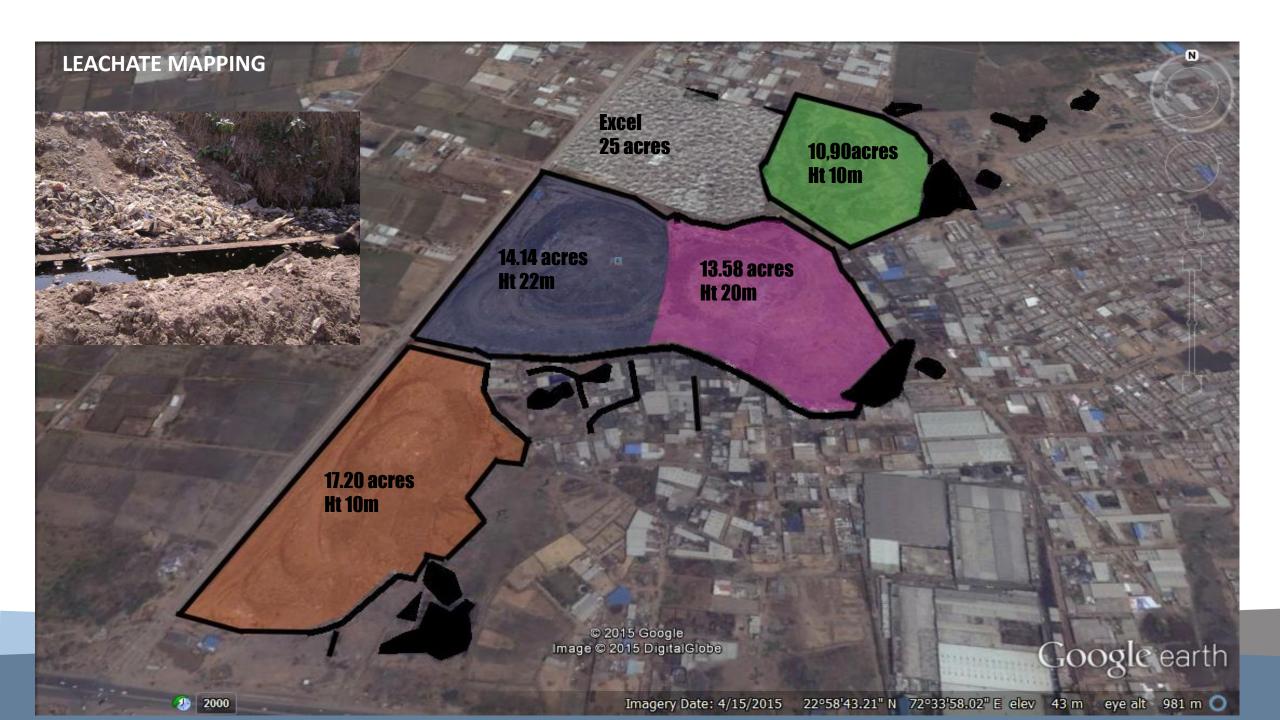

Source · CDP Ahmedahad CSP Ahmedahad

OVERVIEW OF PIRANA DUMPING SITE



Source : SELF. SCIENTIFIC CLOSURE OF PIRANA DUMPSITE 2010

Dumpsites in India



TOTAL WASTE DUMPED TILL 28-02-2015 : 20.16 LAKH MT (COLLECTED 21.58 LAKH MT)

3200 MT/ DAY OUT OF 3700 MT/ DAY COLLECTED

- 90% waste being dumped
- Nuisance to surrounding
- Leachate level SOIL POLLUTION
- GW pollution
- annually 1406 Gg yr-1 methane emissions occur from solid waste landfill in Ahmedabad.
- Methane emission 10 times to 1 ton
 CO2
- A step towards Zero Waste

Source : Greenhouse Gas Emissions and Reduction Strategies Related to Solid Waste Management thesis report by Nishant Pandya, ABELON 2010, DEVANSU PANDIT GUIDED THESIS BT0475

AMC'S PROPOSALS SO FAR..

Consultant	USEPA REPORT	Cargo	DNP
Year	2007	2011	2012
Proposal	(a) Landfill gas Collection &Utilisation(b) Landfill Mining & Reclamation	Landfill Mining with Screening	Capping & Gas Extraction
Technology	 (a) Gas extraction well (b) LFG utilization plant (c) Power plant (d) Treatment plants 	W TO E plant Composting, Eco bricks, RDF	(a) Multri Well GasExtraction(b) Capping mineral linear
End product	 (a) 1:Electricity n 2: Sale of LPG (b) Nature/ Park: RDF, Bricks, compost 	Reclaimed land: hospital, malls, institutional, commercial	Green Belt / Housing/ Commercial Development
Expectations/suggestions from AMC	Sale of LPG highly recommendable. High NPV, IRR &CER	C & A No finance help 75% reclaimed land Lease 99yrs	Revenue for AMC from 25 Acres front Land
Expense in Cr	8.41	Capital: 125	138

AMC'S PROPOSALS SO FAR..

Consultant	JITF	Innovative	Clean Energy
Year	2013	2013	2013
Proposal	Ground zero by waste to Energy power plant (DBOO MODEL)	Landfill Mining with SPV with technical, financial, power generation capabilities.	No clear proposal
Technology	Mass Burn Technology	 (a) Waste Treatment: Bio-mining & Brick Production (b) Power Generation: Plasma Gasification 	
End product	Sale of Power to TORRENT	(a) Bricks(b) Power generation	
Expectations/suggestions from AMC	Clearances & approvals Guidance in study un-Interrupted old & fresh waste Treated wastewater from STP 20 Acres land Single window Service Support in PPA with TORRENT	Support in Study: Clearances Storm water paths Earth moving equipment	
Expense in RS Cr	250	135-140/ 1000MT urce :CLOSURE OF SCIENTIFIC DUMPING SI	TE AHMEDABAD

AMC'S PROPOSALS SO FAR..

The feasibility study was carried out on 2013 by various companies like Cargo, DNP, Innovative, Jindal, Clean Energy.

IL& FS In MAY 2015 has been give work Order for Project Management Consultancy for Assessment, Evaluation, Management & Rejuvenation /

Reclamation & Post Scientific Closure Management I Resource

Extraction of existing Landfill site at Pirana, Ahmedabad

IL& FS offer of **Rs. 5 Lacs + 1.75%** of the Total Project Cost (Service Tax extra) to undertake the work of Project Management Consultancy for Assessment, Extraction existing Landfill site at Pirana, Ahmedabad is sanctioned dated 22/07/15.

Scope of work

- A. Project Development Phase
- B. Approvals
- C. Detailed engineering projects
- D. Tender documentation and Appraisal of tender and Award of Contract:
- E. PMC of the Project during construction of the Project (2 years)
- F. Periodical Supervision during 0 & M of the project for 3 years

Source :WORK ORDER CLOSURE OF SCIENTIFIC DUMPING SITE AHMEDABAD

Conversion

Source : http://www.

ACROSS THE GLOBE

Case Studies	California
Area (acres)	24
Landfill	1974-2015
Closure Technique	Capping & Gas Emission
Waste Dumped	-

Hong Kong 24

1974-2015

& Reclamation

1.6 million Tonnes

Recreational Park

Ground Zero by Mining

(Seoul, Korea)	N.Y.
856	2500
1972-2005	1948- 2001
Capping & Gas Flaring	Ground Zero by Mining & Reclamation
-	2900 Tons/ Day
World cup Park	Recreational Park

Nature Preserve

Organisation Govt. Collaboration 19 GOVERNMENT

Solar Farm

Agencies

GOVERNMENT

GOVERNMENT e-now-stunning-parks-wastelands-converted-into-parks, http://www.waste-management-world.com/articles/2015/05/landfill-site-in-california-to-beov.com/government/departments/parks-recreation/parks-trails/city-parks/Pages/mount-trashmore-park.aspx, www.florafab.com

Case Studies

ACROSS THE GLOBE

Reach

PeeksKill, Manhatton

	Deach		
Area (acres)	165	350 ha	11
Landfill	1967- 1972	1999- 2045 11 CELLS- 4CLOSED	1955- 1970
Closure Technique	Capping	Mining & Reclamation	Capping
Waste Dumped	60ft high 800ft long	1400 M Tons/ Day	-
Conversion	Recreational Park	Incineration Plant	Commercial Development
Organisation	PPP	GOVERNMENT	PPP

Source : A landfill II reclamation project: an observatory of the self, November 4, 2005 Alexandria, Virginia, http://www.supercompressor.com/culture/15-landfills-that-are-now-stunning-parks-wastelands-converted-into-parks, Fresh kills Park report, Columbia University, , Waste Management and Waste to energy in Singapore,, http://www.nytimes.com/2007/08/01/realestate/commercial/01hudson.html?

ACROSS INDIA

TUREE DUMPING STTE, NAM NUMBAL DEGNAR DUMPING GROUND Planet Chineland, Pure

Yoerabad dunp she 🦉

KODUNGAMUR, GHENRE Perungudi, CHENRE

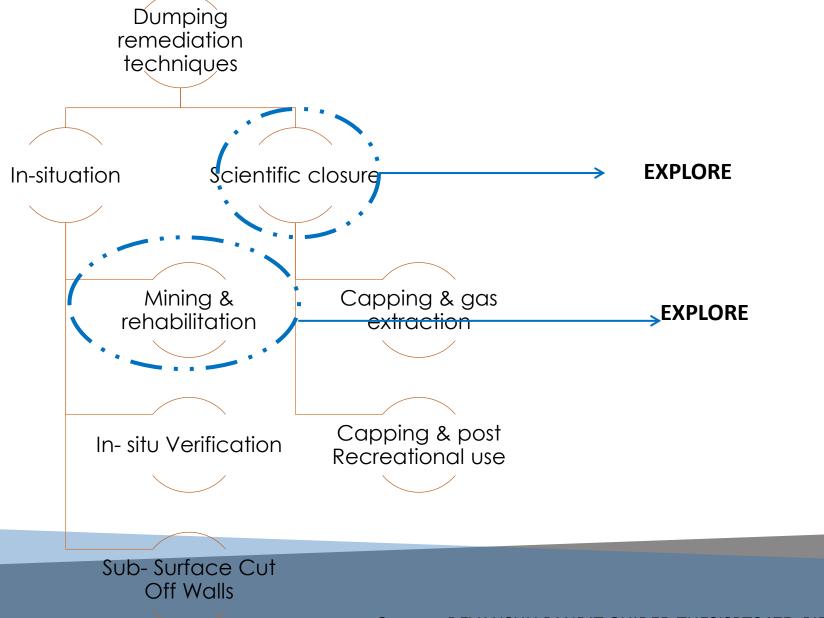
ONDIPUDAR DUMPING SITE, COLVERTORE, TAMILADI) Kavundampelaren, Colmbatero, Temil Xed. Vella Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat © 2015 AutoNavi Complete scientific closure On-going scientific closure Mining & reclamation Google earth

re project Ahmedahad

ACROSS INDIA

Case Study	Mumbai : Turbe	Mumbai : Mindspace	Mumbai : Ghorai	New Delhi: Ghazipur	Hyderabad
Area (acre)	5	20	46	10	60
Year	2011	2001	2008	2012	2013
Proposal	Scientific Closure	In- Situation	Scientific Closure	Scientific Closure	Scientific Closure
Technology	Capping & Gas Extraction	Mining & Reclamation	Capping & Gas Extraction	Capping & Gas Extraction	Capping & Gas Extraction
Present Use	Still under Reclamation	Commercial Development	Not specified use	Not specified use	Not specified use
Owner	Navi Mumbai Municipal Corporation	Mumbai Municipal Corporation	Mumbai Municipal Corporation	New Delhi Municipal Cooperation	Hyderabad Municipal Cooperation
		corporation			
Model	PPP	PPP	PPP	PPP	РРР

SOURCE: Ahmedabad scientific closure project, DEVANSHU PANDIT GUIDED THESIS BT0475, ARPET REPORT, PIRANA PROJECT REPORT


ACROSS INDIA

<u>Ca</u> sé Study	Pune: Pimpri Chinchwad	Coimbatore: Ondipudur	Kolkatta: Dhappa	Chennai: Kodungaiyur
Area (acre)	2.75	1.89	20	200
Year	2012	2011	2014	2014
Proposal	Scientific Closure	Scientific Closure	Scientific Closure	Scientific Closure
Technology	Capping & Gas Extraction	Capping & Gas Extraction	Capping & Gas Extraction	Capping & Gas Extraction
Present Use	Segregation unit	Not specified use	Not specified use	Not specified use
Owner	Pimri Chichwad Municipal Corporation	Coimbatore Municipal Corporation	Kolkatta Municipal Corporation	Chennai Municipal Cooperation
Model	PPP	PPP	PPP	PPP

SOURCE: Ahmedabad scientific closure project, DEVANSHU PANDIT GUIDED THESIS BT0475, ARPET REPORT, PIRANA PROJECT REPORT

Source : DEVANSHU PANDIT GUIDED THESISBT0475, PIRANA PROJECT REPORT

ACROSS THE GLOBE

WHERE?	New Zealand (2001)	BOSTON (1997)	UK (2004)
WHO?	Ministry for the environment	Republic of Botswana	Northern Ireland Environment agency
WHY?	Closure: depending on the area and waste received; level of assessment is recommended . INITIAL HAZARD ASSESSMENT RISK ASSESSMENT RISK ANALYSIS RISK EVALUATION RISK TREATMENT AND MANAGEMENT	To close a landfill, the Licence Holder must inform the DSWM of this intention. END-USE REQUIREMENTS CLOSURE REQUIREMENT AND ITS IMPACT CLOSURE PLAN	Waste management licencing regime under PPC, landfill directive recommendations RISK ASSESSMENT ENIRONMENT IMPACT
HOW?	CLOSURE • Final cap design • Assessment of cap • Vegetation cover	CLOSURE PLAN • Design: Restoration • Final Cover • Storm Water Diversion • Anti-erosion Measure • Vegetation Cover	DESGIN CAPS • Control Infiltration • Control of LFG migration • Stability RESTORATION DESIGN (AFTERUSE) • SW, GW, SOIL SUITABILTY
POST?	MANAGEMENT SYSTEM & MONITORING: •Landfill discharges monitoring(L,	MANAGEMENT SYSTEM & MONITORING: ONGOING: (L, GW,SW GAS)	AFTERUSE : character and quantity of available soils; type of waste and associated operational constraints; size, location and access; the
	GW,SW, LFG)& TRIGGER LEVELS •Nature and frequency of monitoring	INTEGRITY: (COVER, DRAINAGE, FIRE, VEGETATION)	development plan or framework; the aspirations of local residents, interest groups, etc.; scheme economics; long-term management requirements.

ACROSS THE GLOBE

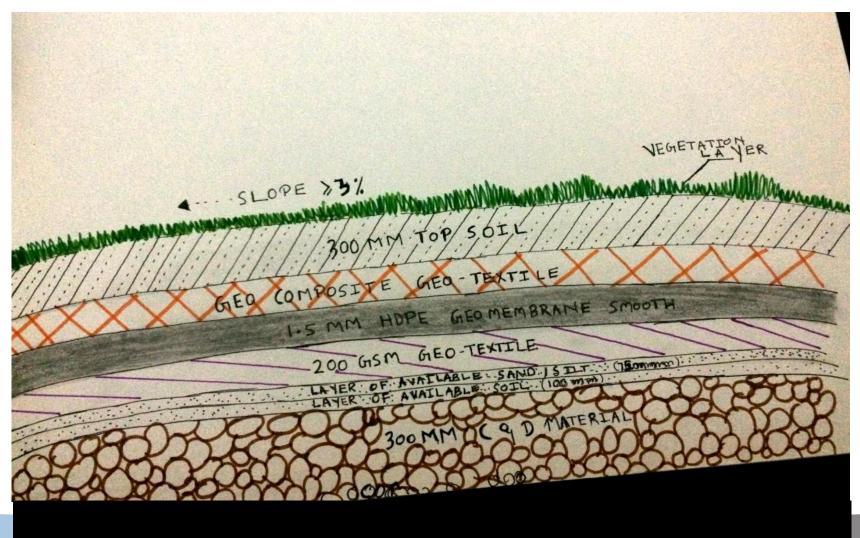
	-		
WHERE?	NEW JERSY (2015)	SYDNEY (2015)	PHILIPPINES (2001)
WHO?	Department Of Environmental Protection	Environmental Protection Agency Edition-2	UNEP & DENR PHILIPPINES (Training Module)
WHY?	 Landfill site investigation: Preliminary Assessment <u>Visual inspection:</u> seepage, slope, waste, erosion, drainage path, landfill Control features, Natural Resource, Lateral & Vertical Delineation od LF soil delineation beyond LF 	All completed landfill cells must be capped and vegetated within 6 months of the final delivery of waste to the cell. •Reduce infiltration •Reduce suspended contaminated runoff •Minimise untreated gas •Stabilise surface	 •geology of the site, depth of groundwater, volume and types of wastes disposed, reports, studies, historical records concerning the dumpsite • map of the dumpsite and its surroundings, topographical, geological, hydrogeological, etc.; • Interview with those directly involved with the operation of the dumpsite, waste pickers, and residents near site;
HOW?	limits •Geophysical survey •Subsurface investigation: soil, GW, leachate, SW, gas, waste	CLOSURE PLAN • Design cap: soil selection • Re-Vegetation : vegetation selection	 Inventory of existing settlements, structures, surface water bodies, water wells, etc.; Determine points of leachate seepage and ponding within and beyond the disposal
POST?	characteristics •EE, ERA, ESNR •Vapour intrusion, gas •Radiation survey	AFTERCARE: Management & Monitoring •Leachate, Storm water, Landfill Gas, Odour, Dust, Litter And Final Cap Integrity QUALITY ASSURANCE PLAN	 facility; Identify existing land uses around the area; Conduct topographic survey of the dumpsite, extending some distance from its boundaries; Conduct geotechnical investigation to determine stability of slopes;

ACROSS INDIA								
WHERE?	CPHEEO(2000)	CPCB (2008)	CPHEEO(2015)	ARRPET				
WHO?	MOuD	MOEF	MOuD	CES, CHENNAI				
WHY?	Leachate estimation LFG quantity & quality estimation Slope Stability: 1:3-temporary over 1:5 -final cover Site infrastructure Environment monitoring system: •SW, GW,, Leachate & gas within and around, air quality.	 Assessment of a Report for Closure of an Existing Waste Dump or an Existing Landfill Without Liner : 1. Condition and Impact of the Existing Waste Dump or Landfill (without liner) 2. Selection of Methodology for Closure 3. Details of Closure Methodology 4. Stability Aspects 5. Cover System 6. Cut-off Walls 	 Site selection Environmental Impacts And Its Minimization Types Of Municipal Solid Waste To Be Accepted At Landfills Planning & Design Of A Landfill : leachate management Drainage system Gas management system Soil stability Final slopes Not less 	Review of data such as the geology of the site, depth of groundwater, volume and types of wastes disposed, reports, studies, historical records concerning the dumpsite (operations, unusual events such as fires, dumping of				
HOW?	Landfill closure phase system: Cover, leachate collection, surface drainage system, gas collection system	 6. Cut-off Walls 7. Leachate Collection and Management 8. Gas Collection and Management 9. Surface Water Drainage System 10.Environmental Monitoring 11.Post Closure Maintenance 	than 1:4 and not greater than 1:20 •Sanitary Landfill Operation •Plantation At Landfill Site	 hazardous wastes, etc.) Review of available maps (map of the dumpsite and its surroundings, 				
POST?	 (a) Leachate Management System; (b) surface water management system; (c) environmental monitoring 	12.Construction Quality Control		topographical, geological, hydrogeological, etc.) • Interview with those directly involved with				

EXISTING DUMP AND SECTION

DESGIN DETAILS

Receiving, Relocating, Levelling, Reformation and dressing of existing MSW


- Laying of Cover Layer(s) which includes laying of 300 mm thick C & D layer
- 400/200 gsm Geotextile layer
- 1.5mm thick textured/non textured HDPE Geomembrane
- Geo composite layer
- 300mm thick Top Soil layer
- Vegetation Layer (green landscape)
- Boundary Wall, Storm Water Drain, Construction of Gas and Leachate Collection Wells and sumps

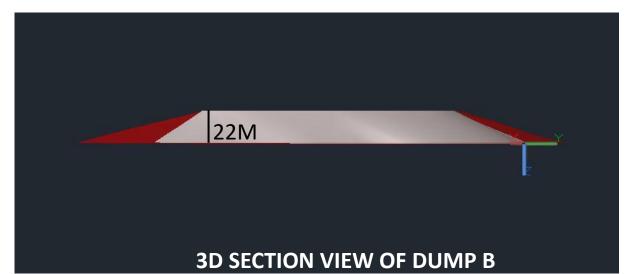
After completion of closure, extraction of landfill gas will be carried out, this would involve installation of a landfill gas recovery system of comprising of: a) Collection System b) A transportation pipeline network c) External leachate system d) Condensate collection and treatment system e) Extraction system f) Up gradation – This is done by using Pressure swing adsorption process g) Flare system

Source: https://www.globalmethane.org/expodocs/india10/postexpo/landfill_rajeev.pdf

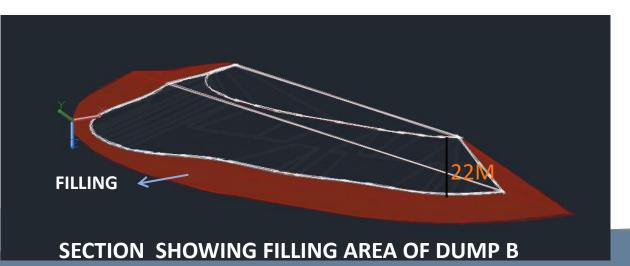
DESIGN SECTION

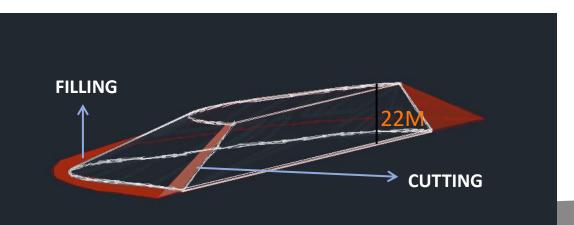
COMPACTED MSW

EXISTING DUMP STABLE DUMP (SLOPE 1:3)


Image 2015 Clough Image 2015 Clough Image 2015 Clough

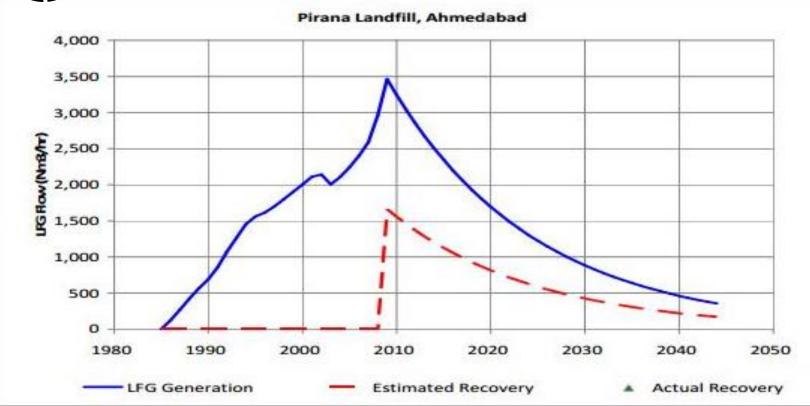
DUMP MODEL





3D SECTION VIEW OF DUMP B

SECTION SHOWING CUTTING-FILLING AREA OF DUMP B


DESGIN DETAILS

COLUMN1	VOLUME EXISTING	VOLUME IDEAL	CUTTING FIL	LING VOLUME
DUMP A	239194.88	517353.10		278158.23
DUMP B	1648068.35	2470346.78		822278.43
DUMP C	923242.58	848545.02		74697.56
DUMP D	678538.59	501598.76		176939.83

STABLE DUMP	VOLUME'	SURFACE AREA	C& D MATERIAL (M3)	SOIL (M3)	SAND (M3)	HDPE LAYER (M2)	GEO-TEXTILE (M2)	GEO COMPOSITE (M2)	TOP SOIL (M3)	VEGETATION COVER (M2)
DUMP A	517352.8	161372.4	48411.7	16137.2	12102.9	242.0	161372.4	242.0	72.6	72.6
DUMP B	1648068.3	229088.3	68726.5	22908.8	17181.6	343.6	229088.3	343.6	103.0	103.0
DUMP C	848542.2	134552.7	40365.8	13455.2	10091.4	201.8	134552.7	201.8	60.5	60.5
DUMP D	501598.7	96722.2	29016.6	9672.2	7254.1	145.0	96722.2	145.0	43.5	43.5

Post closure: Methane Estimation

Projected LFG Generation and Recovery for Pirana Landfill Site

USEPA MODEL REPORT (2008): Gas recovery decline to 688 m3/ hour after 8 years (2016) The projected LFG generation and recovery for Pirana landfill site is given in Figure. As is evident from the graph, the peaking value of LFG was in the year 2008. If the gas recovery is starts in the year 2011 assuming a collection efficiency of 60% and waste mass utilization of 80% approximately 1,500 m3/hr of LFG can be recovered.

According to calculations using FOD METHOD given by IPCC, THE METHANE EMISSION IN 2015 IS 2330263.03 m3/ year i.e. 266m3/ hour

source: Report on Landfill gas recovery and its utilization in India: Current status, potential prospects and policy implications, 2011, USEPA report 2008

Post closure: Methane Estimation

THUS CAPTURING AND FLARING THE LFG WILL REDUCE: Emissions equivalent to 20,662 cars. Planting 29 acres of forest. Offsetting the use of 528 railcars of coal. Preventing the use of 250 barrels of oil.

Post closure: Solar Panels: Grid Supply To Torrent Power Station

Solar grid on the top of the dump to supply as raw material to Torrent

Flexible solar panel installation.

Cost: 10 acres 1 megawatt Rs. 4 Crores In contrast to these rigid solar systems, the laminate solar panels used in these projects are flexible strips less than ¼-inch thick, or roughly the height of two nickels stacked one on top of another. Each solar collection strip is approximately **15 inches wide by 18 feet long.**

The large arrays are typically located on the landfill's southern and western facing slopes to maximize the hours of sunlight exposure throughout the year. The resulting solar system, which can be designed to cover 10 to 20 acres or more on the site, is sleek, flexible, aesthetically pleasing, efficient and economical.

CAPPING

DUMP

DUMP A

DUMP B

DUMP C

DUMP D

12.8

7.5

5.4

Project Finance

	EARTH WORK								
	COLUMN1	VOLUME EXISTING	VOLUME IDEAL	CUTTING	FILLING	VOLUME	COST (in Lakhs)		
	DUMP A	239194.88	517353.10			278158.23	84		
	DUMP B	1648068.35	2470346.78			822278.43	248		
	DUMP C	923242.58	848545.02			74697.56	17		
j	DUMP D	678538.59	501598.76			176939.83	41		
CAPPING COST Cr									
9.03									

Refrence : http://www.dnaindia.com/, http://www.egujarat.net/gg/technical_details.html

Project Finance

SOLAR PANELS INSTALLATION

				Power	
Area	Solar		Units/	generated/	Selling cost of
sq ft	panel	Panel cost	day	day	grid/ day
150	1	1.25L	4-5	1KW	15 Rs

SOLAR PANELS INSTALLATION

				POWER			
		AREA		GENERATED	ELECTRICTY	EXPENDITURE	REVENUE
DU	JMP	(Sq. Ft)	NO OF PANELS	KW/ DAY	UNITS/ DAY	Cr a	annum Cr
DU	JMP A	296771.77	7 1978	3 1385	9892	40	4
DL	JMP B	493858.97	7 3292	2 2305	16462	66	7
DL	JMP C	2392246.8	3 15948	3 11164	79742	319	36
DL	JMP D	197679.22	l 1318	923	6589	26	3
						₹ 451	₹51

Refrence : http://www.dnaindia.com/, http://www.egujarat.net/gg/technical_details.html

Project Finance

SOLAR PANELS INSTALLATION

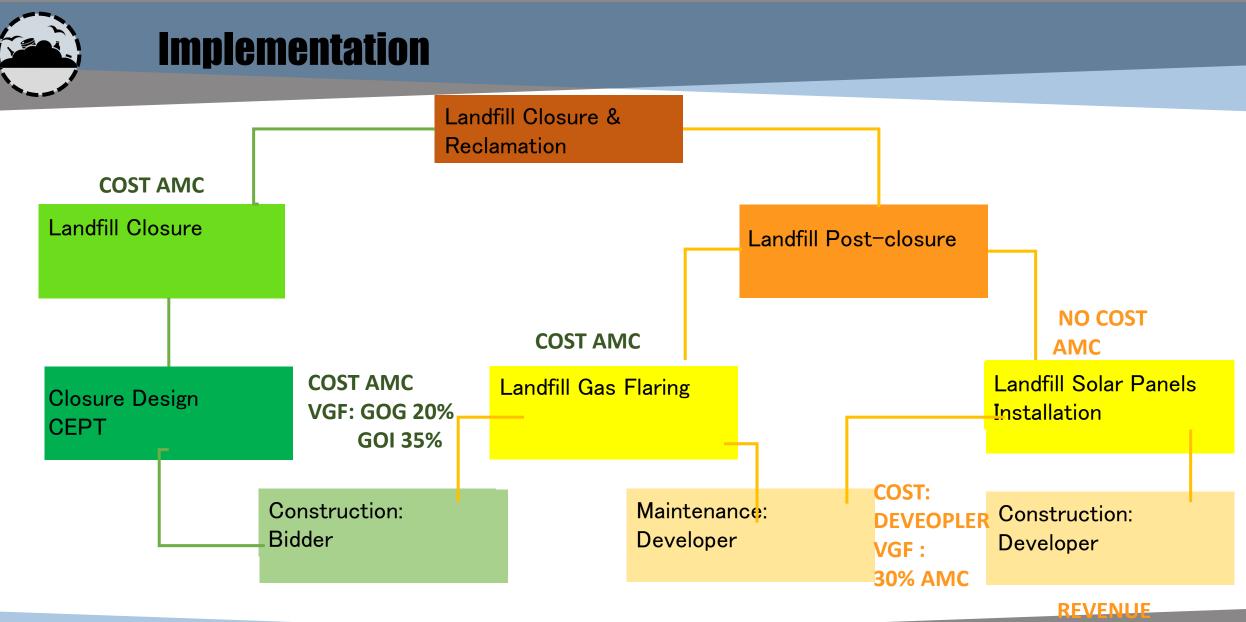
				Power	
Area	Solar		Units/	generated/	Selling cost of
sq ft	panel	Panel cost	day	day	grid/ day
150	1	1.25L	4-5	1KW	15 Rs

SOLAR PANELS INSTALLATION

				POWER			
		AREA		GENERATED	ELECTRICTY	EXPENDITURE	REVENUE
DU	JMP	(Sq. Ft)	NO OF PANELS	KW/ DAY	UNITS/ DAY	Cr a	annum Cr
DU	JMP A	296771.77	7 1978	3 1385	9892	40	4
DL	JMP B	493858.97	7 3292	2 2305	16462	66	7
DL	JMP C	2392246.8	3 15948	3 11164	79742	319	36
DL	JMP D	197679.22	l 1318	923	6589	26	3
						₹ 451	₹51

Refrence : http://www.dnaindia.com/, http://www.egujarat.net/gg/technical_details.html

CLOSURE & CAPPING COST POST CLOSURE SOLAR GAS FLARING PANELS 34.7 Cr EARTH WORK COST 38.6 Cr 25 CR 451 CR CAPPING 0.87 Cr REVENUE 0.25 CR 51 CR **TOE WALL**


Refrence : http://www.dnaindia.com/, http://www.egujarat.net/gg/technical_details.html

REVENUE BY SELLING ELECTIRCITY TO TORRENT: 45 Crore (annum)

CARBON CREDIT: Estimated CER = 2.5 Million (in 15 years)

Source: kryto protocol, www.solarmango.com

AMC: RENT

& ROYALTY

Grants & Subsidises

-SWM projects : 20% Grant / VGF for each project.

-Projects of waste to energy, the central government Grant / VGF/ Incentive for power generated

Jawaharlal Nehru National Solar Mission SOLAR POWER POLICY 2010 Solar Energy Projects 30% Subsidy

Project Life: 20 years Project Cost: 150 Cr Project Revenue: 51 Cr annually Project Finance: GOI- 35% GOG-20% AMC- 45%

Project Economic Valuation:

a) environmental benefits from the capture and combustion of LFG, and potential revenues from methane emissions reduction.

b) environmental benefits from the capture of renewable source of solar energy by solar panels installation

d) environmental & Social benefits from the addition of Green Space of 60 Acres

e) Social Benefits from moving A Step towards Zero Waste: Scientific landfill site operation <u>Execution:</u> Major Head- AMC

Consultant- IL & FS

Execution- Contractor

Project Benefit: Environmental & Social appraisal

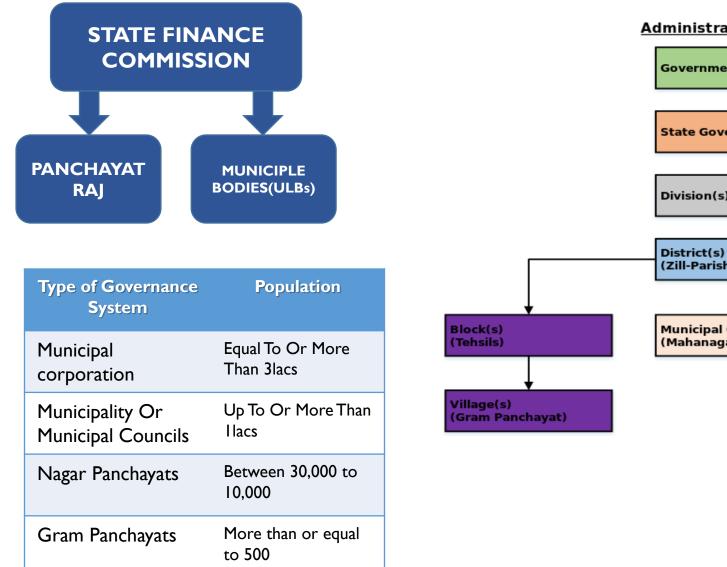
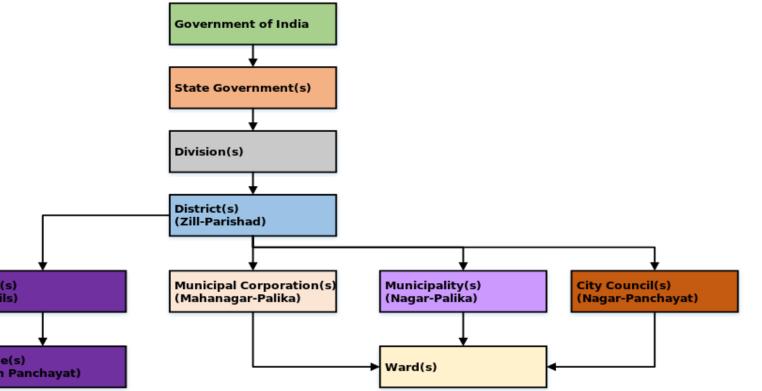
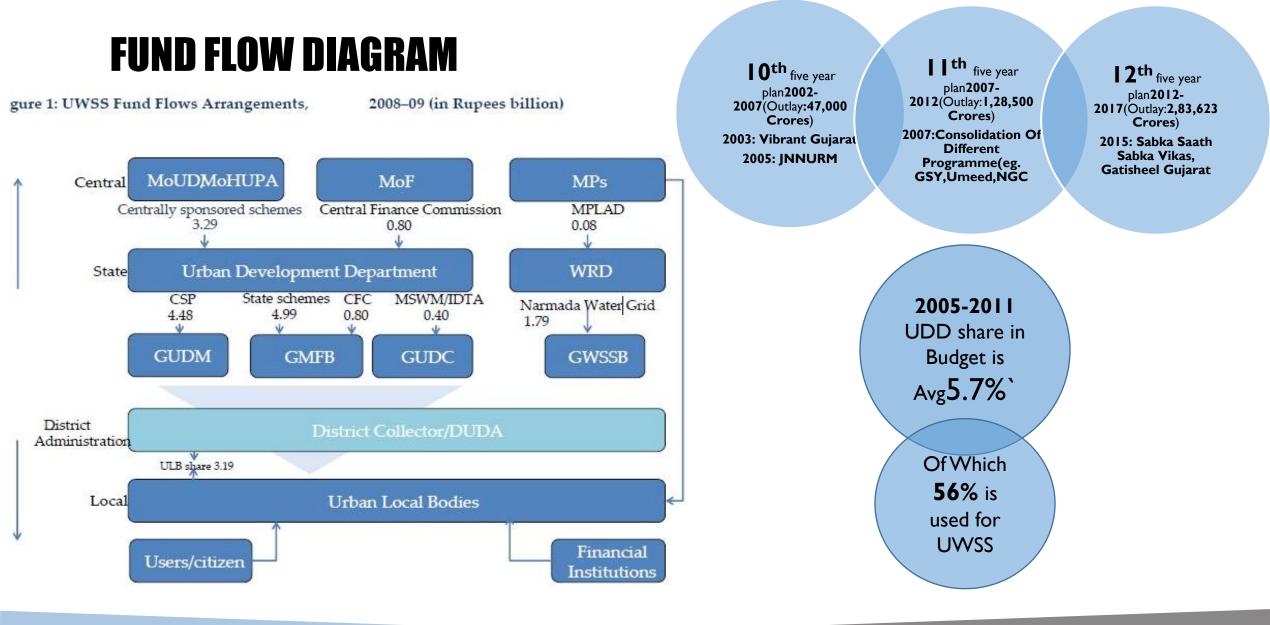


Figure 1.1: Location of Urban Local Bodies in Gujarat


(₹) Finance

Source: Financing and Monitoring Urban Water Supply and Sanitation In Gujarat, CEPT University, June 2011.



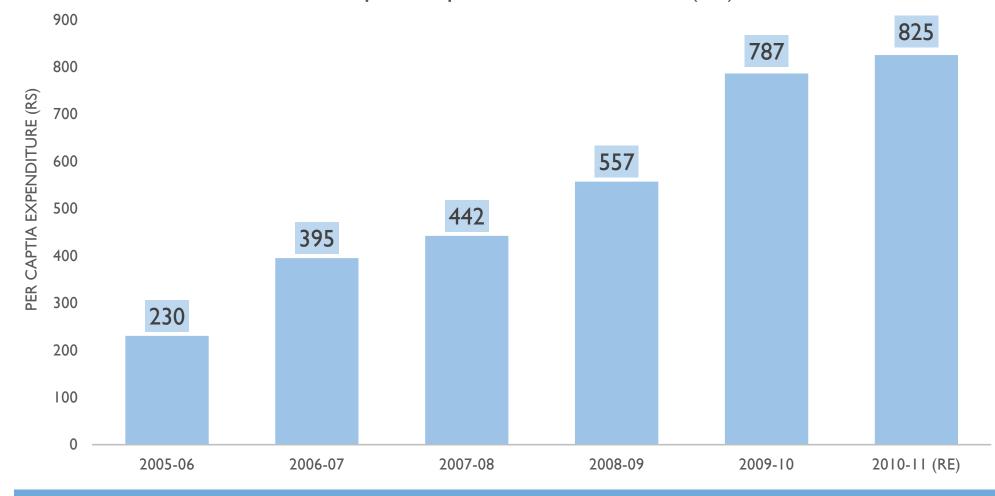
Administrative structure of India

Source: State Finance Commission, Gujarat

Finance

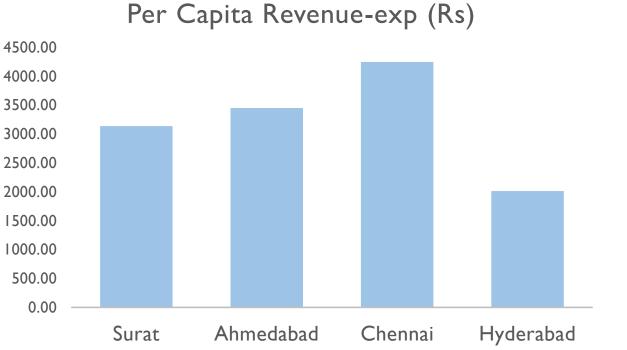
Source: Financing and Monitoring Urban Water Supply and Sanitation In Gujarat ,CEPT University, June 2011.;Directorate of Economics and Statistics, Gujarat ;www.gujecostat.gujarat.gov.in

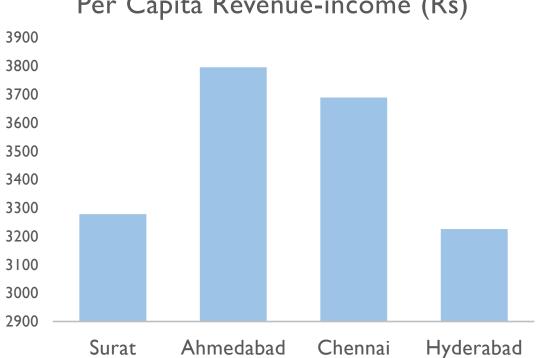
Programs affecting Water and Sanitation of Gujarat


	PROGRAMME	DURATION	OBJECTIVE	URBAN / RURAL	sponsoring Agency
I	Nirmal Bharat Abhyan: Nirmal Gujarat	2002-present	Toilet facilities to all the families (BPL/APL) are being provided who do not have this facility in urban areas with unit cost of Rs. 6000/- in the beginning.	Urban	State Govt. (to corporations and municipalities)
2	Integrated Housing and Slum Development Programme (IHSDP)	2005-present	To facilitate the construction and upgradation of the dwelling units for the slum dwellers and to provide health and enabling urban environment through community toilet.	Urban	Central & State govt., ULBs, NGOs
3	Jawaharlal Nehru National Urban Renewal Mission (JNNURM)	2005-2014	Make efficient and increase self-sustaining capabilities of cities as per the sector proving infrastructural services by securing the linkages between asset creation and asset management	Urban	Central Govt.
4	Water, Sanitation and Hygiene Advocacy and Communication Strategy Framework	2012-17	To change social norms making open defecation unacceptable and promoting the practice of safe disposal of child faeces, handwashing with soap and safe storage and handling of drinking water among all.	Urban & Rural	UNICEF

PROGRAM/MISSION by MOUD	DURATION	BUDGET	THRUST AREAS
SMART CITIES MISSION	5 years starting from 2015	48 thousand crore	 Adequate water supply Sanitation, including solid waste management Sustainable environment Waste water
SWATCH BHARAT स्वच्छ भारत एक कदम स्वच्छता की ओर	5 years starting from 2015	62 thousand crore	 Elimination of open defecation Eradication of Manual Scavenging Modern and Scientific Municipal Solid Waste Management
AMRUT	5 years starting from 2015	50 thousand crore	 Water supply Sewerage facilities and septage management, Storm water drains to reduce flooding,

Per Capita Expenditure in UWSS (Rs)




•Average Per capita expenditure in UWSS for Gujarat : Rs. 540

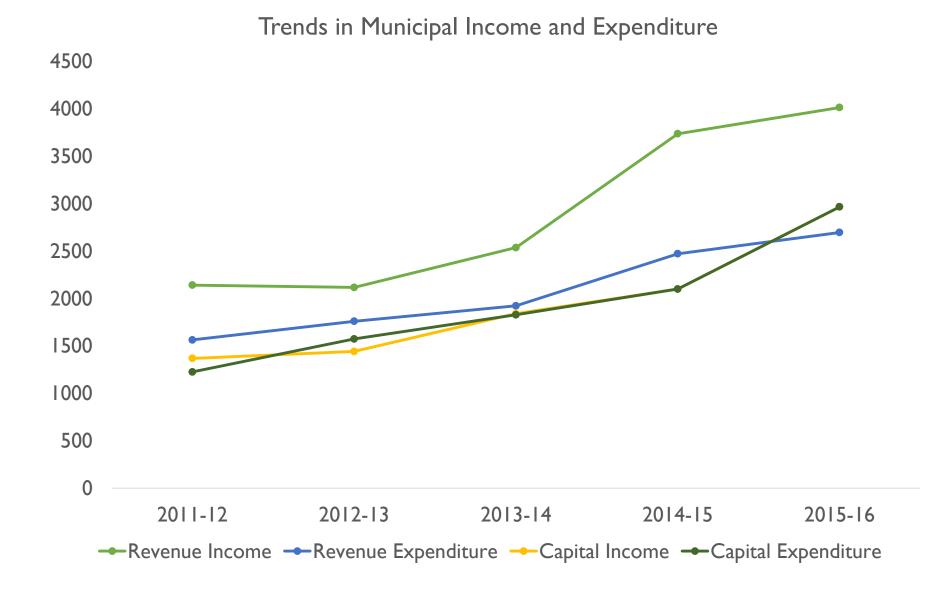
Source: Financing Urban Development By Prof. Meera Mehta, CEPT University, June 2014.

Comparison with different cities

Per Capita Revenue-income (Rs)

Year 2	2010-11 ((actual)	Year	2011-12 ((actual)
Revenue budget	=	· · · · · · · · · · · · · · · · · · ·	Revenue budget	=	2142.11 cr
Capital budget	=	1143.94 cr	Capital budget	=	1368.74 cr
Total budget	=	3043.71 cr	Total budget	=	3510.85 cr
Year 2	2012-13 ((actual)	Year	2013-14 ((actual)
Revenue budget	=	2117.16 cr	Revenue budget	=	2538.16 cr
Capital budget	=	1442.5 cr	Capital budget	=	1841.21 cr
Total budget	=	3559.66 cr	Total budget	=	4379.37 cr
Year 2	014-15 (1	revised)	Year 20	15-16 (es	stimated)
Revenue budget	=	3738.19 cr	Revenue budget	=	4015 cr
Capital budget	=	2101 cr	Capital budget	=	2967.5 cr
Total budget	=	5839.19 cr	Total budget	=	6982.5 cr

	Sr no	ltem	2010-11	2011-12	2012-13	2013-14	2014-15 (estimated)	
				Amounts in	Rs Crore			
	I			Reven	ue Account			
	А	Revenue Income	1899.57	2142.12	2117.16	2538.16	3738.19	
	В	Revenue Expenditure	1322.79	1563.83	1760.55	1923.72	2473	
I	С	Surplus/Deficit	576.78	578.29	356.61	614.44	1265.19	
	2			Capit	al Account			
	А	Capital Income	1143.94	1368.74	1442.5	1841.21	2101	
	В	Capital Expenditure	1269.91		1574.33	1829.26	2101	
	С	Surplus/Deficit	-125.97	142.25	-131.83	11.95	0	



Sr No	ltem	2011-12	2012-13	2013-14	2014-15
NCOME					
А	Revenue Income				
	I Own Sources				
	Grant in lieu of Octroi	826.73 (38.59 %)	826.62 (39.02 %)	826.63 (32.56 %)	909.37 (24.32 %)
	Taxes	531.34 (24.8 %)	531.17 (25.07 %)	702.11 (27.66 %)	996 (26.64 %)
	Non-taxes	334.85 (15.63 %)	285.41 (13.47 %)	452.72 (17.83 %)	970 (25.94 %)
	Others	91.01 (4.24 %)	89.03 (4.26 %)	II3.17 (4.45 %)	641.19 (17.15 %)
	2 Grants & Subsidies	358.19 (16.7 %)	385.93 (18.22 %)	443.53 (17.47 %)	221.63 (5.92 %)
	Total Revenue Income-A	2142.12	2118.16	2538.16	3738.19
В	Capital Account				
	Transfer of revenue surplus	580.3 (42.39 %)	356.6 (24.72 %)	614.5 (33.37 %)	957 (45.54 %)
	Grants	617.82 (45.13 %)	927.4 (64.29 %)	1064.89 (57.87 %)	II26 (53.59 %)
	Loans	163.38 (11.93 %)	148.89 (10.32 %)	150 (8.14 %)	0
	Others	7.2352	9.62	11.81	18
	Total Capital Income-B	1368.74	1442.51	1841.2	2101
	Grand Total Income (A+B)	3510.86	3560.67	4379.36	5839.19
EXPENDITUR	E				
А	Revenue Account				
	I Establishment Expenditure	723.99 (46.30 %)	762.8 (43.33 %)	837.2 (43.52 %)	869 (35.14 %)
	2 Administration & General Expenses	41.29	40. I	54.92	71.6
	3 Repairs & Maintenance	121.72	138.51	165.11	230
	4 Power, Fuels & Consumable Stores	120.76	180.33	183.55	213.63
	5 Service & Programme Expenses	88.8	193.5	213.53	285.59
	6 Grants, Subsidy, Distribution	427.41 (27.33 %)	422.1 (23.98 %)	430.69 (22.39 %)	752.31 (30.42 %)
	7 Loan Charges (Debt)	36.96	21.86	38.18	37.1
	8 Other Expenses	2.86	1.32	0.54	13.77
Total Revenue Ex	penditure-A	1563.79	1760.52	1923.72	2473
В	Capital Account				
	I Total Capital Expenditure-B	1226.49	1574.33	1829.26	2101
Grand Total Ex	penditure (A+B)	2790.28	3334.85	3752.98	4574

Finance-Summary Of Municipal Finance

Amounts in Rs Crore

Source : AMC Budget 2011-12 to 2015-16

Sector Finance for UWSS

32.11 % of Total **revenue Expenditure** budget

8.89 % of Total **revenue income** budget

21.82 % of Total Capital expenditure budget

21.48 % of Total **Capital income** budget

Sector Finance for UWSS

		2010-11	2011-12	2012-13	2013-14
Waste Water		7.44	8.21	6.33	7.08
Storm water		0	0	0	0
SWM	Revenue income	67.32	72.67	84.43	110.33
Water		75.09	80.4	84.16	107.68
slum and Sanitation		0.11	0.09	0.21	0.15
Total		149.96	161.37	175.13	225.16
Waste Water		51.54	58.77	84.75	90.81
Storm water		1.61	1.94	2.71	2.55
SWM	Revenue Expenditure	183	220.41	267.95	301.65
Water		164.31	170.53	206.46	214.84
slum and Sanitation		5.05	5.13	6.7	8
Total		405.5 I	456.78	568.57	617.86
REVENUE DEFICIT		-255.55	-295.41	-393.44	-392.7

Amounts in Rs Crore

Source : AMC Budget 2011-12 to 2015-16

% SHARE OF THE UWSS IN AMC BUDGET

		2010-11	2011-12	2012-13	2013-14
Waste Water		0.39	0.38	0.3	0.28
Storm water					
SWM	Revenue	3.54	3.39	3.99	4.34
Water	income	3.94	3.75	3.97	4.24
slum and Sanitation		0	0	0	0
Total		7.87	7.52	8.26	8.86
Waste Water		3.90	3.76	4.81	4.72
Storm water		0.12	0.12	0.15	0.13
SWM	Revenue	13.83	14.09	15.22	15.68
Water	Expenditure	12.42	10.90	11.73	11.17
slum and Sanitation		0.38	0.33	0.38	0.42
Total		30.66	29.21	32.30	32.12

Sector Finance for UWSS

		2010-11	2011-12	2012-13	2013-14
Waste Water		129.20	80.64	70.73	75.34
Storm water	Capital Income	55.43	7.54	2.94	0.91
SWM		19.99	33.29	48.85	44.3
Water		33.31	15.49	264.29	215.04
Sanitation		106.42	65.97	62.46	175.69
Total		344.35	202.93	388.5	395.9
Waste Water		169.60	132.63	132.31	151.88
Storm water		55.43	7.54	2.94	7.62
SWM	Consisted Even and discusse	21.26	35.31	49.82	51.63
Water	Capital Expenditure	136.22	71.5	144.96	103.16
Sanitation		122.32	78.84	73.45	84.9
Total		504.83	325.82	403.48	399.19
CAPITAL DEFICIT		-170.18	-122.89	14.9	3.29

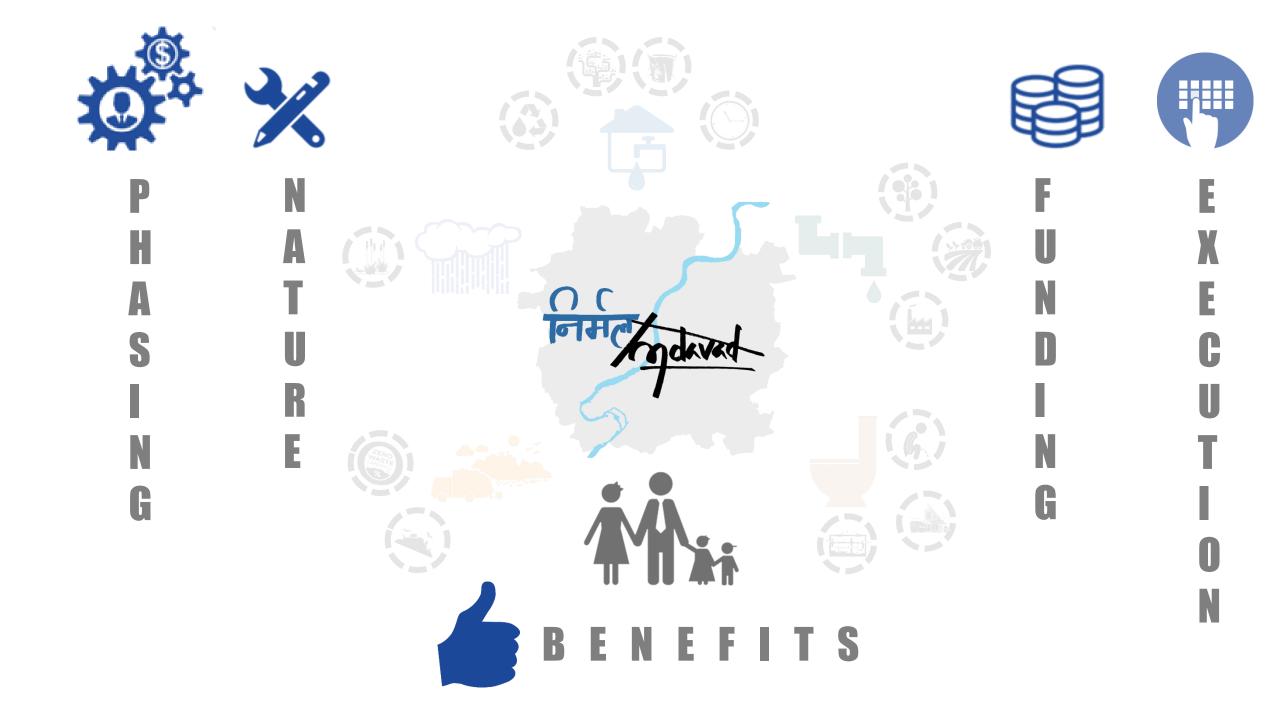
Amounts in Rs Crore

Source : AMC Budget 2011-12 to 2015-16

SECTOR	PROJECTS	ULB	PPP	STATE	CENTRAL	TOTAL	
Water	Rain water harvesting	51				51	
	WSUD						175.31
	NRW	9.36		1.37	1.65	12.39	(13.07 %)
	24*7	22.8				22.8	
	Lakes	4.65	76	2.8	8.3	94.12	
Waste water	Agriculture			8.8		8.8	
Ling	Industry	194	54.69			258.79	461.29 (34.4 %)
-	Garden	87.16	106.53			193.7	(34.4 /0)
Sanitation	OD free	30.6		15.3	56.I	102	
	Slum sanitation	3.11		17.76	13.04	33.90	138.93 (10.36 %)
	Septage	3.03				3.03	(10.50 %)
Solid waste	Treatment plant	7	85		15	107	577.07
	Dump site reclamation	387		15.74	68.13	470.87	577.87 (43.1 %)
		794.71 (59.26%)	322.22 (24.02%)	61.77 (4.6%)	162.22 (12.09%)	134	0.91
Fin	ance					Amour	nts in Rs Crore
						Source :	AMC Budget 2011-

Source : AMC Budget 2011-12 to 2015-16

	EXPENDITURE						
SECTOR	PROJECTS	Capital Exp. Past trend	Future capital requirement	Revenue Exp. past trend	Future Revenue exp. requirement		
Water	Rain Water Harvesting		46		0.5		
	WSUD						
	NRW	30.48	12.39	15.97	21.3		
	24*7	80.7	20.6	6.15	2.2		
	Lakes	4	I	3.1	.2		
Waste water	Agriculture						
	Industry	10.1	97	5.68	7.87		
	Garden	2.92	19.37	11.81	.97		
Sanitation	OD free	4.23	2.04	2.41	5		
	Slum	85	1.47	.3			
	Septage		3.03	3.68			
Solid waste	Treatment Plant	0	6	0	0		
	Dump Site Reclamation	0	100	0	4.5		
'	FINAL TOTAL	217.43	308.9	49.1	42.54		


Amounts in Rs Crore Source : AMC Budget 2011-12 to 2015-16

		INCOME			
SECTOR	PROJECTS	Capital income Past trend	Future capital income	Revenue income past trend	Future revenue income
Water	Rain water harvesting			6	
	WSUD				
T T T T	NRW	4.5	4.5	42.07	3.1
	24*7	46		47.71	
	Lakes		2	3.5	6
Waste water	Agriculture				
- Tang i	Industry	75		.06	15
	Garden			.2	.93
Sanitation	OD free				
	Slum	35.5			
	Septage			.14	.13
Solid waste	Treatment plant	0	15	.37	34
	Dump site reclamation	0	60.5	0	51
	FINAL TOTAL	161	82	100.05	76.5
				Amounts in Rs Cror	e Source : AMC Budge

Amounts in Rs Crore Source : AMC Budget 2011-12 to 2015-16

Though all our projects seem to be having higher capital cost, but if Ahmedabad has to become smart, sustainable, safe and liveable city(our vision) these projects should be implemented

Contraction of the second		PHASING	NATURE	FUNDING	EXECUTION	BENEFITS
		2015 2020 2025 2030 2035	POLICY : PHYSICAL 50 : 50	<mark>Agencies</mark> AMC / AUDA, PPP / Private	OPERATORS AMC , private	TYPES
			40 : 60	AMC, AUDA	AMC, AUDA	00
			20 : 80	SMART CITIES, AMRUT, AMC, PPP	AMC, PPP	()
	(\bigcirc)		0 : 100	SMART CITIES, AMRUT, AMC, PPP	AMC , PPP	B
			0 : 100	GOG. PPP	CONSULTANTS, AMC	0
L			20 : 80	AMC,PPP	AMC	
			50 : 50	AMC,PPP	CONSULTANTS, AMC	B
			30 : 70	PPP	AMC, PPP	()
			0 : 100	PPP	AMC, PRIVATE	()
			0 : 100	CENTRAL AND STATE FUNDING	AMC, NGO	
			20 : 80	AMC, PPP	AMC, PPP	
			30 : 70	SWACH BHARAT, AMC, PPP	AMC, AGRI DEPT., GPCB,PVT	()
			30 : 70	GOI, GOG, AMC, PPP	AMC	

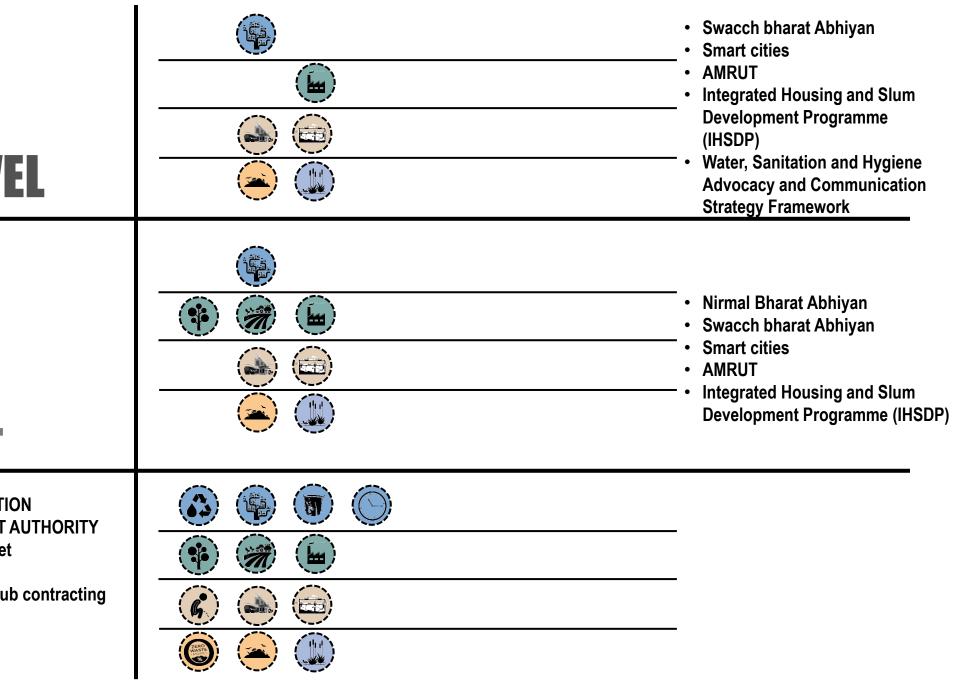
And the second		₹ COST		FINAL COST
	Rs 50.4 CR + 0.5 CR		50% AMC, 50% PRIVATE / 40% AMC, 60% PRIVATE	
			AMC +AUDA	Rs 175.31 Cr
		Rs 73.22	100% AMC Funds	
	(\bigcirc)	Rs 6Cr (full) , Rs 3 Cr (partial)	100% AMC Funds	
		Rs 8.59	10% AMC, 90% NLCP/PRIVATE & 100% CSR	Rs 8.59 Cr
L.,		Rs 420	AMC, AUDA, AMUL	
		Rs 8.8 Cr		Rs 461.29 Cr
		Rs 260 Cr	75% debt by AMC, 25 % equity by private player	
		Rs 1.1 Cr	100% AMC Funds	
		Rs 26 Cr	2% State, 25% AMC, 50% Beneficiary	Rs 138.93 Cr
		Rs 80 Cr	80% AMC, 15% State + Central grants, 5%community participation	
		Rs 100 Cr	AMC	Po 577 07 0r
		Rs 120 Cr	35% Central , 30% State, 45% AMC	Rs 577.87 Cr

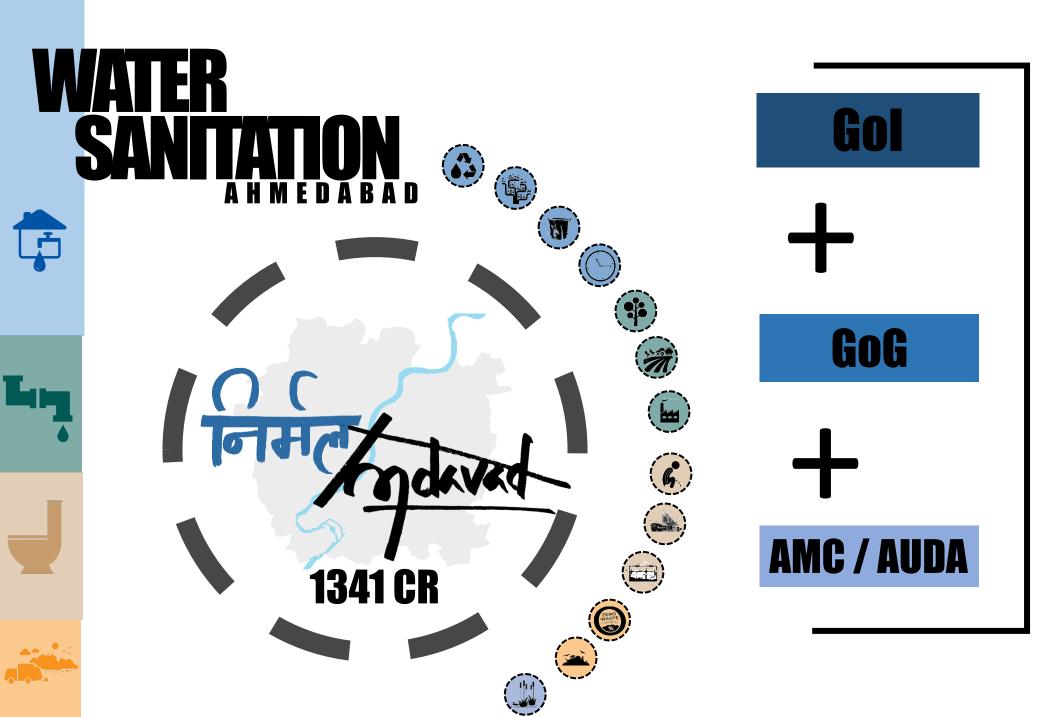
GOVERNMENT OF INDIA

- Special grants/ subsidies
- Central driven policies
- Missions

CENTRAL LEVEL

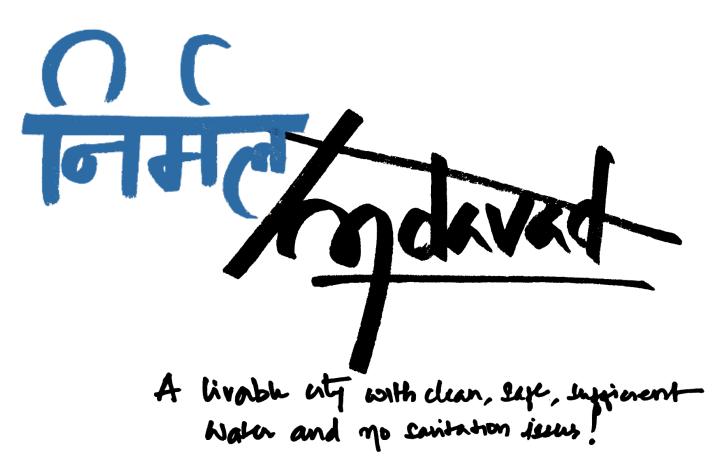
GOVERNMENT OF GUJARAT


- State grants/ subsidies
- State driven policies
- Missions


STATE LEVEL

AHMEDABAD MUNICIPAL CORPORATION AHMEDABAD URBAN DEVELOPMENT AUTHORITY

- Reorganizing the municipal budget
- New local policies
- Private investors/ contracting & sub contracting


LOCAL LEVEL

THANK-YOU

