INFRASTRUCTURE STUDIO WATER & SANITATION

A DITI DHRITI JAY MADHURA POORVI PRATIK SAPTARSHI SIDDHARTH VIVEK

Faculty : Mona Iyer & Meera Mehta

Teaching Associate : Anuradha

STRUCTURE

industrial areas.)

INTEGRATED WATER RESOURCES MANAGEMENT (Lower Tapi Basin)

WORK SCOPE...Methodology... Concept...

To apply an Integrated Water Resources Management strategy to Tapi river basin area in SMRDA region

"**IWRM** is a process which promotes the co-ordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems." (GWP 2008)

Stakeholder inclusive

WORK SCOPE... Methodology... CONCEPT...

ALTERNATIVE OPTIONS AVAILABLE TOOLS

Why IWRM...?

- Demographic and climate changes increases the stress on water resources.
- Traditional fragmented approach is no longer viable
- Integrated Water Resources Management (IWRM) approach that has now been accepted internationally as the way forward for efficient, equitable and sustainable development and management of the world's limited water resources and for coping with conflicting demands

IWRM is based on the understanding that water resources are an integral component of the ecosystem, a natural resource, and a social and economic good.

Source – Global Water Partnership

Ecological sustainability

work scope... methodology... CONCEPT...

Pollution control

Flood and drought management

IWRM, Key functions

Water allocation Information management Basin planning

Financial management

Economic efficiency Source: Global water partnership- IWRM toolkit

WORK SCOPE... METHODOLOGY... CONCEPT...

Industrial Landscape of Gujarat Agro-processing **Diary & Engineering Biotech Cluster** North Gujarat Soda Ash Kutch salt based industries. cement & steel pipes South & Textiles. Petroleum and Central Chemicals. brass parts Pharmaceuticals. Gujarat Petrochemicals & Saurashtra Engineering Engineering and Ceramics Special Petroleum. Investment Chemicals & Soda Ash and Region Petrochemicals Salt Based Investment Region

 ³/₄ surface water resources in 1/3 geographic area – rest scarce – need to conserve in water sufficient areas

- Water intensive industries
- GW status
 comparatively good
 need to preserve
 status
- Tapi flood prone
- Allocation conflict

Source: Gujarat Environmental Commission

Source: Industrial Extension Bureau, Gujarat

WORK SCOPE... METHODOLOGY... CONCEPT...

Adapted from Global water partnership-IWRM toolkit

IWRM- How? ?

Enabling Environment Institutional Roles Management instruments

WORK SCOPE... METHODOLOGY... CONCEPT...

Adapted from Global water partnership-IWRM toolkit

IWRM- How? ?

WORK SCOPE... METHODOLOGY... CONCEPT... Applicability to Gujarat- River Basins Logical unit for IWRM = River basin **Tapi River Basin** Bharuch Jhagadia /agra Jhagadia Dediapada ValiaDediapada Ankieshwa Umarpada Hansot Mahal Mangrol Umarpada Sagbara Umarpada Olpad Mandvi Songadh Kamrej Uchchhal n.a. (1327) Uchchhal (1344) Chorasi Palsana Bardoli valou Vyara Ahwa Navsari Mahuva Gandevi VansadaAhwa Valsad Chikhli Valsac Source: Central Water Commission DharampurDharampurDharampur 0 4 8 16 24 32 Kilometers

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY... USERS

Lower Tapi Basin

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY... USERS Surat and Tapi Districts

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY.... USERS

Surat and Tapi Districts

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY USERS

Surat and Tapi Districts- Land Use

Agriculture,Crop land Agriculture, Plantation Agriculture,Fallow Agriculture, Current Shifting Cultivation Forest,Evergreen / Semi evergreen Forest, Forest Plantation Forest,Swamp/Mangroves Barren/unculturable/Wastelands,Salt Affected Land Barren/unculturable/Wastelands,Gullied/Ravinous Land Barren/unculturable/Wastelands,Scrub land Barren/unculturable/Wastelands,Sandy area Barren/unculturable/Wastelands,Barren rocky Rann Wetlands/Water Bodies,Inland Wetland Wetlands/Water Bodies,Coastal Wetland 🔜 Wetlands/Water Bodies,River/क्रिकm/Canals Wetlands/Water Bodies,Reservoir/Lakes/Ponds

Nandurbar

WORK SCOPE... METHODOLOGY... CONCEPT... IWRM- How? Case studies

	India	SE Asia	EU	USA
Plan	Ganga River Basin Environnent Management Plan	Basin Development Strategy for Mekong lower basin	Thames River basin Management plan, Solway Tweed River Basin management Plan	Colorado River region basin plan
Directive	Environment (protection) Act 1986	Agreement for the Cooperation for the Sustainable Development of the Mekong River Basin 1995	Directive 2000/60/EC Water Framework Directive	Clean Water Act + Watershed Management intiative
Agency	National Ganga River Basin Authority	Mekong River Commission	"appropriate agency" generally respective environment agencies eg: SEPA	State water quality control Board
Objectives	pollution control, cleaning of surface water		"good" status of surface bodies, reduce pollution	Reducing pollution, quality control of surface water
	ensure minimum ecological flow	Fisheries management	prevent deterioration of aquatic ecosystems, habitat conservation, separate marine plan	
		Wetlands management	Protected areas management	
	regulate abstraction, promote storage	equitable distribution of resources- inter- govt coordination	sustainable use of water	
	longitudinal and lateral connectivity	navigation development	navigation development	
	floodplain reclamation	Flood and drought management	flood and drought mitigation, separate plan	
			regulation of physical modification	
		Hydropower generation		
		Food security and poverty alleviation through agricultural irrigation development		
			reduce groundwater pollution, monitor extraction	reduce groundwater pollution, control overdraft

Adapted from respective River Basin plans

Agency coordination

- WORK SCOPE... METHODOLOGY... CONCEPT... Objectives
 - 1. Plan for equitable allocation of water between domestic industrial and agricultural demand
 - 2. Identify gaps and potentials in institutional arrangement for integrated management of geographical area
 - Flooding issue
 - Water use and allocation

Part 1: Water Use and Allocation

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY USERS

Settlements, canals, bridges

CONTEXT AREA... PHYSICAL SCOPE... GEOGRAPHY ... USERS

Settlements, canals, bridges

WORK SCOPE... Methodology... CONCEPT...

ALTERNATIVE OPTIONS AVAILABLE TOOLS

BASIN WATER USE... COMPETING USES...SURFACE/GROUND ... Water Users

BASIN WATER USE... COMPETING USES... SURFACE/GROUND Water demand...

Source: Irrigation Department Surat Circle, Survey of India Maps, Min of Agriculture: LUS 2008, Census ot India 2011, Singanpore Drawal agreement

Detail*

BASIN WATER USE...COMPETING USES...SURFACE/GROUND...Surface Water extraction

Some goes out of district for irrigation **11870 ML** abstraction daily

4332 MCM yearly – well within Gujarat allocation

WATER EXTRACTION BALANCE

BASIN WATER USE... COMPETING USES...SURFACE/GROUND ...

In order to cater to multi-sectoral water demands and for an optimum and judicious utilization of the available land and water resource, an Integrated Water Resource Management is necessary.

Water available at Ukai and allocated to Gujarat

Total water availability at Ukai in Tapi	At the time of project planning , 1975	Presently
Total water availability at Ukai	11,350 MCM	
Total allocation to Gujarat	3,947 MCM	4390 MCM
Irrigation	3,232 MCM	3562 MCM
Domestic and industrial water supply	715 MCM	825 MCM

Source : People committee on Gujarat Flood 2006 : A report

WATER BALANCE

BASIN WATER USE...COMPETING USES...SURFACE/GROUND...Ground Water abstraction

the range 2-5 and 5-10

Ground Water Levels Good so far.....BUT

Source: Gujarat's Agricultural Growth Story, Kumar, D. et al (March 2010)

Groundwater board report 2014

- 5-10

- 10-20

- 20-4034

GROUND WATER ABSTRACTION

Water Quality Issues

Pressure on Ground Water manifests itself in quality issues

State District Taluka Coast Live Both Fluorides > 1.5 ppm Nitrates > 4.5 ppm

we Boundary

Areas showing ground water Salinity

Ground water quality map of Gujarat

- Very small % of area has salinity issue
- Nitrate problem in more

Giowest Earshig, Commissio

Source : Gujarat Environmental Commission
Water Quality Issues – DRINKING WATER SOURCE

Water Quality Issues – IRRIGATION

In order to construct river intake well...

• Permission from irrigation dept.

In order to construct borewell...

- No permission
- Just reference from GWSSB hydrologist

Tapi not tapped to full potential therefore water allocation non conflicting → Tapi "water surplus"... BUT...

WORK SCOPE... Methodology... CONCEPT...

ALTERNATIVE OPTIONS AVAILABLE TOOLS

Mandvi (M) Kosamba (CT 800 Tarsadi (M) Savan (CT Kim (CT 600 ■ Valod Vyara Songadh Uchchha 400 Nizar Mahuva ■ Bardoli 200 Palsanc Chorasi Surat Cit Kamrei Mandvi ∎Umarpada Mangrol Oppor Industrial Water demand 4500 4000 3500 3000 2500 2000 1500 1000 500 0 2011 2021 2031 High Growth Reduced Migration Stabilisation Irrigation water demand

Domestic demand

2000

1800

1600

1400

1000

(1200 I 200

= Vyara (M) Bhurivel (CT)

Songadh (N Baben (CT Bardoli (M) Chalthan (C

Kadodara (C Vareli (CT) Sachin (CT) Pardi Kanade (

Mora (CT)

■Kansad (M) Sachin (INA) Magdalla (INA) Hajira (INA)
 Surat (M Corp. +

Surat (M Corp.

Amboli (CT)

Ichchhapor (C)

Bharthana Kosad

Ukai (CT)

🛛 gross irrigated 🛛 🔳 Net Sown 📕 Non-agri 🖉 Others

Max Average Min

Future scenario... demand projections...competing uses... Water apocalypse!!!

Issues in Water use

- Irrigation biggest guzzler
- But Urban population growing very fast demanding more and more water
- Industries demanding more and more water from Kakrapar canals that is allocated to agriculture
- Tapi deemed 'water surplus' thus no measures to manage demand
- Ground water dependency low for irrigation but exploitation in urban and industrial concentrations

WORK SCOPE... Methodology... CONCEPT...

ALTERNATIVE OPTIONS AVAILABLE TOOLS

Alternatives... scenario models... Way Forward

AVAILABLE MANAGEMENT TOOLS

No.	Key Regulation	Key Features
1	National Water Policy (2002)	 Prioritised rights on water in the following order -> Drinking, Irrigation, Hydropower, Ecology, Industry Promote PPP in water projects Emphasis on integrated planning of water projects Supports rationalization of water tariffs at ULB level
2	Water Prevention and Control of Pollution Act (1974)	 Establishment of pollution control board at State level to enforce effluent standards Define MINAS i.e. Minimum National Standards for effluent discharge norms for industries MINAS updated periodically to cover more industries and enforcement of stricter norms Central Board to assist State boards in pollution control activities Collect, collate and publish data pertaining to water pollution State Boards shall ay down water and wastewater quality norms and conduct inspection on industries
3	Environment Protection Act (EPA) (1986)	 Planning and execution of a nation-wide programme for the prevention, control and abatement of environmental polution Lay down standards for the quality of environment in its various aspects Restriction of areas in which any industries, operations or processes or class of industries, operations or processes can operate Laying down procedures and safeguards for the prevention of accidents which may cause environmental polution and prescribe remedial measures for such accidents Examination of manufacturing processes, materials and substances likely to cause environmental polution Carry out and sponsor in vestigations and research relating to problems of environmental pollution Powers to inspect any premises, plant, equipment, machinery, manufacturing or other processes, materials or substances
4	Water Prevention and Control of Pollution Cess Act (1977)	Allows State boards to levy cess on water extracted for industrial / domestic use
5	Customs Tariff Act, Central Excise Act	Excise exemptions on water treatment chemicals/equipment, tax be nefits for water sector projects

Source: Ministry of Water Resources, Ministry of Environment & Forests, Central Groundwater Commission

NRCP (National river conservation Plan)

Sewage Treatment Plants	Low Cost Sanitation Works	Ri∨er Front Development Works
Interception and diversion of sewage- Divert them for treatment	Pollution abatement schemes	Electric and Improved wood crematoria
Public Awareness and participation	Capacity Building , training and research	Other Miscellaneous work- Location specific conditions

Central Government set up NGRBA (National Ganga River Basin Authority) in feb 2009 to ensure effective abatement of pollution and conservation of river Ganga.

Out of 19 rivers in Gujarat including Tapi, there are 19 number of polluted stretches.

Ganga Action Plan (GAP)

Phase I

- Started in 1985
- 100 percent centrally funded scheme
- Main objective to improve water quality of Ganga
- Pollution abatement works taken up in 21 class I towns in UP, Bihar and West Bengal
- Completed on 31st March 2000
- Cost: 451.70 crore

Phase II

- 1993-1996
- Covered river Ganga and its tributaries Yamuna, Gomati, Damodar.
- Pollution abatement works in 95 towns
- 50:50 Cost sharing basis by state and Central Government
- Cost: 1498.86 crore

- Scheme was merged into National River Conservation Plan
- NRCP approved in 1995 for 772.80 crore on 50:50 cost sharing basis between Central and State Government.
- Ganga Project Directorate converted into NRCD
- Major initiative started under NGRBA in 2010

Water Markets

Water Markets

Water Markets (trading) is the process of buying and selling water access entitlements, also often called water rights. The terms of the trade can be either permanent or temporary, depending on the legal status of the water rights.

Some of the western states of the United States, Chile, South Africa, Australia and Spain's Canary Islands have water trading schemes.

Some consider Australia's to be the most sophisticated and effective in the world

Water Resources Act 2007

- to ensure that management and use of the water resources of the Territory sustain the physical, economic and social wellbeing of the people.
- to protect aquatic ecosystems and aquifers from damage
- to ensure that the water resources are able to meet the
- reasonably foreseeable needs of future generations.

National water Market system(NWMS)

An initiative by Australian Government. Working with the state and territory govts to improve the efficiency of water registers, transactions and market information functions.

Water Markets: Cap and Trade Approach

The 'Cap and Trade' approach to establishing water markets

The objective of the cap and trade water market approach is to facilitate the economically efficient allocation of water while ensuring environmental sustainability

Economic Objectives

Nature of Entitlements and trading

Two types of property rights to access water

- water access entitlement: the perpetual or ongoing entitlement to exclusive access to a share of water from a specified consumptive pool
- water allocation: the specific volume of water allocated to a water access entitlement in a given season.

 Detail*

INSTITUTIONAL ROLES..

INSTITUTIONAL ROLES..

Existing multiplicity of Agencies...

- Damodar Valley Corporation (DVC) water allocation state independent
- Ganga Flood Control Board (GFCB) and Ganga Flood Control Commission (GFCC) (1972)- advisory. Implementation state specific
- Brahmaputra Board (1980)
- Bhakra-Beas Management Board water allocation according to predetermined
 %
- Upper Yamuna River Board- allocation according to MoU between states
- Betwa River Board
- Bansagar Control Board
- Mahi Control Board
- The Narmada Control Authority allocation according to award by Narmada Water Dispute Tribunal

Application of the Concept of IWRM - proposal

Under <u>River Boards Act 1956</u>, establishment of Tapi River Basin Organisation to implement the principles of IWRM

- Water quality Monitoring
- Water Allocation
- Inter state water disputes
- Improved sanitation services in rural areas
- Participatory Approach (WUAs)

Composition of the Organisation would include

- Member CWC
- Chief Engineer –
 Irrigation Department

PROPOSAL 1

- Hydro-geologist -CGWB
- Environmental engineer – CPCB
- Member NRCD
- Member Ministry of Rural Development

Water User Associations - proposal

PROPOSAL 2

- To ensure sustainable use of water
- Efficient utilization of water
- Prudent use of irrigation of water
- Leading to evolving of a viable policy for equitable, efficient, environment friendly and sustainable irrigation development.

An active and successful WUA is one which efficiently and fairly distributes water and maintains and improves the physical structures of the irrigation systems...

Mohini village situated in Choryasi taluka of Surat District.

- Irregular rainfall, lack of water
- Irrigation department not responsible for internal water distribution
- Irrigation department granted permission
- Buying water from Irrigation dept and distributing proportionately

Part 2: Flood management

Surat floods

Flood History

1985 -

	The state of the party		Max	Max	Max	Max	Max	Max	mm	1
			Discharge	Level	Discharge	Level	Level	Level	m.m.	1
			lac cusees	Ft.	lac cusecs	Ft.	Ft.	Mt		-
1	1959	17 th Sept			12.94	179.20	101.75		2551 43	
2	1968	6 th Aug			15.60	187.50	103.50		1292.10	1 1
3	1969	8 th Sept			8.56	174.30	95.75		907.54	1
4	1970	6 ^{ar} Sept			13.00	181.00	100.00		1858.77	1 1
5	1978	31 st Aug					93.00		1136.65	1
6	1979	12 th Aug					91.95		1496.82	1 1
7	1990	25 th Sept			3.70	174.80	94.20		1074.93	
8	1994	8 th Sept	5.08	345.00	5.25	175.80	97.64		2095.50	1 1
9	1998	16 th Sept	7.62	345.00	6.73	178.90	101.30	13.90	1432.60	-
10	2002	7 th Sept	3.32	341.26	3.25	172.40	91.94	10.64	1129.80	-
11	2006	9 th Aug	9.61	346.07	9.01	182.70	106.52	14.20	1352.00	1 1
12	2013	24th Sept	4.40	344 62	4.36	175.40	97.00	1170	2135.00	-
Sr.	Year	Uka	i Dam	- K	Kekrapar Pan	n	Weir Cum	Hope Bridge	Annual	
Sr. No.	Year	Uka F.R.L	i Dam	hre	(ekrapar Dan n e 🛆 val	n	Weir Cum Cars Way	Hope Bridge Dan Lvl-95'	Annual Rainfall	
Sr. No.	Year	Uka F.R.L Max		hre	Kekrapar Dan n ter D vil t		Weir Cum Cars var A x	Hope Bridge Dan Lv1-95'	Annual Rainfall m.m.	
Sr. No.	Year	Uka F.R.L Max Discharge	i Pam	Dischar	K krapar Dan nie D val d rge l	n 7 Deb Level	Weir Cum Carls v A 4 x Level	Hope Bridge Dan Lvl-95' flax Level	Annual Rainfall m.m.	1
Sr. No.	Year	Uka F.R.L Max Discharge lac cusecs	i Pam Level Ft.	Dischar lac cuso	Kekrapar Dan nie Divin rge I ecs	n 245 Level Ft.	Weir Cum Carls v A U x Level Mts.	Hope Bridge Day Lvl-95' Ofax Level Ft.	Annual Rainfall m.m.	1
Sr. No.	Year 1994	Uka F.R.L Max Discharge lac cusecs 5.08	i Pam Level Ft. 345.00	Dischar lac cust	Kekrapar Dan nie D vel rge D ecs 1	n 7 2 k Level Ft. 75.80	Weir Cum Carstvay I x Level Mts.	Hope Bridge Dev Lvl-95' Glax Level Ft. 97.64	Annual Rainfall m.m. 2095.50	
Sr. No.	Year 1994 1995	Uka F.R.L Max Discharge lac cusecs 5.08	i Pam Level Ft. 345.00 328.12	Dischar lac cust	Kekrapar Dan nie Divid rge I ecs 1	n 7 Level Ft. 75.80	Weir Cum Cars var A x Level Mts. 7.55	Hope Bridge Dav Lvl-95' Glax Level Ft. 97.64	Annual Rainfall m.m. 2095.50 1379.40	
Sr. No.	Year 1994 1995 1996	Uka F.R.L Max Discharge lac cusecs 5.08	Dam Level Ft. 345.00 328.12 338.67	Dischar lac cuso 5.25	Kekrapar Dan nie Divid rge l ecs 1	n 7 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2 k 2 k	Weir Cum Carstvay 4 x Level Mts. 7 55 7.95	Hope Bridge Den Lvl-95' Glax Level Ft. 97.64	Annual Rainfall m.m. 2095.50 1379.40 1134.80	
Sr. No. 1 2 3 4	Year 1994 1995 1996 1997	Uka F.R.L Max Discharge lac cusecs 5.08	Dam Level Ft. 345.00 328.12 338.67 344.16	Dischar lac cuss 5.25	Cekrapar Dan nie 20 vol 2 rge l ecs 1	n 2 h Eevel Ft. 75.80	Weir Cum Causty 43 A x Level Mts. 7.55 7.95 7.83	Hope Bridge Dep Lvl-95' Glax Level Ft. 97.64	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04	
Sr. No.	Year 1994 1995 1996 1997 1998	Uka F.R.L Max Discharge lac cusecs 5.08 7.62	Dam Level Ft. 345.00 328.12 338.67 344.16 345.00	Dischar lac cuss 5.25	Cekrapar Dan nie 20 var 2 rge 1 ecs 1	n 2 b) Level Ft. 75.80 78.90	Weir Cum Causty (4) /1 x Level Mts. 7.55 7.95 7.83 13.90	Hope Bridge Dep Lvl-95' Gfax Level Ft. 97.64 101.30	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60	
Sr. No. 1 2 3 4 5 6	Year 1994 1995 1996 1997 1998 1999	Uka F.R.L Max Discharge lac cusecs 5.08 7.62	Dam Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53	Dischar lac cuso 5.25	Cekrapar Dan n e 20 v a 2 rge 1 ecs 1	n 7 b) Level Ft. 75.80 78.90	Weir Cum Carst vay A x Level Mts. 7.55 7.95 7.83 13.90 7.45	Hope Bridge Den Lv1-95' Gfax Level Ft. 97.64 101.30	Annual Rainfall m.m. 2095.50 1379 40 1134.80 1431.04 1432.60 954.20	
Sr. No. 1 2 3 4 5 6 7	Year 1994 1995 1996 1997 1998 1999 2000	Uka F.R.L Max Discharge lac cusecs 5.08 7.62	Ever Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61	Dischar lac cuso 5.25	Cekrapar Dan n e 20 var rge 1 ecs 1 1	n 7 b) Level Ft. 75.80 78.90	Weir Cum Caus way I x Level Mts. 7.55 7.95 7.95 7.83 13.90 7.45 7.03	Hope Bridge Devel-95' Flax Level Ft. 97.64 101.30	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80	
Sr. No. 1 2 3 4 5 6 7 8	Year 1994 1995 1996 1997 1998 1999 2000 2001	Uka F.R.L Max Discharge lac cusecs 5.08 7.62	Dam Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54	Dischar lac cuso 5.25	Cekrapar Dan n e 20 v a 2 rge 1 ecs 1 1	n 7 D Level Ft. 75.80 78.90	Weir Cum Caus way I x Level Mts. 7.55 7.95 7.95 7.83 13.90 7.45 7.03 7.34	Hope Bridge Day Lv1-95' Max Level Ft. 97.64 101.30	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50	
Sr. No. 1 2 3 4 5 6 7 8 9	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 3.32	Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26	Dischar lac cuso 5.25 6.73 3.25	Cokrapar Dan n e 20 v 4 2 rge 1 ecs 1 1	n 2 Ab Level Ft. 75.80 78.90 72.40	Weir Cum Caus way I x Level Mts. 7.55 7.95 7.95 7.83 13.90 7.45 7.03 7.34 10.64	Hope Bridge Dray Lv1-95' Hax Level Ft. 97.64 101.30 91.94	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80	
Sr. No. 1 2 3 4 5 6 7 8 9 10	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 3.32	Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26 343.81	6.73	Kakrapar Dan n e 20 v 1 2 rge ecs 1 1 1 1	n 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b	Weir Cum Caus vay A x Level Mts. 7,55 7,95 7,95 7,83 13.90 7,45 7,03 7,34 10.64 8,23	Hope Bridge Dray Lv1-95' Gfax Level Ft. 97.64 101.30 91.94 79.22	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80 1647.00	
Sr. No. 1 2 3 4 5 6 7 8 9 10 11	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 3.32 0.56	Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26 343.81 331.95	6.73	Kakrapar Dan n e D va 2 rge ecs 1 1 1 1 1 1	75.80 78.90 72.40 64.20 66.40	Weir Cum Caus vay A x Level Mts. 7,55 7,95 7,83 13.90 7,45 7,03 7,34 10.64 8,23 9,39	Hope Bridge Day Lv1-95' Max Level Ft. 97.64 101.30 91.94 79.22 84.22	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80 1647.00 1962.02	
Sr. No. 1 2 3 4 5 6 7 8 9 10 11 12	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 3.32 0.56 0.62	Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26 343.81 331.95 342.20	6.73 3.25 0.51 0.95 0.62	Kakrapar Dan n e 20 v 1 2 rge ecs 1 1 1 1 1 1	78.90 72.40 64.20 66.40 64.60	Weir Cum Cdris V42 A x Level Mts. 7 55 7.95 7.83 13.90 7.45 7.03 7.34 10.64 8.23 9.39 8.24	Hope Bridge Day Lv1-95' Hax Level Ft. 97.64 101.30 91.94 79.22 84.22 77.50	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80 1647.00 1962.02 1894.02	
Sr. No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 3.32 0.56 0.62 9.61	Pame Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26 343.81 331.95 342.20 346.07	6.73 3.25 0.51 0.95 0.62 9.10	Kakrapar Dan n e 20 v 1 2 rge ecs 1 1 1 1 1 1 1	n 2 b Eevel Ft. 75.80 78.90 78.90 78.90 64.20 66.40 64.60 82.70	Weir Cum Cars vay A x Level Mts. 7 55 7.95 7.83 13.90 7.45 7.03 7.34 10.64 8.23 9.39 8.24 14.20	Hope Bridge Dav Lv1-95' Hax Level Ft. 97.64 101.30 91.94 79.22 84.22 77.50 106.52	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80 1647.00 1962.02 1894.00 1352.00	
Sr. No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14	Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007	Uka F.R.L Max Discharge lac cusecs 5.08 7.62 7.62 3.32 0.56 0.62 9.61 2.42	Dame Level Ft. 345.00 328.12 338.67 344.16 345.00 344.53 321.61 322.54 341.26 343.81 331.95 342.20 346.07 344.20	6.73 3.25 0.51 0.95 0.62 9.10 2.45	Kakrapar Dan n e 20 v 1 2 rge ecs 1 1 1 1 1 1 1 1 1 1 1	n 2 b Eevel Ft. 75.80 78.90 78.90 78.90 64.20 66.40 64.60 82.70 70.50	Weir Cum Cars (v.a) A x Level Mts. 7 55 7.95 7.83 13.90 7.45 7.03 7.34 10.64 8.23 9.39 8.24 14.20 9.70	Hope Bridge Dav Lv1-95' Max Level Ft. 97.64 101.30 91.94 79.22 84.22 77.50 106.52 96.00	Annual Rainfall m.m. 2095.50 1379.40 1134.80 1431.04 1432.60 954.20 785.80 1180.50 1129.80 1647.00 1962.02 1894.00 1940.60	

0.36

Surat-Flood prone area

335.46 0.25 163.00 7.55 80.23 1475.02 $ule_{1,3}^{2009} level chort - time to let for water level in Ukar reservoir$ ecided by CEWC expert 4 team 101800 213500 5-6 years

2008

Surat floods...

Political interference ?

Sensing the danger of flood, Surat Collector and Municipal Commissioner on night of 4th August, asked for release of 2 lakh cusecs and of 4 lakh cusecs of water from the night of 5th

Flood History

August. However, one of the engineers reacted, 'there is no point in collectors making such attempts as they do not have the necessary technical knowledge'. The **officers of the Narmada Water Resource & Water Supply (NWRWS) department, specialized experts in flood control, were supposed to advise the government.** Replying to the demand of releasing water, Minister for Narmada Water Resource & Water Supply (NWR&WS), Mr. Narottambhai Patel, on August 3, 2006, has reportedly said, 'at present the water level in the reservoir is 334 ft. and it is necessary to reach the rule level of 337 ft. by 15th August. If water level goes beyond 345 ft., then there is danger to the dam, but before that there is no question of releasing any water'.

No major releases were made even after the floodwaters had started entering the reservoir in a big way on 6th August.

(People's Committee on Gujarat Flood 2006: A Report)

Concept- Flood management

Why include climate change in IWRM?

Water - primary medium through which the expected effects of climate change will materialize

Climate change & increased climatic variability

Sea level rise	Changing precipitation pattern		
Coastal floods	Flash floods & riverine floods		

Integrated Flood management as part of IWRM

IWRM

	Integrated Ecosystem approach				
Coordinated management		IFM			
and development of water, and and related resources	Single intervention has				
	as a whole	Link Land use &			
Economic and social welfare + ecosystem sustainability	Intervention to improve river basin assets (land and water) cannot ignore flood risk and consequences	water use , Both natural and human			
	Manage land and water use links				

Traditional Flood Management

Controlling measures, localized

Draining quickly Storing temporarily Separating water from population through dams and levees

What is Integrated flood management?

Encourages the use of the resources of a **river basin as a whole**, employing strategies to maintain or augment the **productivity of floodplains**, while at the same time providing **protective measures against losses** due to flooding.

IFM- Why?

Aiming at maximizing the net benefits from flood plains, meanwhile minimizing loss of life.

Concept- Flood management

IFM- Why?

Key elements	Manage the water cycle as a whole	Integrate land and water management	Manaç unc	ge risk and ertainty	Adopt a b of strate	est mix egies	Ensure a participatory approach	Adopt integrated hazard management approaches.
Tools	Flood hazard mapping	Transboun managen	dary nent	Manag of flast	gement n floods	foreco Early	-lood asting and v warning	Flood proofing
	Conservation and restoration of rivers	Flood emerger plannin	ncy g	Risk s	haring	La	nd use anning	Organizing community
		Flood loss a assessme	& risk ent	Basin manaç pl	i flood gement an	Re operc mc	eservoir ations and anaged flows	

Flood Management.... Case studies

Case study	Spatial scale	Structural measures	Administrative/Institutional Measures
Cameron	National		National Secretary for disaster management
Ethiopia, Awash river basin	River basin	Dam, dykes	River training unit to maintaing riverbed and flood plain River Basin organization with community representation
Mauritiana	River basin		Public awarness through advertisment
Zimbabwe	Districts	Dam,weir	Land use integration- identifying flood prone
Bangladesh		Drainage and irrigation works	Flood forecasting and warning system
			Flood plain clearing
Damodar, India	River valley		Damodar Valley Reservoir Regulation Committee

Concept- Flood management

IFM- Why?

Risk assessment Flood Management....

0.0416

Using Flood Vulnerability index by UNESCO

		Value	Value in Formu	ıla
ative - ood	Pop in flood prone area	4600000	0.46	
	Rural population	28%	0.28	
neg =gc	Disabled, minor, aged	22%	0.22	
less less	Urbanization	11%	0.11	
Soc	Child Mortality	3.8	3.8	
				0.011844448
	Past experience of affected	2737500	0.27375	
d Ye	Awareness/preparedness	8	0.8	FVIs
sitiv goo	Communication penetration	90%	0.9	0.013
l po		5/10		
noi	Warning system	rated	10	
So	Evacuation roads- % asphalted roads	90%	0.9	
	Human Development index	0.527	0.527	
				0.9348453
	Land use- economic	2%	0.02	
goo	Unemployment	60%	0.6	
ega	Inequality- Gini coefficient	0.305	0.305	
יכ <u>ש</u>	Urbanization	11%	0.11	
				0.0004026
σ	Life expectancy index	0.9166	0.9166	
	Flood insurance	0	1	FVIe
e=£	Investment in flood preparednenss/GDP	6%	0.6	0.010
po nor	Storage capacity of Dams/ catchment	0.108	0.108	
-	Economic Recovery	70	0.7	

Economic

Economic

FVI = FVIs + FVIe + FVIev + FVIp

		FV		0.847
Let De	Embankment	0.29	0.2	0.88305
יysi gati ss=נ d	Storage capacity/discharge	0.87	0.87	0.242
cal ive- goo	Evaporation rate/ rainfall	3.5	35	FVIp
Physical positive	Topography, slope	0.214	0.214	0.214
			0.00	
n a b	Unpopulated area (<10 pp sq km)	0.55	0.55	0.0039347
osit osit	Natural Reservation	0.14	0.1	
nm tive =go	Evaporation Rate	0.365	0.365	0.583
ent od	Forested area	0.14	0.1 <mark>1</mark> 4 F	Vlev
				0.0022524
Les Les	Urban Growth	0.02	0.02	
∕iro ent gati s=8	Degraded area	0.11	0.11	
-ev	Rainfall	1.042	1.042	
_				

FVI of 0.84 – Very high risk

Towards Land use integration Vulnerability and risk Mapping **PROPOSAL 3**

Vital infrastructure

Overlay

Institutional roles.... Vulnerability and risk Mapping **PROPOSAL 4**

Reservoir Regulation committee

PROPOSAL 4

PROPOSALS

IWRM- How? ?

Adapted from Global water partnership-IWRM toolkit

REGIONAL TO CITY LEVEL ASSESMENT

From Tapi Basin Level - SMC level

Floods occurring in Tapi basin are affecting the settlements most, Surat being in the lower Tapi is affected the most.

Predicted Changes that would affect Surat?

What were the impacts (physical) on Surat?

What were the **reasons** for Flood ?

Is there a need for Surat to be **Resilient** ?

What is Resilience?

What is a Resilient city ?

What Strategies Surat is adopting to go towards Resilience?

What should be done to make Surat a Resilient city?

Introduction... surat

OLD SMC

SUDA

CITY GROWTH (spill over)

NEW SMC

149

1951 to 1990 AD

1991 to 2004 AD

Source: Surat Trans-Vision 2030

CHANGE.. IMPACTS.. ASSESSMENT.. CONCEPT.. STRATEGIES.. LEAFURBANIZATION

- The city area has expanded with time (major expansion being in 2006) and presently covers
- 326.515 sq.km.
- Total Population(2013) 4.7 million

The spill over of Population into the periphery has also been observed

714.7 sq.km

CHANGE.. IMPACTS.. ASSESSMENT.. CONCEPT.. STRATEGIES.. LEAFURBAN SPRAWL

SUBSTANTIAL DECADAL GROWTH CAN BE SEEN

CHANGE... IMPACTS.. ASSESSMENT.. POVERTY (INFORMAL SETTELMENTS)

- Many of these slums are located along the tidal creeks, along the river, between the embankments and other drainage lines.
- These slums face higher risk of flooding (pluvial, and tidal).
- Having recognized this, efforts to relocate the slums were initiated by the government under various schemes (under various national projects including JNNURM)

Zone wise Slum Settlement(2005)								
Zone	No of Slums	No. of slum Households	Slum Population	Percentage to zone Population	Percentage to total population			
Central	25	9,189	45,618	11.03	1.87			
North	40	9,603	45,596	13.60	1.87			
South*	128	58,213	2,33,658	35.82	9.60			
East	53	19,364	79,009	13.61	3.25			
West	38	11,333	51,712	20.65	2.12			
South West	23	8,961	34,712	17.20	1.43			
SMC	307	1,16,663	4,90,305	20.15	20.15			
South Zone was bufurcated in the year 2004 Current it is 17%								

CHANGE.. IMPACTS.. ASSESSMICLIMATE CONDITION (PRECIPITATION)

Surat receives an annual rainfall ranging between **950-1200 mm**. About **90%** of the rainfall occurs in period between June to September

THE INCREASE IN RAINFALL MAY ADD ON TO THE EXISTING RISKS OF PLUVIAL FLOODING.

Source : Surat Disaster Management Plan 2013

Sr.	Year	Total rainfall of	Total rain fall of the
No.		the season in	season in m.m.
		inch	
1	1990	42.32	1044.09
2	1991	32.48	0825.01
3	1992	85.40	2169.02
4	1993	52.43	1346.10
5	1994	82.50	2095.50
6	1995	54.28	1379.40
7	1996	44.67	1134.80
8	1997	40.60	1431.04
9	1998	56.39	1432.60
10	1999	37.56	0954.80
11	2000	30.92	0785.80
12	2001	46.50	1180.50
13	2002	44.57	1129.80
14	2003	66.00	1647.00
15	2004	77.31	1962.02
16	2005	74.46	1894.00
17	2006	53.22	1352.00
18	2007	76.12	1940.60
19	2008	57.95	1475.02
20	2009	57.77	1470.00
21	2010	72.99	1854.00
22	2011	40.25	1018.00
23	2012	36.64	927.00
24	2013		2135.00

CHANGE.. IMPACTS.. ASSESSMENT.. CONCEPT.. STRATEGIES.. SEA LEVEL RISE

Surat is a coastal city and lies near the estuary of Tapi River. Several tidal creeks cut across the city. Tidal range of Surat is about **5.8 m.**

During rainy months, the high tides (the highest during in the year) often cause the **sea water to inundate the slums located along the creeks**.

IMPACTS...ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS.. FLOOD HISTORY

IMPACTS...ASSESSMENT.. CONCEPT.. STRATEGIES.. FLOOD SCENARIO

IMPACTS...ASSESSMENT.. CONCEPT.. STRATEGIES.. FLOOD REASONS & TYPES

MPACTS...ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS.. FLOOD IN SLUMS

Maximum settlements were found on the banks of river or near khadi

Khadi flood prone areaRiver TapiGamtal areaSlum Pockets

Source : Slums 2008

Life on the banks

IMPACTS...ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS.. WATER BODIES

(Shrinking of water bodies)

Impacts of Climate and Urbanization is also seen on Water bodies of Surat

ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS..

The peak inflow at Ukai during 1998 was more than 8 lakh cusec only for a period of **6 hours** and yet the peak outflow from the dam was **7 lakh** cusec. **This indicated that water was not released gradually and in a timely fashion**.

Source : IIM research paper

Due to Heavy rain, khadi flood was seen

2004

Total rain fall of the season was 1962 m.m

Source :CDP 2008-13

2006

7.5 Lac Cusecs of water was discharged continuously for 13 hrs.
9 Lac Cusecs for 42 hrs.
128 Sq.km out of SMC (326sq.km) was flooded.

FLOODS

Source :India situation report, Gujarat floods

Source :DMP 2013

ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS..

AREAS PRONE TO FLOODS DUE TO UKAI

ASSESSMENT.. CONCEPT.. STRATEGIES.. LEARNINGS..

The year 2006 was clearly the year of major flood disasters for Surat.

REASON:

- By sudden release of large quantities of water from Ukai dam.
- This was the **biggest flood in last 34 years**.
- The water level in the river at Surat crossed the previous highest level of 12 meters (of 1968 flood) and reached 12.5M, submerging more than 80% of the city under water.

2006 FLOOD

upto 3'0" 3'0" to 5'0" 5'0" to 10'0" More than 10'0"

Source : Disaster Management Plan 2013

Comparison of Different Floods in Surat

Flood Year	Peak inflow (lakh	Max outflow	Rose level at Hope	Outcome
	cusec)	(lakh cusec)	bridge (meter)	
1968 (No dam)	-	15	12.01	Major Flood
1978	< 8	4.4	-	No flood
1979	< 8	3.3	-	No flood
1994	8.9	6	10.2	Flood
1998	10.5	7	11.5	Flood
2006	10.6	9	12.01	Major Flood

Source : People Committee on Gujarat floods 2006 : A report

The rise level of water with different outflow level is increasing, which shows that the safe carrying capacity of the river has decreased considerably from the earlier time.

REASONS

Inappropriate discharge from Ukai dam
 Intensive rainfall causing khadi floods
Decreasing Safe carrying capacity of River Tapi
 Incomplete or damaged construction on embankment
· · · · · · · · · · · · · · · · · · ·

CONCEPT.. STRATEGIES.. LEARNINGS..

Need for Surat to be Resilient

RESILIENCE : It is the capacity of a community or society to adapt when exposed to a hazard

RESILIENT CITY: It is one that is able to sustain itself through its systems by dealing with issues & events that threatens, damage or try to destroy it.

Source : Climate Resilient Cities by World Bank "the capacity of individuals, communities, institutions, businesses and systems within a city to survive, adapt, and grow no matter what kinds of **chronic stresses** and **acute shocks** they experience."

PARAMETERS OF RESILIENT CITY

REASONS	STRATEGIES	Surat's Approach	Institutions involved – S	MC, ACCCRN, SCCT
RESILIENT	Intensive rainfall causing khadi floods	Decreasing Safe carrying capacity of River Tapi	Incomplete or damaged construction on embankment	Inappropriate discharge from Ukai dam
Better Drainage	Storm water Drain pumping stations (SMC)	Multi purpose detention reservoir	Temporary Storage in urban areas	To avoid water logging in urban
Structural Resilience		Singanpore Weir cum Causeway Project(1995)	Construction of River Embankment Road (2012)	areas
Policy & Programmes	Mindhola river rehabilitation project	Water bodies cleaning Programme	Conveyance	
Flood Water Control	HOLDING Ponds	Multi purpose detention reservoir	Diversion of flood water from River Tapi (CRS)	Ballon barrage project
Emergency Response		Store flood water		End to end early warning systems for Ukai (SCCT, ACCCRN))

Diversion of flood water from River Tapi (CRS)

TEMPORARY STORAGE During floods

Maximum water depth it will carry is 0.5m but if secured it can carry 1m depth Open Grounds Open stadium Play fields

CHANNELS ••••

MAP of uncultivable land & Swamp

HOLDING ponds

Places can be identified also in uncultivable land or existing water bodies

GOPI Talaav

Limit flooding Pollutant removal. Accommodate high water during rainy times.

Redevelopment of HOLDING ponds in Navi Mumbai

To maintain these ponds institutions involved?

Coastal Zone Management Authority ? Surat Municipal Corporation?

Ukai Reservoir Regulation committee

Environment degradation by transport of polluted water

Obstruction in runoff during rains

Mindhola creek

Losses of hydraulic efficiency of the Drainage and water body

An increase in flood frequency.

SOLID WASTE MANAGEMENT

SOLID WASTE MANAGEMENT

- Total area 326.5 sq.km
- Average generation 350gm/capita/day
- Over 1500metric ton garbage is collected and disposed
- Expenditure Rs. 1.20/capita/ day

Solid waste management parameters	Bench mark	Surat Status 2010-11	Achieved year 2013-14	Target for year 2017- 18
Household coverage	100%	97%	92.3%	100%
Efficiency of collection	100%	97%	88%	100%
Extent of treatment	100%	15%	13%	30%
Segregation at common facility	100%	36%	18%	80%
Extent of scientific disposal	80%	29%	15%	75%
Extent of redressal of customer complaints	100%	85%	93%	100%
Extent of cost recovery	90%	83%	100%	100%
Efficiency in collection of charges	80%	97%	91%	100%

SERVICE PROVISIONING

SERVICE PROVISIONING

SERVICE PROVISIONING

EFFICIENCY OF COLLECTION

Efficiency of collection

- South Zone 60%
- South East Zone & West Zone 77%
- South West Zone ; North-Central & East Zone 90%

ALTERNATE WAY

Zones	Trans	fer			Existing Sc	enario			Original Capacity of container		Equ	vivalent	Alternate	e Way					
	statio	on	Vehicles	Trips	Total Weight	Weight, vehicle	Volume/ve	hicle			V	/eight	Vehicles	Trips					
South- West	Bhat	ar	10	5	49 T	0.973	T 1.144 c mt	cu. 4.5 cu. r		mt	3	.825 T	10 + 3	1					
East	Varac	hha	13	5	159 T	2.45 T	2.88 cu.	mt	4.5 cu. mt		mt 4.5 cu. mt		3	.825 T	13 + 3	3			
Transfer S Zon	Station 1e			Existing		P	rofit/ year	C	apital cost	Co recov in yo	ost vered ears								
Dla	out our	Ve	ehicles	Trips	Expense/a	day 1	3,32,000	3	@ 2,90,000	1	1								
Trai	nsfer		10	5	5000			= 8 70 000		= 8 70 00									
Sta	ition		ł	Proposal				0	,70,000										
Sou	Jth		13	1	1300														
We	est Zone	F	Profit/day		3700														
				Existing		4	1,03,994	3	@ 2,90,000		3	• Avero	ae Total	No Of T	rips B				
Vai	racha	Ve	ehicles	Trips	Expense/o	day		Q	=			aua.1	4 - 677						
Trai	nsfer		13	5	3120			0	,70,000			• Avero	ige No Of	Vehicl	es Uti				
Sta	ition			Proposal								Same	Time - <u>1</u>	<u>53</u>					
Eas	st Zone		16	3	1998							· Averc	ige No Of	Trips P	er Vel				
		F	Profit/day		1122														

PROPOSAL

For the implementation of the proposal East Zone is chosen because—
1. The distance between Transfer Station and STP is about 1.5km
2. The waste generation is maximum in this zone

3. The STP is already being augmented and Transfer Station is under augmentation

COLLECTION MECHANISM

- Population 11.37lacks
- Per capita generation 0.35kg
- Total generation- 398 MT
- Total household Wet waste- 173MT
- Total household Dry waste 46MT
- Hotel Waste 40MT

Note:-

Paper – 12% Plastic – 4.12% Metal – 2.76% Glass - 2.06% Hotel waste – 10%

	Trips	Vehicles	Weight (MT)	Situation
Household collection	3	70	219	Existing
Hotel	1	25	40	
	1	1	2	Ideal
HH Wet Waste	2	70	173	
HH Dry Waste	1	25	46	Proposal
Hotel Waste	1	20	40	

DRY WASTE RECYCLING AT MRF

- A materials recovery facility (MRF) is a place where solid wastes are delivered to be separated, processed and stored for later use as raw materials for remanufacturing and reprocessing.
- The main function of the MRF is to maximize the quantity of recyclables processed, while producing materials that will generate the highest possible revenues in the market.

Household Dry waste- 46MT/d Informal Sector- 26MT/d Total Dry waste= 72MT/d = 26280MT/year

Items	% of Weight can be recovered	Weight can be recovered MT/year
Paper and Card boards	39.4	10354
Plastic	1.3	341.6
Metals	6.4	1682
Glass	2.9	762

Out of the total dry waste, half of the weight is recovered from Paper, Plastic, Metals and Glasses

WET WASTE + SEWAGE SLUDGE TO ENERGY

• **Co-digestion** is a process where energy-rich organic waste materials (e.g. Fats, Oils, and Grease (FOG) and/or food scraps) are added to dairy or wastewater digesters with excess capacity.

Advantages-

- Diversion of organic waste from landfill to reduce greenhouse gas emission and meet targets set by regulations.
- Increase in biogas production which can be converted into energy to meet the needs of the Anaerobic Digestion system itself, for local use, supply of electricity to the national grid or for biofuel in transportation.
- Additional revenue from sale of surplus energy and digestate
- Improved sludge digestion due to synergistic effects of increased nutrients and improved degradation
- Production of organic fertiliser for agricultural use which results in a reduction in the production of chemical fertilisers.
- Small land area required (most of the structure can be built underground)
- Low to moderate capital costs; low operating costs provided Long service life

WET WASTE + SEWAGE SLUDGE TO ENERGY- FLOW DIAGRAM

Capacity	100MLD	Volume	Volume	Volume	Total Volume of	
Treat	80MLD	of Sludge	of HH wet waste	of Hofel Waste	solids to be treated	
Solid	8MLD	8MLD	0.6	0.15	8.75= 9MLD	
Water	72MLD					
Power generation	1MW					

- Present quantity of Solids treated 8MLD
- Under proposed scenario quantity will be – 9MLD
- Power generation will increase

DRY WASTE RECYCLING AT MRF

PROPOSED AREA FOR SETTING UP MRF & TREATMENT PLANT

- The area marked with Red has a total area of 16416sqmt
- So the land can be well utilized for setting up MRF as well as Treatment Plant
- To recycle 76MT/day we need a medium size MRF

It requires a land area of about 1900sqmt

 And also the treatment plant can be setup within 5000sqmt

INFRASTRUCTURE PROVISIONING (for SMC area)

WATER SUPPLY

WATER SUPPLY

Inlet Water Works 🐔

Water Supply γ Water Treatment Plant Varachha 68 MLD A Kosad WTP Katargam (1997) B Katargam Sarthana 120 MLD 240 MLD D A Rander Varachha Sarthana (2000) 120 MLD **Rander (2003)** 200 MLD Re Kosad 98 MLD Total- 1268 MLD

WATER SUPPLY

Service Level Benchmarks

Access & Coverage

Service Levels & Quality

WS Coverage

Service Levels & Quality

2011-12 2010-11

Source : PAS

Equity in Service Delivery ${\it I}^{\Delta}$

WATER SUPPLY Service

Complaints are directly assigned to concerned employee on his mobile phone by Complaint Management System, which are **tracked**, **reviewed and replied within 48 hours in most cases**.

Efficiency in Service Operations

User End

Source : SMC Hydraulic Department

WATER SUPPLY

Efficiency in Service Operations

Source : PAS, SMC Hydraulic Department

Staff Details

Sanctioned Working

To create an alternate source of water, three options are being actively considered:

- •Laying of pipeline from Kakrapar to Surat
- •Constructing 2 new French wells
- •Construction of Balloon Barrage

ASSESSMENT..

WATER SUPPLY

There is increase in demand of water in coming years . And w.r.t. available resources there will be big gap between demand & supply of water

Issues

 Providing Resources for the future. 100% coverage of water supply Inequity in service delivery (slums 37% coverage) Laying pipelines from Kakrapar can affect the finances of Surat
--

CONCEPT..

Strategies

Proposal

Equity in Service Delivery 4

Source : Ws Department , West Zone Office , Surat , 2014

Proposal

Source: Ws Department, West Zone Office, Surat, 2014

Source : Ws Department , West Zone Office , Surat , 2014

Iqbalnagar

No. of HH- 823 Land Tenure- State Govt. No. of Individual water conn. – 0 No. of Standpost - 1

Source : Google earth, 2014

Goya Faliyu Pal

No. of HH- 25 Land Tenure- Na No. of Individual water conn. – 0 No. of Standpost – 0 Source of water- water tanks (SMC)

Slum Location & water supply Network 4

Equity in Service Delivery

Iqbalnagar

No. of HH- 823

Length of pipe from main supply line till society- 720 m & Cost= Rs. 17.85 lacs Length of internal network of w.s. Pipeline-5 km & cost= Rs. 25 1.04 cr Cost of providing individual conn- Rs.24.70 lacs

Total cost - Rs. 1.50 cr Cost / hh= Rs. 18,000/-

Main ws line

150 mm ws line from main line to slum entrance

100 mm ws internal network

Model 1

Source : Google earth, 2014

Iqbalnagar

No. of HH- 823

Length of pipe from main supply line till society- 720 m & Cost= Rs. 17.85 lacs Length of internal network of w.s. Pipeline- 5 km & cost= Rs. 25 1.04 cr Cost of providing individual conn- Rs.24.70 lacs Storage reservoir – 3m stagging , 25 lacs liters Sump - 50,000 liters **Total cost - Rs. 2.19 cr**

Cost / hh= Rs. 26,626/-

- Storage Reservoir (25 lacs. lit)
- Main ws line
 - 150 mm ws line from main line to slum entrance
 - 100 mm ws internal network

Model 2 41°

Source : Google earth, 2014

Model 3

Iqbalnagar

No. of HH- 823 Stand post – 41 (1 stand post for 100 person) Total cost - Rs. 99,34,650 Cost / hh= Rs. 12,071/-

Main ws line

150 mm ws line from main line to slum entrance

100 mm ws internal network

Source : Google earth, 2014

Models Comparison 🐔

	Model 1	Model 2	Model 3
Description	w.s. directly from main w.s line along tp road	24x 7 w.s. (reservoir)	w.s. through stand post
Total Cost (Rs.)	1,50,00,000	2,19,13,200	99,34,650
Cost (cost/hh) (Rs.)	18,226	26,626	12,071
Advantage	convenient	24x 7 water supply to HH	Cost effective
Disadvantage	w.S will be limited to supplied hours only	Will be costly	Inconvenience to people

Model 2 🗹

Goya Faliyu Pal

No. of HH- 55

Length of pipe from main ws line till slum entry - 1.1 km & Cost= Rs. 27.50 lacs. No. Of Stand post = 3 (1 stand post for 100 pop.) Stand post = Rs. 5000/-Approx. – Rs. 30 lacs.

Water Supply **Budget Allocation Assessment**

ረገ

\$

West Zone						
	Total hh	total cost	Cost/hh	Total	Budget Allocation	Gap
Model 1	18164	15000000	18226	331057108	98140000	-232917108
Model 2	18164	9934650	12071.26	219262433	98140000	-121122433
Model 3	18164	21913200	26626	483634708	98140000	-385494708

- Ws budget- Rs.**98,14,00**,000

10% of w.s. for slums=Rs. 9,81,40,000

Budget Allocated by Surat is not able to serve even 1 zone

Proposal

Proposal

Funds for slums water supply (\$

	Gol	GoG	ULB	Beneficiary	
Schemes at National level					
Rajiv Awas Yojana	50%	28%	10%	12%	Housing
	50%	28%	22%	0%	Infrastructur
Basic service for urban	50%	25%	10%	15%	Housing
poor (BSUP)	50%	25%	25%	0%	Infrastructur
	Schemes a	dopted by Sur	at		
EWS Housing Scheme	9%	-	9%	82% (thru loan)	
VAMBAY Housing	100%	-	-	-	
LIG Housing Scheme				100% (thru Ioan)	_
JNNURM	50%	20%	30%	-	
	Schemes a	t ward level co	an be adopted	k	
Slum Networking	-	-	80%	20%	

SERVICE LEVEL OF SURAT

Top 15 cities:

Overall	Water Supply	Wastewater	Solid waste	Storm Water
Service Index	Index	Management Index	management Index	Drainage Index
Navi Mumbai (Mah.)	Malkapur NP (Mah.)	Nashik (Mah.)	Mahilpur (Punj.)	Bhagur (Mah.)
Nashik (Mah.)	Navi Mumbai (Mah.)	Pimpri Chinchwad (Mah.)	Ghanaur (Punj.)	Janjgir naila (Chgrh.)
Shornur (Ker.)	Bhawanigarh (Punj.)	Surat (Guj.)	Lalru (Punj.)	Jagdalpur (Chgrh.)
Surat (Guj.)	Muvattupuzha (Ker.)	Navi Mumbai (Mah.)	Bhawanigarh (Punj.)	Berhampore (WB)
Vadodara (Guj.)	Neyyattinkara (Ker.)	Ga <mark>ndhinagar (Guj.)</mark>	Nashik (Mah.)	Thane (Mah.)
Pune (Mah.)	Shornur (Ker.)	Vadodara (Guj.)	Fazilka (Punj.)	Rajnandgaon (Chgrh.)
Ahmedabad (Guj.)	Thiruvananthapuram (Ker.)	SAS Nagar (Punj.)	Jalalabad (Punj.)	Dhamtari (Chgrh.)
SAS Nagar (Punj.)	Patiala (Punj.)	Ahmedabad (Guj.)	Muktar Sahib (Punj.)	Bhattapara (Chgrh.)
Ambarnath (Mah.)	Barnala (Punj.)	Rajkot (Guj.)	Malerkotla (Punj.)	Jashpurnagar (Chgrh.)
Karnal (Har.)	Kalamassery (Ker.)	Vrindavan (UP)	Rayya (Punj.)	Ambikapur (Chgrh.)
Mumbai (Mah.)	Kalpeta (Ker.)	Pune (Mah.)	Shornur (Ker.)	Garulia (WB)
Anandpur Sahib (Punj.)	SAS Nagar (Punj.)	Ambarnath (Mah.)	Batala (Punj.)	Kulti (WB)
Faridabad (Har.)	Angamaly (Ker.)	Faridabad (Har.)	Tarn Taran (Punj.)	Champdany (WB)
Kanpur (UP)	Chalakudy (Ker.)	Mahabaleshwar (Mah.)	Kodungallur (Ker.)	Kawardha (Chgrh.)
Mahabaleshwar (Mah.)	Ambarnath (Mah.)	Panchkula (Har.)	Ahmedabad (Guj.)	Konnagar (WB)

Source: City Ranking on Service Levels by PAS, CEPT University (1100 cities)

NUSP RATING OF SURAT

NUSP Ratings							
	City	Total	Output	Process	Outcome		
1	Chandigarh	73.48	36.25	21.08	16.15		
2	Mysore	70.65	33.08	25.07	12.50		
3	Surat	69.08	29.75	23.83	15.49		
4	N.D.M.C.	68.26	36	19.71	12.55		
5	Delhi Cantt.	61.36	30.75	19.41	11.20		
9	Rajkot	56.11	21.833	21.52	12.76		
19	Ahmedabad	51.29	21.16	21.16	8.96		

No.	Category	Description	Points
1	Red	Cities needing immediate remedial action	< 33
2	Black	Needing considerable improvement	34-66
3	Blue	Recovering	67-90
4	Green	Healthy and clean city	91-100

Source: NUSP, Rating of Cities 2010

Indicators of Sewerage			
Output Related	Points (50)	Surat	
A) No open defecation	16		
 Access and use of toilets by urban poor and other un served households (including slums) individual and community sanitation facilities 	4	0	
 Access and use of toilets for floating and institutional populations -adequate public sanitation facilities 	4	4	
iii) Open defecation visible	4	1	
iv) Eliminate Manual Scavenging and provide personnel protection equipment to sanitary workers	4	4	
B) Proportion of total human excreta generation that is safely collected	6	5	
C) Proportion of total black waste water generation that is treated and safely disposed off	6	7.50 (9)	
D) Proportion of total grey waste water generation that is treated and safely disposed off	3	-	
E) Proportion of treated waste water that is recycled and reused for non potable applications	3	0	

Indicators				
Process Related	Poi (30	nts)	nts Surat	
A) M&E systems are in place to track incidences of open defecation	4		0	
 B) All sewerage systems in the city are working properly and there is no ex- filtration (Not applicable for cities without sewerage systems) 	5		4.7	2
C) Septage/sludge is regularly cleaned, safely transported and disposed after treatment, from on-site systems in the city (MAXIMUM 10 marks for cities without sewerage systems)	5		5	
D) Underground and Surface drainage systems are functioning and are well-maintained	ace drainage 4 nd are well-		4	
E) There is clear institutional responsibility assigned	4		1	
Outcomo Bolatad		Doir	ate	Surat
		(20)	its	Suidl
A) Improved water quality in water bodies in and around city compared to baseline		7		0

SCOPE..

EXISTING SCENARIO

EXISTING SCENARIO

EXISTING SCENARIO

EXISTING SCENARIO

Access Co	ellection Pumping	Treatme	ent	Disposal	Reuse
 EXISTING STP UPGRADATION/AUGMENTATION OF STR NEW STP 	P	Existing Sewage Treatment Plants:	Capacity	Proposed Extension	Catering Zones
	Anjana STP	82.50 MLD		Southeast Drainage Zone	
	Bhesan STP	100.0 MLD	70 MLD capacity	West Drainage Zone	
Bhesan Singanpore West Zone Central Zone SouthEast Zone	Bhatar STP	120.0 MLD	120 MLD capacity	Southwest Drainage Zone	
	Karanj STP	100.0 MLD	80 MLD capacity	East Zone	
	SouthEast Zone	Singanpore STP	100.0 MLD	100 MLD capacity	North Zone
Bhata	ar	Bamroli STP	100.0 MLD	60 MLD capacity	South Drainage Zone
	Dindoli	Asarma STP	15.0 MLD		West Drainage Zone
SouthWest Zone South Zone Bamroli	Khajod STP	25.0 MLD		Southwest Drainage Zone	
Khaiod		Variav-Kosad STP	84.0 MLD		North Zone
		Dindoli STP	66 MLD	Ongoing	South East Zone East Drainage Zone
Source: SMC Website		Total	792.5 MLD		

Disposal Locations

Access	Collection	\geq	Pumping	Trea	atment	Disposal	Reu	Jse
		- 7			Drainage Zones	STPs	Discharg	je Points
			- Eg				Treated	Untreated
	Vadav Kosad			Bhesan	Tena Khadi			
			west zone	Asharma				
TAX MAGE					South East	Anjana	Mithi Khaadi	Mithi
Tena Creek	Brestan		North Zone Singanpore East Zong	e pour	Zone	Dindoli	Bhedwad Khaadi	Koyali Creek
KA VSS	Karani Greek Karani	Karanj	Karapi Khadi	Karanj				
	Asarna West Zo	one d	Central Zone	2 m h	Edst Zone	Dindoli	Karanj Khaar	Khadi
NA THERE AND		MitbulhadiAgana SouthEast Zone		North Zone	Singanpore	River Tapi		
			NOTH ZONE	Variav-Kosad	Tena Creek			
14 S 187 19 19	Bhat	ar Disposal Khac	Biata			South Zone Bamroli-Vadod	Khajod Khadi	Kakra Khadi
NE CO		15	Bhedweitkinad		South Zone			Khajod Khadi
175 19	Chinkle Trans	Khajoo Khadi	Khajod Bamroli					
138 Set 5 1 1 5 5	J Southwest Zone	2	South Zone			Bhatar	Kakra Khadi	
		1			Zone	Khajod	Kankara Khadi	
Source: SMC Webs Google Earth	ite	R						

Reuse of waste water..

Access Collection	on	Pumping	Tre	atment	Disposal	Reuse
Waste Water Irrigation • Total gross area of 146 ha out of 745 ha is being irrigated using wastewater Bleese Gan STP		Existing Sewage Treatment Plants:	Capacity	Use of Waste Water	Installed Capacity of Power Plant	Gas Based Power Plant •Provides electricity to
Malgama	North aranj STP	Anjana STP	82.50 MLD		0.5 MW	equipments.
Assemble		Bhesan STP	100.0 MLD	Agriculture		• Total electricity
Asima Anjana	STP	Bhatar STP	120.0 MLD		1.0 MW	3.87 Crore units
Bhatar STP		Karanj STP	100.0 MLD		1.0 MW	worth Rs. 17.96 Crore
		Singanpore STP	100.0 MLD		1.0MW	 sewage gas has resulted the total
Legend Vilage Boundary Waste Water Channel		Bamroli STP	100.0 MLD	40 MLD Tertiary treatment plant for Industries at Pandesara (Rs 18.2/KL)	0.5 MW (Proposed)	savings of 68.7 lac unit per annum Rs. 3.18 Crores/annum
The estimated agriculture receipt	s are	Asarma STP	15.0 MLD	Agriculture		
around Rs. 1.08 crore with a cash profit of around Rs. 85 lakhs.		Khajod STP	25.0 MLD			
		Variav-Kosad STP	84.0 MLD		0.5 MW (2 Nos.) (Proposed	
Source: Wastewater Irrigation in Guiar	at: An	Dindoli STP	66 MLD		0.375 MW (2 Nos.) (Proposed)	
Exploratory Study – IWMI, 2012 SMC Website, Surat CDP		Total	792.5 MLD		5.75 MW	

INSTITUTIONAL ARRANGEMENT..

INSTITUTIONAL ARRANGEMENT..

Sectors	Sanctioned	Working	Gap	% of Total Working
Sewerage	701	578	123	42.31
Water Supply	673	591	82	43.26
Solid Waste	235	197	38	14.44
Total	1609	1366	243	

Max Gap of employees in Sewerage

Zone wise distribution West Zone, Central Zone, Southwest Zone has maximum gap in terms of No. of employees per connections

Source: PAS Project, 2011-12

COMPLAINT REDRESSAL..

Complaints are directly assigned to concerned employee on his mobile phone by Complaint Management System, which are tracked, reviewed and replied within 24-48 hours in most cases. As per SLB, Efficiency in complaint Redressal is 100%

Source: SMC Officer

WAY FORWARD..

ISSUES

Access of Sanitation for all (slums and non slums)

Institutional Gaps of Employees

Reuse of waste water

POSSIBLE PROJECT PROPOSAL

• Access of sanitation in all zones having low coverage of service in order to make surat open defecation free.

• Preparing cost effective plans for waste water reuse by identifying and supplying waste water to possible options within the city (for e.g. public parks, urban agriculture, industries etc)

PROJECT PROPOSAL.. ACCESS OF SANITATION IN SLUMS

CENSUS DATA ON SANITATION...

Number of households	No latrine within premises			
not having latrine	Alternative source			
tacility within the premises	Public latrine	Open		
50292	36287	14005		
2099	1322	777		
52,391	37,609	14,782		

Number of households not having latrine facility within the premises	Public latrine	Open
25,965	20,787	5,178

SLUM DETAILS AS PER SMC..

Zone	Existing Slums	Households	Population
South West	25	5,061	23,301
Central	38	8,443	38,838
North	51	9,167	42,168
South East	45	17,215	79,189
West	43	6,343	29,178
South	80	24,307	1,11,812
East	57	11,314	52,044
Total	339	81,850	3,76,531

Source: SMC

Zones	Toilets remaining as per SMC survey	Slum Rehabilitation	Remaining Toilets	Households having space for individual toilets	No space
Southwest	6,052	5485	567	567	0
Central	3317	2885	432	432	0
North	8183	6779	1404	216	1188
Southeast	11848	9855	1993	468	1525
West	3982	3061	921	921	0
South	13402	11754	1648	1160	488
East	1562	692	870	245	625
Total	48,346	40,511	7835	4009	3826

Source: SMC

SLUM LOCATION...

SOUTH EAST ZONE..

.

Sr. No.	Ward Name	Remaining Toilets as per census 2011	Remaining Toilets	Slum Rehabilitation	Households having space for individual toilets	No space
1	Aanjana	1957	722	1235	113	609
2	Umarwada	5826	302	5524	67	235
3	Umarwada	81	148	67	140	8
4	magob	11	0	11	0	0
5	Dumbhal	430	0	430	0	0
6	Aanjana	30	0	30	0	0
7	Limbhayat	1331	367	964	117	250
8	Dindoli	607	86	521	0	86
9	Magob	58	38	20	0	38
10	Parvat	194	34	160	19	15
11	Godadara	319	48	271	0	48
12	Dindoli	1004	248	756	12	236
	Total	11848	1993	9989	468	1525

Sr. No.	Slum Name of Anjana	Slum Household	Slum Population
1	PriyankaNagar,Umarwada	100	460
2	Zundiakua Zuppadpatti	80	368
3	Rail Rahat Colony, beside Nurani Masjid, Mandarwaja	463	2130
4	Chimani Tekro(Old Depot), Opp Ring Road	899	4135
5	Halapati Nagar at S.E Road, Beside Ring Road	174	800
	Total	1716	7894

SLUM LOCATION..

Shivaii Nagar		Area	0.21 sq.km (20.50 hectares)
Singapuri Wadi	Mr. Cal	Household	1362
* Kry Charles Contractor	A CONTRACT	Population	6265
	Area-200 sq.m.	Density	29,833 persons/Sq.km. (305.60 persons/hectare)
laen Darwela 3 5 5	m. 4	Area-64 sq	Im.
Area-110 sq.m. Area-120 sq.m. Area-60 sq.m.	Nehr	u Nagar	
Area-88sq.m.	9 Disp	osal Near Cr	eek
Amen Nagar Area-114 sq.m. 12	Area-36 sq.m.		
10 Area-216 sq.m.			

Disposal Near Creek

SLUM LOCATION..

SLUM LOCATION..

TOILET BLOCK SPECIFICATION..

Items	Cost
Toilet Block	Rs. 16,142
Add 2% for Electrical item	Rs. 322
Add 7% contigency and supervision Cost	Rs. 1130
Cost for Individual Toilet	Rs. 17,594
Cost for 108 Toilet	Rs. 19,00,152
Cost of Laying Pipelines (490m Length)	Rs. 1,37,200
Total Cost	Rs. 20,37,352

GROUP/SHARED TOILET..

GROUP/SHARED TOILET..

ltems	Cost
Toilet Block	Rs. 16,142
Add 2% for Electrical item	Rs. 322
Add 7% contingency and supervision cost	Rs. 1130
Cost for Individual Toilet	Rs. 17,594 Rs. 18,000 (approx.)

Source: Draft Guidelines for Swachh Bharat Mission(SBM), MoUD, GOI

Financing Pattern	Individual Toilet (1HH)	Group Toilet (2HHs)	Group Toilet (3HHs)
Average block cost of a toilet	18000	18000	18000
Subsidy for each Household	5000	10000	15000
Cost on each HH	13,000	4,000	1000

APPROACHES..

.

	Community Toilet	Shared/Group Toilet
Cost of Toilet	Rs. 18,000	Rs. 18,000
Grant From Govt.	Rs. 5000/household	Rs.5000/household
Cost incurred by SMC	Rs.13,000/Toilet	Cost can be shared amongst the no. of family sharing the Toilet
Ownership	SMC	Individual house owners
Cost of O&M	Totally on SMC	Done by individual households

_ _ _ _ _ _ _ _

_ _ _ _ _

......

......

till now... Up

(Integration of urban water management and its Reuse at urban and industrial areas.)

INTEGRATED URBAN WATER MANAGEMENT

INTEGRATED URBAN WATER MANAGEMENT..

- IUWM takes a comprehensive approach to various water services.
- It views water supply, storm water and wastewater as components of an integrated physical system.

- Use of infrastructure technologies
- Institutions and organizations
- Non-structural tools such as education, pricing incentives, regulations and restriction regimes

Source : Adapted from waterbydesign.au and An approach to IUWM, Mulbagal Experience, Arghyam

226

INDUSTRIAL MAPPING

WATER DEMAND Industries within SMC boundary

Pandesara GIDC

Total Water Demand-110 MLD Demand Met by SMC- 80 MLD Demand Gap- 30 MLD

Demand Gap is managed through the use of ground water and other sources, which is very expensive

Sachin GIDC Total Water Demand-15 MLD Demand Met by SMC- 5 MLD

Demand Gap-10

MLD

- Total Water demand is not met by Municipal water supply
- Potential for reuse of wastewater

WATER DEMAND Hazira Industries

Name of Industry	Type of Industry	Water Demand (MLD)	Drawl Rights (MLD)
Reliance Industries Ltd.	Petrochemical	90	97
Essar Steel Ltd.	Steel	25+20 (2008)	57
O.N.G.C.			57 Total conceity, 10240
KRIBHCO	Fertilizer	146	TPD CPHEEO guidelines-
N.T.P.C.	Power	21	5 80-140 kL/ tonne
Rama newsprint Ltd.	Printing	6	33
GIDC Ichchhapore		3	10
L & T	Engineering	9	1.5

- Present Total Water demand for large scale industries is around 250 MLD
- Maximum Drawl Rights allow them to draw 400 MLD water
- Some industries are already reusing water but there is huge potential

FUTURE PROJECTIONS

WASTEWATER REUSE Hazira Industries

WASTEWATER REUSE Hazira Industries

If 150 MLD of wastewater reuse is done for Hazira Industries, the fresh water scarcity can be delayed by 4 years

 With reuse of wastewater in Urban and industrial activities, more freshwater can be made available for increasing population's domestic purpose

Source : Surat CDP (2006-2012) & Surat City Resilience Strategy

WASTEWATER REUSE Gardening

- Total area of all gardens within SMC boundary is 89 ha
- Water requirement for gardening purpose using thumb rule is estimated to be 10 MLD
- In west zone, gardens are densely located and hence laying down water transmission infrastructure comes out to be cheaper than transporting water by tankers

For watering all the gardens in West zone, 24 water tankers are required and their capital cost is higher than laying down water pipelines

Source : Industry practice for ahmedabad area

RAINWATER HARVESTING..

- Rainwater harvesting (RWH) is the accumulation and deposition of rainwater for reuse onsite, rather than allowing it to runoff.
- Uses include water for garden, water for irrigation, water for domestic use with proper treatment, water for ground water recharge etc.
 - So why does Surat need RWH?
 - "Ground water table is fast depleting in the city and the natural recharge has been stopped completely. However, there is an urgent need to recharge the water tables by digging bore wells for harvesting the rainwater"
 - Few years ago the residents were getting sweet water in their borewells. But, now they are getting saline water due to the depleting ground water level.
 - The construction of paved areas, walls, roads and buildings has stopped the rain water to percolate in the ground thereby putting a brake on the natural recharge.

POTENTIAL OF RWH IN SURAT..

⁶ Zonal Offices (7 nos.)

Total roof area covered – 5624 sq. m.

- East zone-11 parks
- Civic Centres (17 nos.)

Total roof area covered – 10342 sq. m.

- 8,04,738 sq. m.

Health Centres (41 nos.)

Total roof area covered – 24651 sq. m.

Total roof area – 40617 sq. m.

Source :SMC website - www.suratmunicipal.org

SAMPLE CALCULATIONS FOR RWH..

Source : SMC website - <u>www.suratmunicipal.org</u>; Rainwater Harvesting and conservation manual by CPWD, GOI;

only around 60 days if water is stored.

SAMPLE CALCULATIONS FOR RWH..

SMC central zone office

- Roof Area 2073 sq. m.
- Avg. rainfall 1139 mm
- Volume of rainfall over the plot = 2073x1.139

= 2361.14 cum.

= 2.4 million It.

- Runoff coefficient = 0.80
- Coefficient for evaporation, spillage and first flush wastage = 0.80
- Effective harvested water quantity = 2.4x0.8x0.8

= 1.536 million It.

- As per table from CGWB guide, RWH quantity = 1.72 million lt.
- We can safely assume RWH quantity as 1.6 million lt.
- Assuming 300 employees
- 45lpcd water is required in offices as per cpheeo
- Water requirement = 365x300x45

= **4.9** million It.

RWH will be able to meet water requirements of only around 120 days if water is stored.

Source : SMC website – <u>www.suratmunicipal.org</u>; Rainwater Harvesting and conservation manual by CPWD, GOI;

COST OF STORAGE TANKS AND RECHARGE STRUCTURES FOR RWH..

Cost of storage tank

- In case of Morarji Desai garden = 0.828 million It. (828 cum)

Cost of storage tank = Rs. 6.5 lakhs

- In case of SMC office = 1.6 million It. (1600 cum)

Cost of storage tank = Rs. 12.5 lakhs

Cost of Recharge Structures for Ground water recharge

- Cost of typical recharge pit (1-2 m wide and 2-3 m deep) Rs. 6000 to Rs. 12000 (Suitable for shallow aquifers)
- Cost of recharge pit through trench (0.5-1 m wide and 1-1.5 m deep and 10-20 m long) Rs. 12000 to Rs. 24000 (Suitable when permeable strata of suitable thickness is available at shallow depth)
- Cost of bore wells/ tube wells (100-300 mm dia. and 10-30 m deep) Rs. 120000 to Rs. 192000 (Suitable where ground water level is low and land availability is less.)

Comparing the costs and the number of days for which the water requirement is met, it is not viable to construct storage tanks. Bore wells for ground water recharge will be apt in Surat's case.

As per the calculation (105 parks and 65 buildings), the total quantity of water available for ground water recharge = **140 million It. (26% of yearly water requirement)**

Source : Rainwater Harvesting and conservation manual by CPWD, GOI; Schedule of rates valid for Gujarat State
REVIEW OF STATE POLICIES..

 Mandatory for all buildings with area greater than 250 sq. m. Separate department set up under IMC for awareness and technical guidance Initial incentive of one year complete property tax waiver. 	 Implementati on of RWH structures taken up by agencies (KWA and Jalanidhi) Mostly for groundwater recharge KWA grants 90% subsidy while Jalanidhi grant 75% subsidy 	 Mandatory for buildings with roof area more than 100 sq. m. and plot area more than 1000 sq. m. Site inspection before issue of completion certificates Separate RWH cell Incentive of 50% of construction cost or Rs. 2 lakhs. 	- Mandatory for buildings with area 500-1500 sq. m. Percolation wells to be provided for area of 1500- 4000 sq. m.
	 Mandatory for all buildings with area greater than 250 sq. m. Separate department set up under IMC for awareness and technical guidance Initial incentive of one year complete property tax waiver. 	 Mandatory for all buildings with area greater than 250 sq. m. Separate department set up under IMC for awareness and technical guidance Initial incentive of one year complete property tax waiver. Source: Innum primer – Revisio 	 Mandatory for all buildings with area greater than 250 sq. m. Separate department set up under IMC for awareness and technical guidance Initial incentive of one year complete property tax waiver. Source: Innurm primer – Revision of Byelaws to make Rain

ISSUES AND AREAS OF INTERVENTION..

- Almost all policies lack provision of Monitoring and Technical aspects.
- No incentives in Gujarat do not attract much attention to RWH.
- Along with incentives, there should be provision for penalties also in case of noncompliance.
- Lack of awareness among people.
- There should be separate RWH department to ensure monitoring and implementation.
- Website and information centres should be set up.
- Not much focus is given to RWH in the ULB's budget allocation.

IUWM IMPLEMENTATION CONSTRAINT

- Surat being a water sufficient region
- Strong industrial base
- Lack of vision in resource planning
- Environment concerns overlooked
- Water being an undervalued commodity

UNDERSTANDING WATER DISTRIBUTION

Data Source: SMC and GIDC

Note: All figures are in MLD

PRICE CONUNDRUM

ISSUES WITH WATER PRICING & DISTRIBUTION

- Meagre recovery of O&M cost
- Reluctance of State Governments to revise water user charges
- Low water use efficiency
- Fragmented approach to water resources planning and development
- Injudicious inter-sectoral and intra-sectoral distribution of water amongst various categories of water users
- Capital intensive projects and lack of funds for its completion

Market Based Approach

- Cap and trade method similar to that of Australian Water market
- The objective of the cap and trade water market approach is to facilitate the economically efficient allocation of water while ensuring environmental sustainability
- Water Markets were established under its Water Resource Act 2007

- State Water Regulatory Authority (SWRA) Approach
 - Best example is of Maharashtra Water Resources Regulatory Authority (MWRRA) formed under MWRRA Act, 2005
 - Main functions are:
 - To determine, regulate and enforce the distribution of water entitlements
 - Establishing water tariff system
 - Review and clear water resources projects within the ISWP
 - Determine priority of equitable distribution of water available at different scales/ levels during periods of scarcity
 - Resolve disputes with regard to entitlements and tariff
 - Promote sound water conservation
 and management practices

MARKET BASED APPROACH

ELEMENTS OF WATER MARKET DESIGN

- property rights to access water are secure
- market participants are well informed
- market participants take account of all the costs and benefits generated by their actions (that is, any externalities are internalized)
- low barriers to entry and few impediments to trade
- low transaction costs

1) Limit total extractions from water resource

MWRRA APPROACH

- MWRRA is to establish a water tariff system and to fix the criteria for water charges at sub-basin, river basin and state level through a process of **consultation with the beneficiaries**, based on the principle that the water charges shall reflect the **full recovery of the cost** of the irrigation management, administration, operation and maintenance of water resources project. It is expected to **review and revise the water charges** after every three years.
- Price for various user group designed with following principle:
 - Water as social and not economic good
 - Financial Sustainability
 - Allocation of O & M cost between each user category based on Affordability, Accessibility, Quantity and Timeliness of supply
 - WUAs to be formed and 95 % of collection to be handed over to WUA for O&M

BULK WATER TARIFF BY MWRRA

AGRICULTURE

- Rabi Basic Rate (BR),
 Kharif 50% of BR, Hot
 Weather 150% of BR
- Area Based tariff
 - small farmers are incentivized
 - Incentive for adoption of micro irrigation for each crop
- Volumetric tariff
 - Not more than 75% of Area based tariff and even less for some crops

DOMESTIC

- Basic rate linked to source of supply
- Rebate for effluent treatment
- Polluter pays" principle
- Stepped tariff
 - 75 % for GP, 90% for Municipality & 125 % for MC of Basic rate
- low transaction costs
- Water for commercial use will be charged appropriately
- Additional requirement by ULBs subject to review of supply norms, water audit

INDUSTRIAL

- Polluter pay principle for all type of industries
- Incentive to Agro based industries
- Rebate for recycling provided utilization is reduced by 25%.

ISSUES WITH MWRRA APPROACH

- Power to allocate water across different uses was taken away from the MWRRA by amendment
- Settling of entitlement disputes by Primary Dispute Resolution Officer (PDRO)
 - PDROs are: Chief Engineer concerned with major projects; Superintendent Engineer concerned with medium projects; and the Executive Engineer concerned with minor projects
- MWRRA not truly an independent authority which it was meant to be
 - Consist of chairperson and two other members, in addition to five special invitees from each of the river basin
 - All members are retired government officials from the water resources and finance department
 - Members selected by a committee of secretaries from seven different departments headed by the Chief Secretary

POSSIBLE SOLUTIONS

- Regulatory authority needs to be independent from Implementation authority
- Members of regulatory authority needs to be professional experts in field such as Civil Engineering, ecology or Environment science, Finance or Accounts, social or political science, geology or hydrology.
- Role of elected representative should be restricted at just formulating legislation
- Selection committee must also include retired or sitting High court judge, representative from Ministry of Water Resources, GOI or CPCB, senior professor from reputed institute such as IIM, IIT, NIT, CEPT, NEERI, etc.
- State Government must constitute separate fund for Regulatory authority for its financial independence.
- Members will be barred from accepting any government or other jobs for few years
- Authority also need to have representation from Farmer's association

WATER INSTITUTIONS

CASE STUDIES

	ISSUE	KEY LEARNINGS
Brazil	Lack of Access to Water & Sanitation to rural areas due to lack of funds	Public Participation by legislative recognized group can be effective
Turkey	Centralized system causing Institutional & Financial burden	Public Participation by legislative recognized group can be effective
North China Plains	Water supply to agriculture under stress from other competing uses	Economic incentive via volumetric billing can bring balance
Philippines	Degradation of watershed due to pollution	People respond to economic incentive ; integration of institutional design for enforcement & regulation is essential
Peru	Devolution causing difficulty due to poor financial capacity of ULB Algeria Libya	Institutional strengthening & capacity building necessary
Zambiano	Low cost recovery, poor human resource capacity& lack of clarity of roles	Reform & regulations by government by Institutional strengthening and structuring
Anbbean Sea Namibia Guyana	Shifting to prepayment drinking water facility due to economic difficulty	Benefit of system needs to be adequately informed to the system (Marketina)
	Social Conflict due to privatisation of Water Supply IN DR Congr	Creation of common forum to explain the need for reforms and bring about consensus (Marketing)
Chille Ro MT	Lack of affordability by poor HHs due to privatisation	Social safeguarding of disadvantaged group is essential when going for privatisation
Chile Argentina Bolivia MS Paraguay RS Uruguay	MG R SC SC SC SC SC SC SC SC SC SC	Madagascar Literature Source : GWP toolbox for IWRM Map Source : http://worldmap.harvprd.edu/ 1:698853 Center for Geographic Analysis

PUBLIC PARTICIPATION

GOOD MARKETING OF SYSTEM BENEFITS

INSTITUTIONAL STRENGTHENING & CAPACITY BUILDING

So what it takes to make any scheme successful?

ECONOMIC INCENTIVE FOR PROMOTING GOOD PRACTICE

SOUND LEGISLATIVE FRAMEWORK

SAFEGUARDING MARGINAL GROUP

WAY FORWARD.. Different types of proposal at different scale and Level

THANK YOU

##