

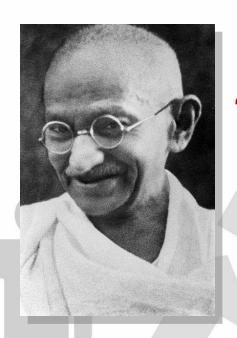
WATER - SANITATION LAB
DWARKA: GUJARAT

PURPOSE OF THE LAB

To understand Water and Sanitation sector in a holistic manner with a Case example.

PRESENTATION OUTLINE

SECTOR OVERVIEW

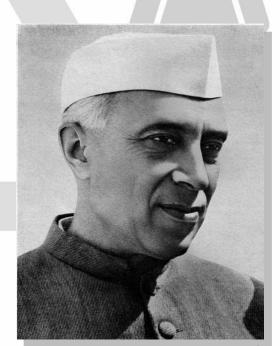

- 1. Global Scenario
- 2. Indian Scenario
- 3. Gujarat Scenario

DWARKA

CITY PROFILE

CITY DIAGNOSIS & PROPOSALS

- 1. Sectors
 - ✓ Water Supply
 - ✓ Sanitation
 - ✓ Solid Waste



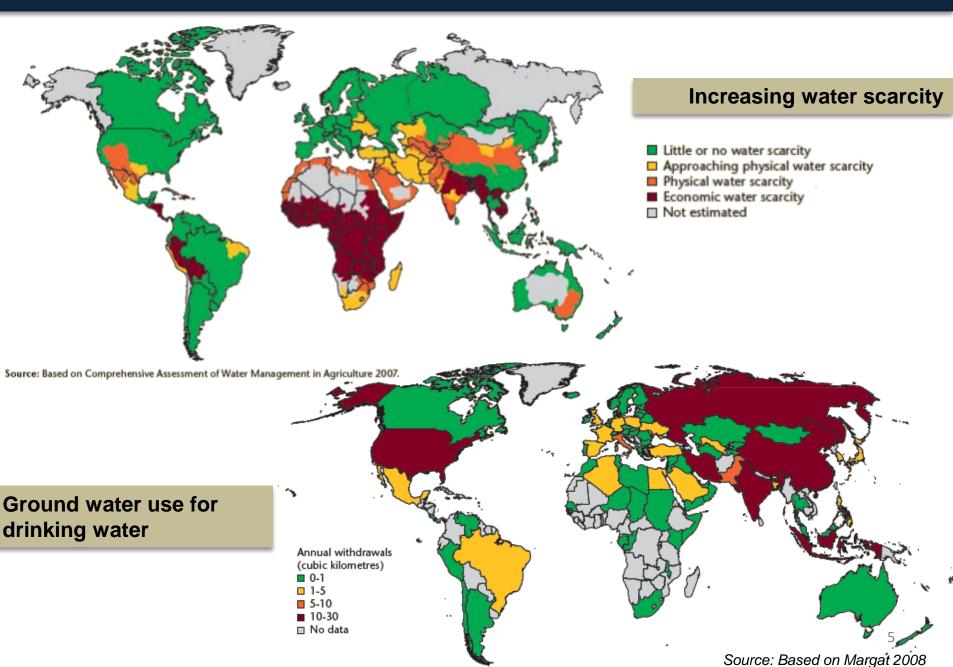
"Sanitation is more important than independence"

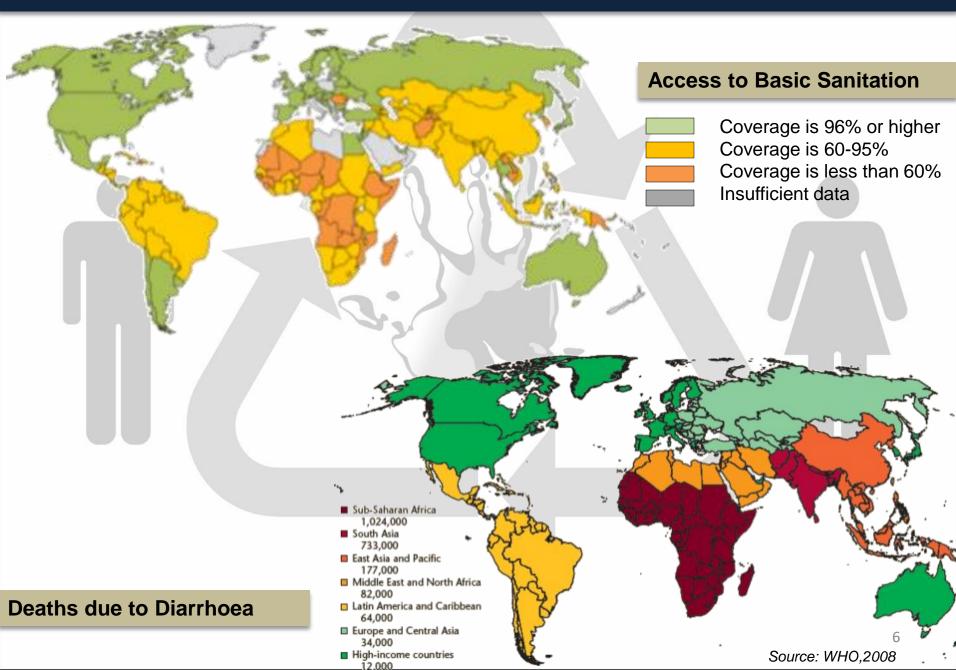
Mahatma Gandhi

"The day everyone of us gets a toilet to use, I shall know that our country reached the pinnacle of progress"

Jawaharlal Nehru

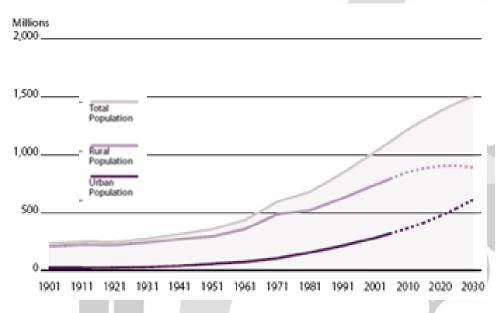
Water and sanitation are key to achieving broader goals of economic growth and poverty alleviation.




Under MDGs (Goal 7, target 10)

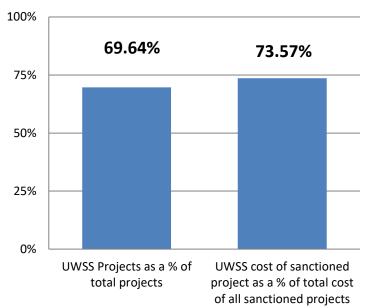
Halving 'by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation'.

Global Scenario - WATER


Global Scenario - SANITATION

India URBANISING

Increasing demands, increasing pressure on services.

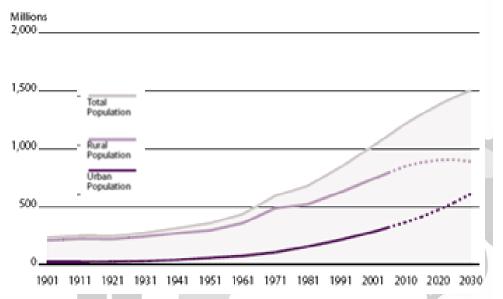

POPULATION GROWTH

Estimated Urban Population in 2031 : **600 million.**Increase in no. of **million plus cities** from **50 (2011) to 87 (2031).**

JNNURM

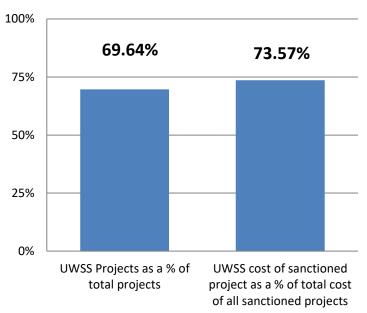
Sector wise release of funds under submission for Urban Infrastructure and Governance

Sanctioned Projects


367 UWSS projects: Rs. 44,129 crores

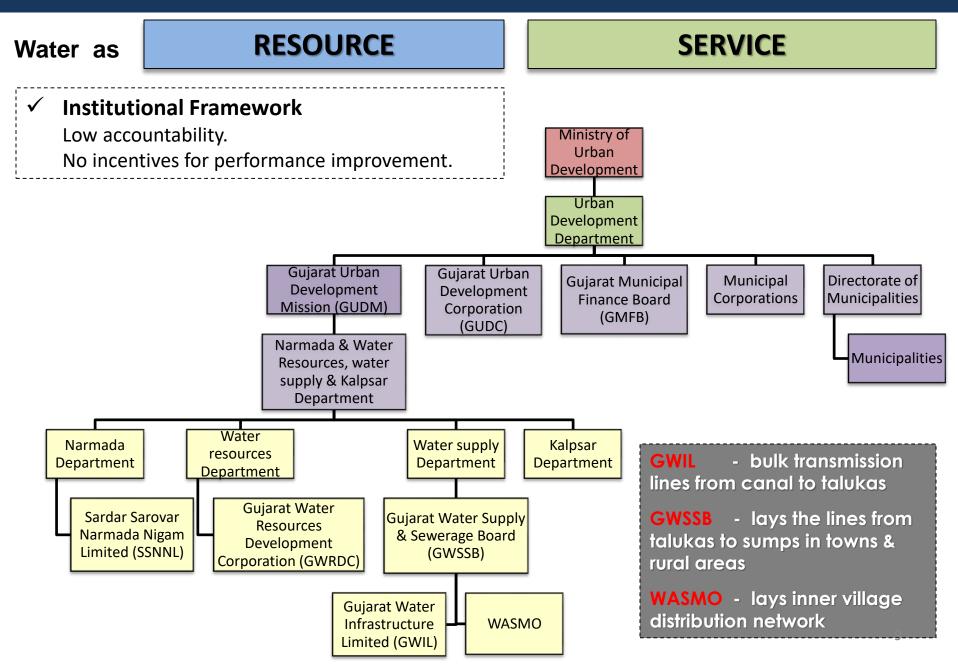
Total cost of all projects: Rs. 59,981 crores

India URBANISING


Increasing demands, increasing pressure on services.

JNNURM

Sector wise release of funds under submission for Urban Infrastructure and Governance

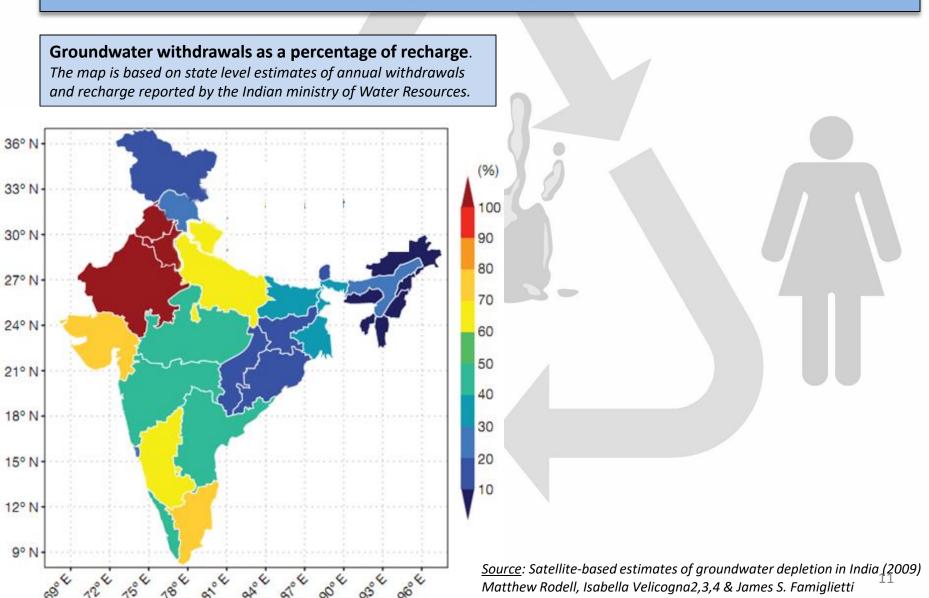

ESTIMATED INVESTMENT REQUIREMENTS

Increasing investment in urban infrastructure from 0.7 per cent of GDP (2011-12) to 1.1 per cent (2031-32).

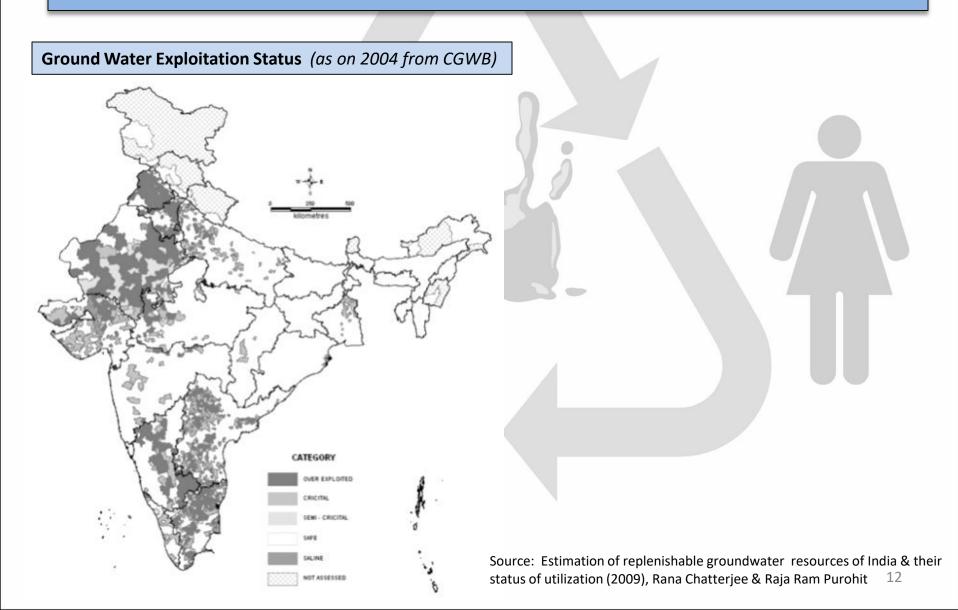
W & S Sector: Investment worth Rs 8 lakh crore (or 20%) of total requirement for capital works in 20 years.

Investment worth Rs.10.6 lakh crores (53%) of total requirement for O& M of old & new assets.

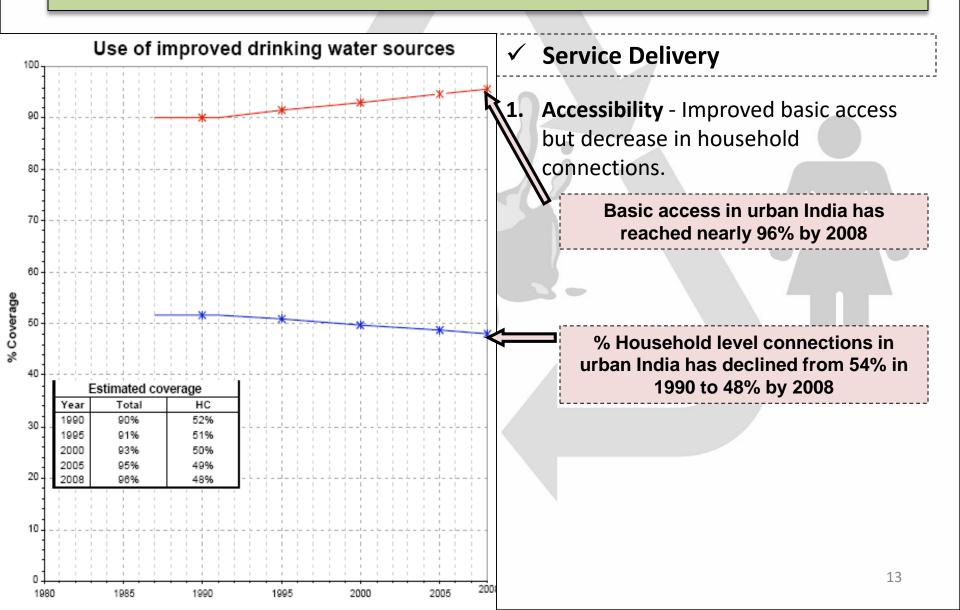
Source: Report on Indian Urban Infrastructure and Services (2011), By- High Powered Expert Committee


Water as RESOURCE

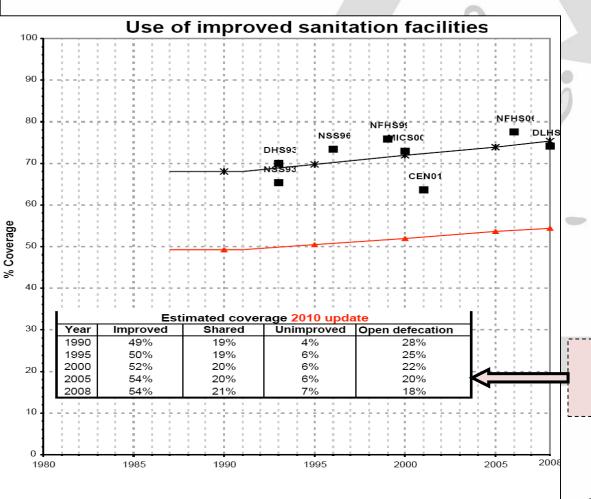
✓ Availability Decrease in per capita availability of water. ✓ **Depletion** of Ground Water Sources (Quantity as well as Quality)


- India 16 % of the world's population & 4 % of its fresh water resources.
- <u>Surface & Ground water availability</u> -1,869 billion cubic metres (BCM). Of this, 40 % is not available for use due to geological and topographical reasons.
- INDIA
 - 'Water stressed by 2020 with per capita availability of water to be 1,600 cu.m/person/year.
 - 'Water Scarce' by 2050 with per capita availability of water to be below 1000 cu.m/person/year.

Source: Drinking water quality in rural India: Issues and Approaches (WaterAid - <u>www.wateraid.org</u>)
Water for India in 2050: first-order assessment of available options (S. K. Gupta and R. D. Deshpande, 2004)


Water as RESOURCE

Water as RESOURCE

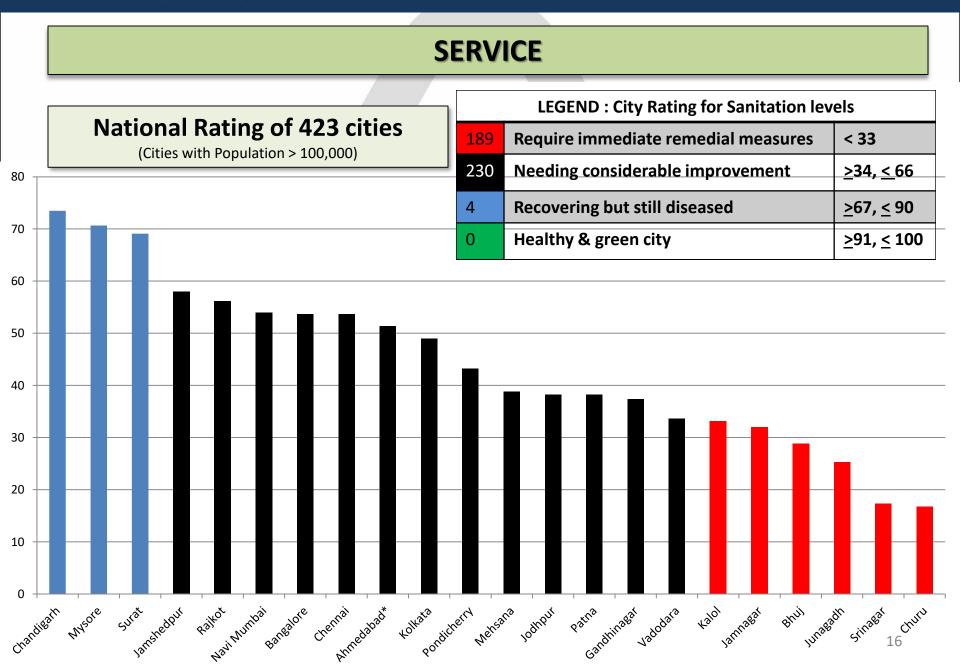


SERVICE

SERVICE

JMP 2010 estimate

Used for the estimates


18% of population continue to defecate in open and 21% rely on shared facilities

Source: WHO-UNICEF Joint Monitoring Program, 2000 and 2008 Adapted from Performance Assessment Systems (PAS) Presentation

SERVICE

- 1. Accessibility Improved basic access but decrease in household connections.
- **2.** Large Demand Supply gap in terms of infrastructure as well as services.
- 3. Equity issues –
 Urban Households 135lpcd
 Slums 40 lpcd
- **4. Poor Services** (Quality as well as Quantity).

oor infrastructure condition is a major problem

egal connections

SERVICE

✓ Service Delivery

- 1. Accessibility Improved basic access but decrease in household connections.
- **2. Large Demand Supply gap** in terms of infrastructure as well as services.
- 3. Equity issues –
 Urban Households 135lpcd
 Slums 40 lpcd
- **4. Poor Services** (Quality as well as Quantity).
- 5. Low cost recovery
 High NRW (more than 50% in Indian cities)

ISSUES _ Indian Scenario

RESOURCE

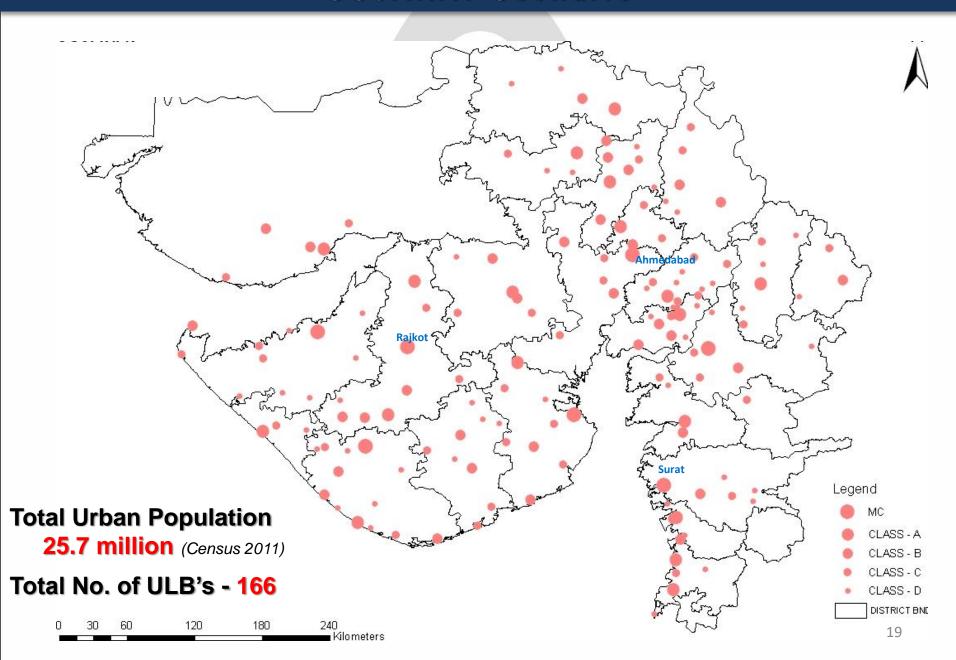
SERVICE

✓ Institutional Framework

Overlapping roles & responsibilities leads to low accountability.

- ✓ Availability
 - Decrease in per capita availability of water.
- ✓ **Depletion** of Ground Water Sources

(Quantity as well as Quality)


- ✓ Service Delivery
- 1. Accessibility
- Large Demand Supply gap in terms of infrastructure as well as services.
- **3.** Equity issues (Households and Slums).
- **4. Poor Services** (Quality as well as Quantity).
- 5. Low cost recovery High NRW.

HEALTH IMPLICATIONS

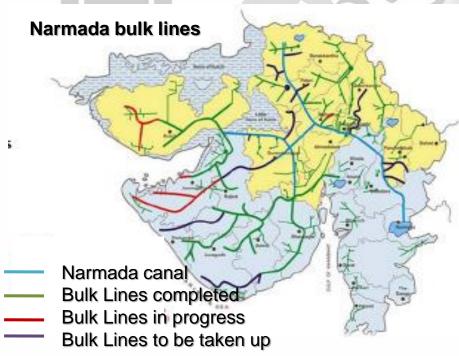
- ✓ Around 37.7 million Indians are affected by waterborne diseases annually.
- ✓ 1.5 million children are estimated to die of diarrhoea alone and
- √ 73 million working days are lost due to waterborne disease each year.

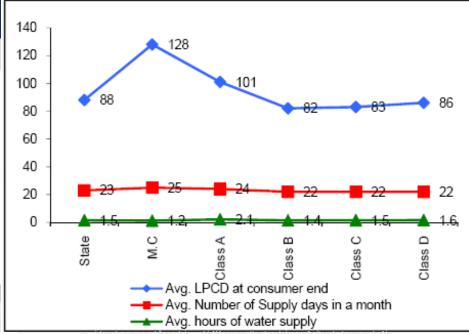
Source: Drinking Water Quality in rural India – Issues And approaches (Water Aid)

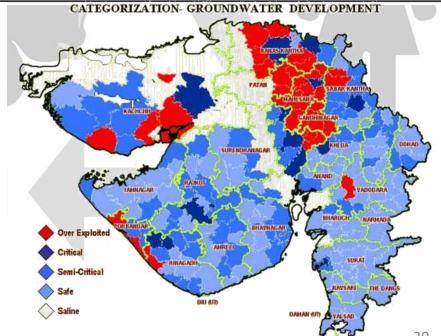
GUJARAT Scenario

WATER

Coverage of water supply –


Non slums -68%, Slums -53%


Per capita supply of water - 88 lpcd


Continuity of water supply – 1.5 hours

Extent of Non-revenue water – 30 %

Cost Recovery - 60 %

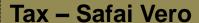
Source – Executive Summary, PAS project, round 1 (2008-2009)

SANITATION

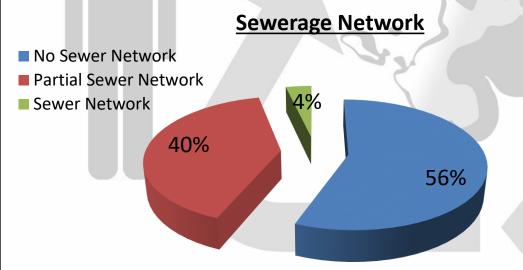
SWM

Coverage of toilets – Non-slums - 81%, Slums – 57%

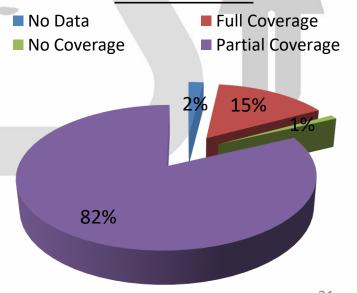
% Door to door collection – 78%


Collection efficiency of waste water network – 77% (6 ULBs)

Service delivery – slums -57%


Cost Recovery - 23%

Cost Recovery - 51 %


99 ULB's - No sewerage network

Recently introduced in most ULB's in 2008-09

Percentage of HH level coverage of SWM services

Nirmal Gujarat Program

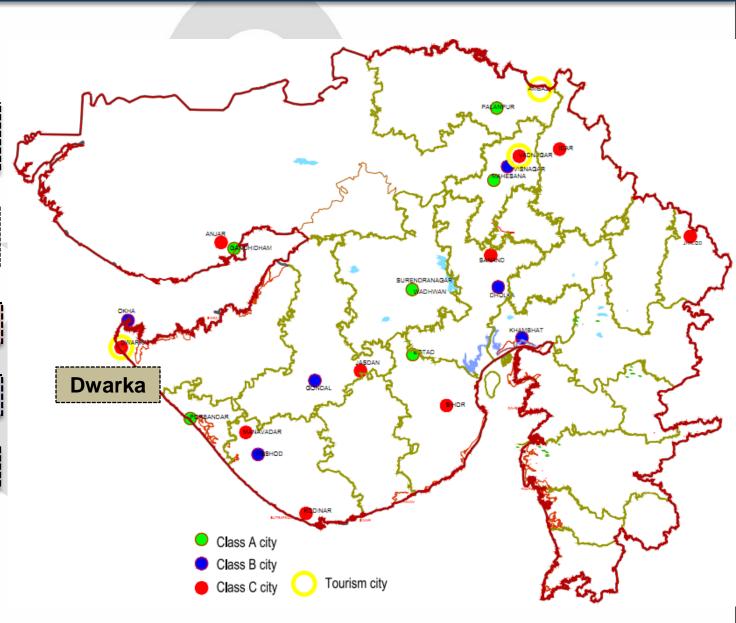
Technical & financial support for construction of toilets for urban poor

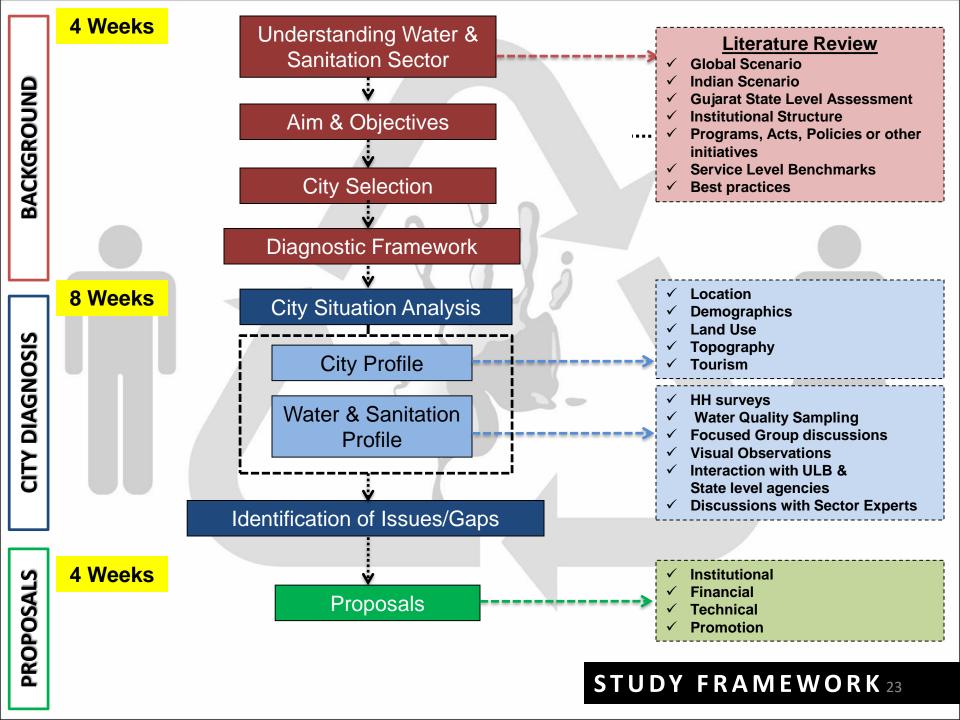
Source – Executive Summary, PAS project, round 1 (2008- 2009)

CITY SELECTION

WS Scenario SLB Indicators

Map Overlay (Ground Water extraction)


Size of the city


Slum Population

Tourism

AIM

Quality Water and Sanitation services to 'ALL'

OBJECTIVES

- ✓ To provide **spatial and socio-economic equity** in the provision of **W&S services**.
- ✓ To provide alternatives in order to cater to the peak tourism demands of the city.
- ✓ To ensure a service delivery mechanism which is sustainable in the long run.

Quality tests

Water

survey

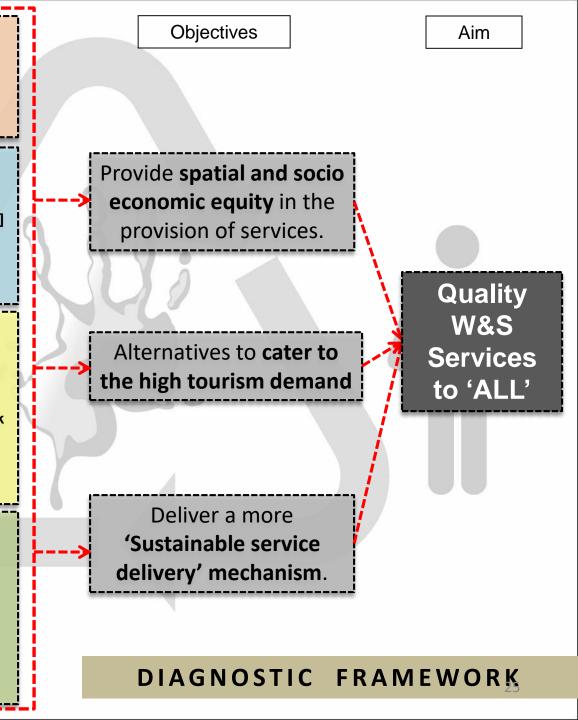
State

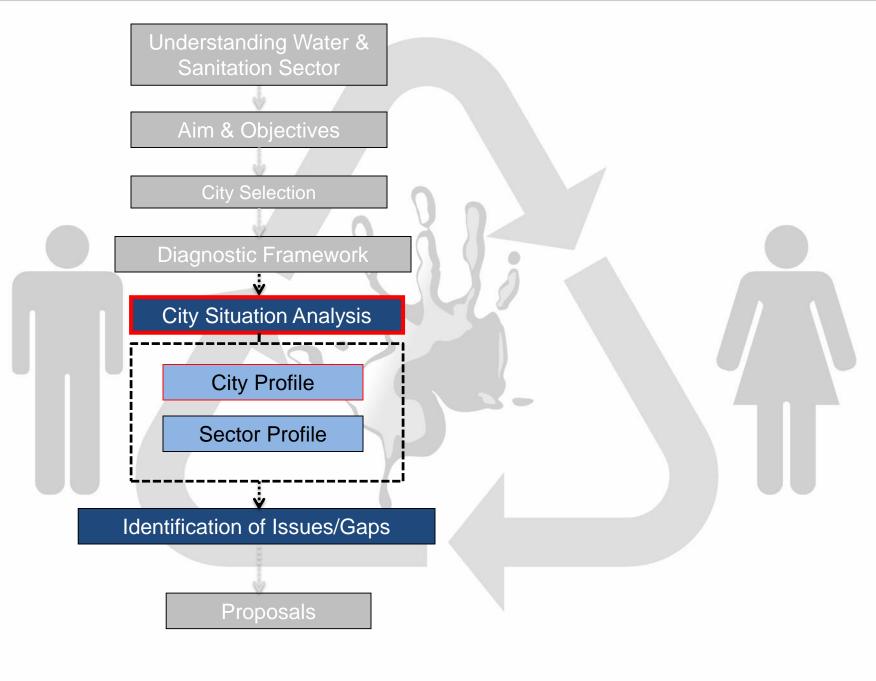
nteraction:

CITY PROFILE

- ✓ Demographics (Ward wise details)
- √ Topography & Rainfall
- ✓ Tourism
- ✓ Land Use
- √ Socio Cultural Aspects

WATER

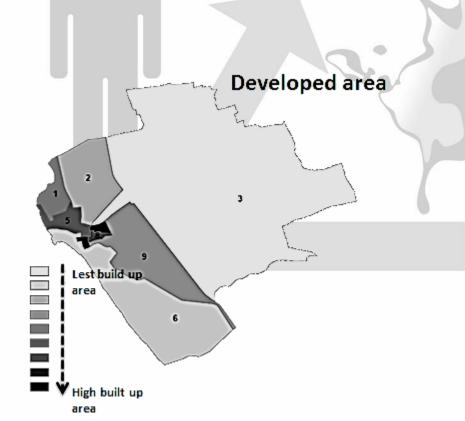

- ✓ Sources & Alternatives
- ✓ Existing Network
- ✓ Tourist facilities [Peak/Off-peak]
- ✓ Service Operations
- ✓ Storage & Treatment
- Institutional Setup
- ✓ Finance

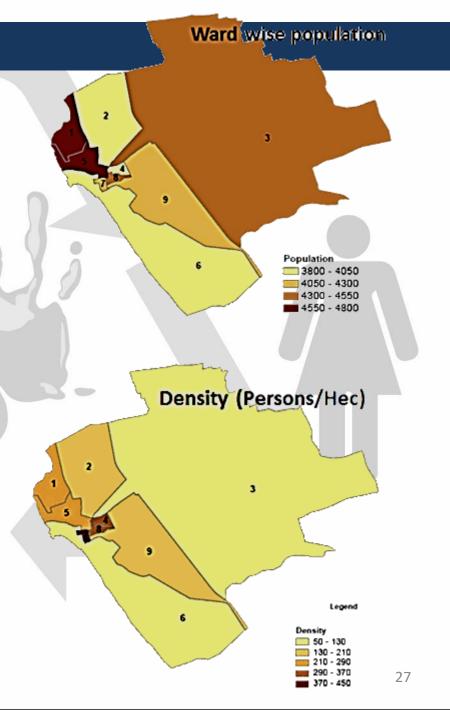

WASTE WATER (FSM)

- √ Toilet availability
 [Residential & Non Residential]
- ✓ On-site sanitation
- ✓ De-sludging mechanism
- ✓ Tourist Facilities [Peak/Off-Peak period]
- √ Treatment & Disposal
- ✓ Institutional Setup
- ✓ Finance

SOLID WASTE MANAGEMENT

- Waste Collection mechanism [Peak/Off-Peak]
- ✓ Containers
- ✓ Transportation
- ✓ Tools/Equipments
- / Treatment
- ✓ Disposal Areas
- ✓ Institutional Setup
- Finance





DEMOGRAPHIC PROFILE

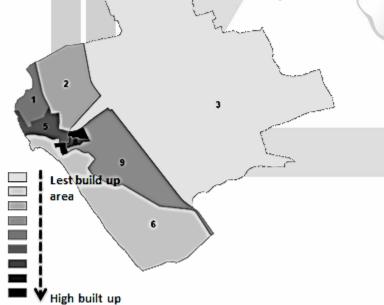
Class 'C' Municipality

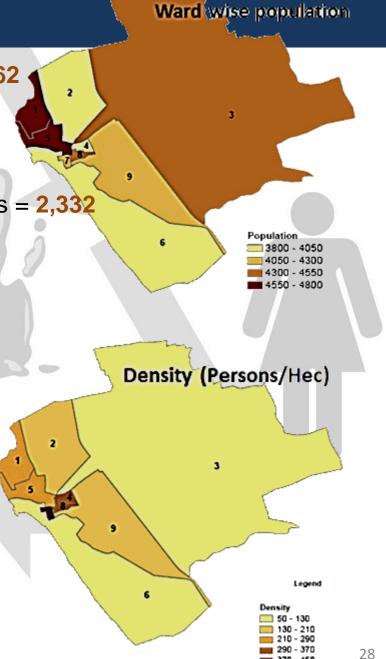
- Municipal area = 42.7 Sq.Km
- Inhabitant area = 5.2 Sq.Km (Approx)
- Number of elective wards = 9

DEMOGRAPHIC PROFILE

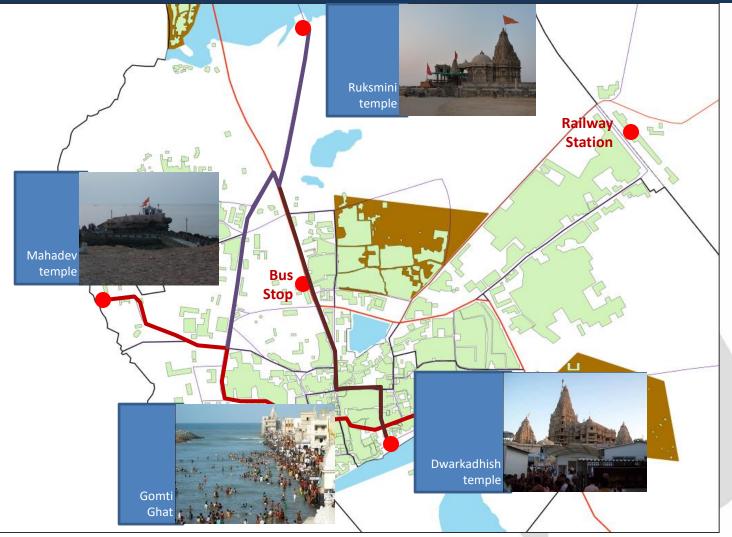
Total Population as per 2011 census = 38562

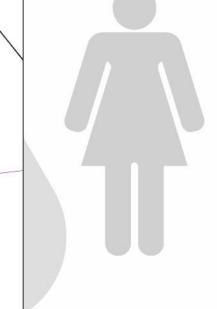
Number of properties = 13,319


Number of HH = 7712*


No. of commercial and other establishments = 2,332

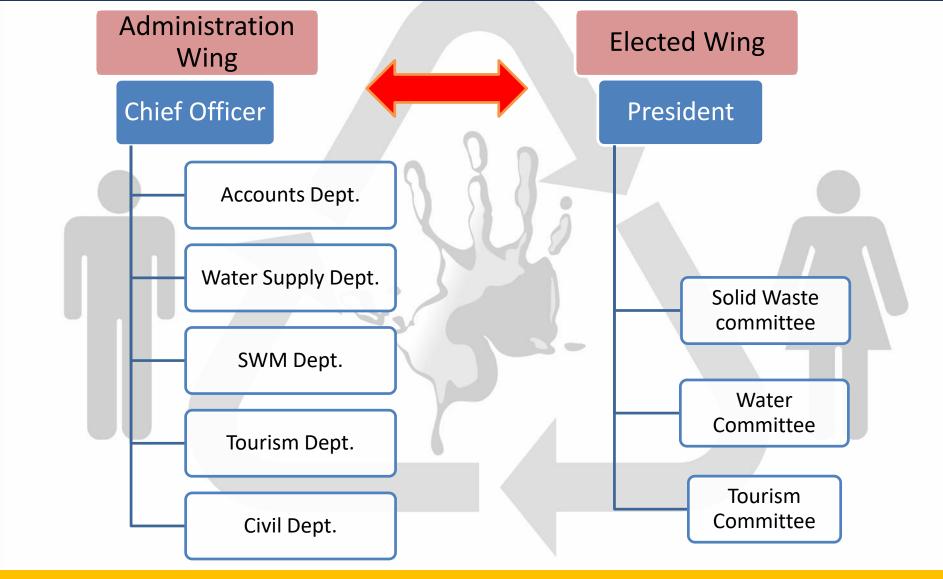
Number of slums = 3


Slum Population = 4684


■ Slum HH = 780* Developed area

TOURISM INFLOW AT DWARKA

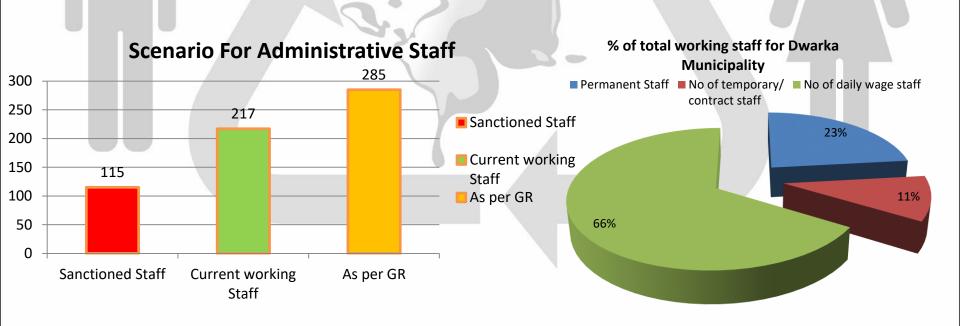
TOURISM INFLOWAT DWARKA


Particulars	High Season	Low Season	Fairs and festivals	Total
Days/year (%)	218 (59.73%)	139 (38.08%)	8 (2.19%)	365 (100%)
Tourist flow (lakhs)	20.12	3.49	3.87	27.49
Tourist flow (%)	73.2%	12.7%	14.1%	100%
Avg visitors/day	9322	2502	48375	!

TOURIST ORIGINS Local (24%) Gujarat (50.9%) India (25%) Foreigners (0.1%)

ANNUAL BREAK-UP FOR TOURIST FLOW AT DWARKA

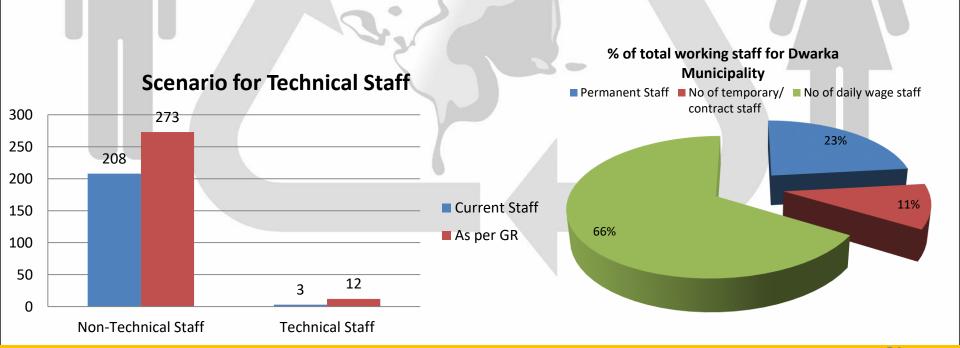
INSTITUTIONAL SETUP

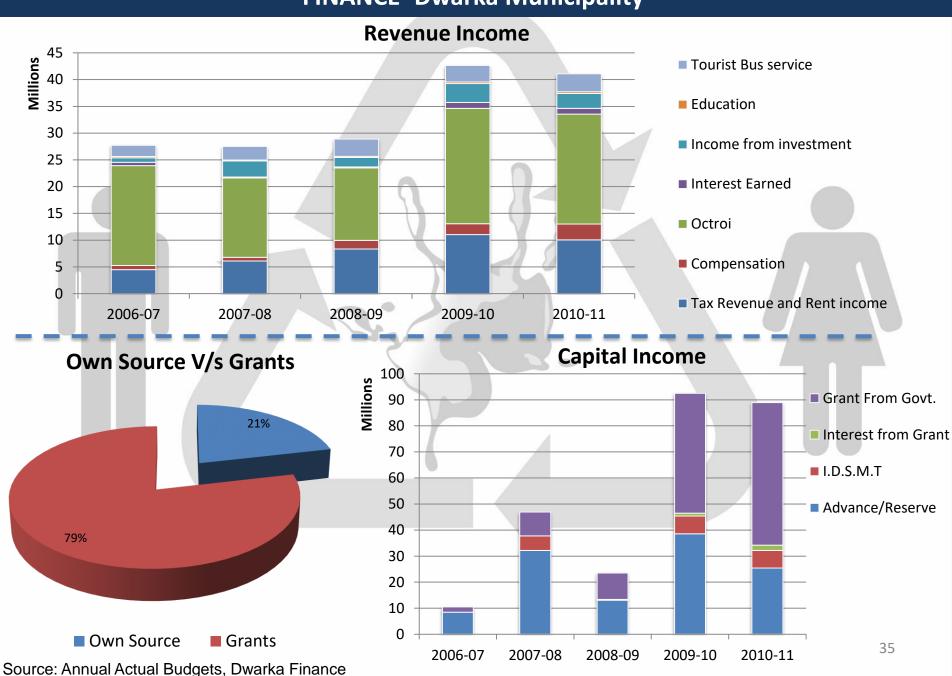


There are 27 Elected Member In Council.

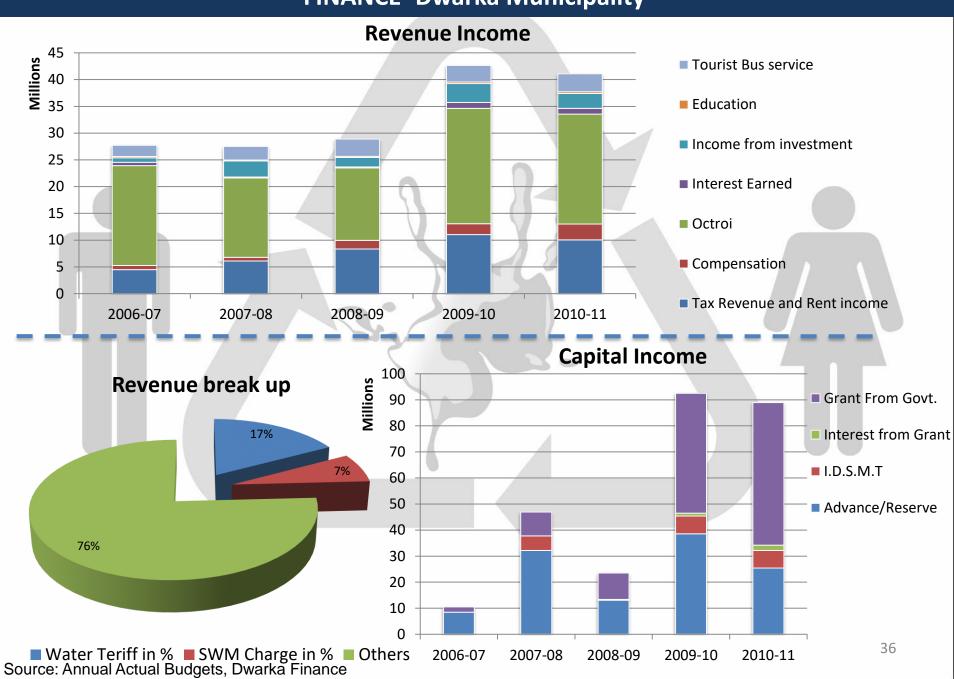
Waste water Dept is not there and any work related to waste water is carried out by SWM Dept.

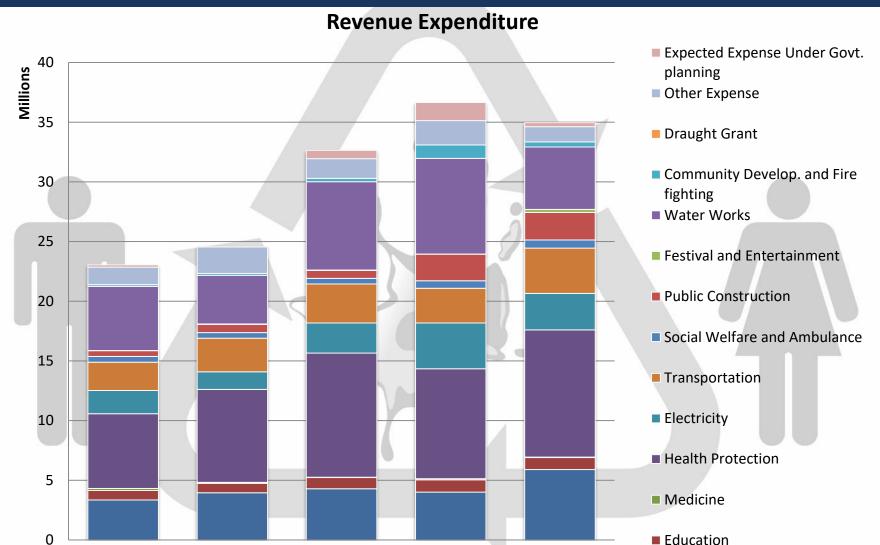
ADMINISTRATIVE DETAILS


Department	Permanent Staff		No of temporary/	No of daily wage staff	Total staff	As per GR & CPHEEO
	Sanctioned	Filled	contract staff	0		
Total municipal staff	115	49	22	140	213	285
Administration	46	22	3	29	54	14
Finance/Accounts	1	0	0	6	7	7
Water supply	7	4	2	16	22	16
Waste water & SWD	0	0	0	0	0	0
SWM	61	23	17	90	130	248


33

ADMINISTRATIVE DETAILS


Department	Permanent Staff		No of temporary/	No of daily wage staff	Total staff	As per GR & CPHEEO
	Sanctioned	Filled	contract staff			
Total municipal staff	115	49	22	140	213	285
Administration	46	22	3	29	54	14
Finance/Accounts	1	0	0	6	7	7
Water supply	7	4	2	16	22	16
Waste water & SWD	0	0	0	0	0	0
SWM	61	23	17	90	130	248

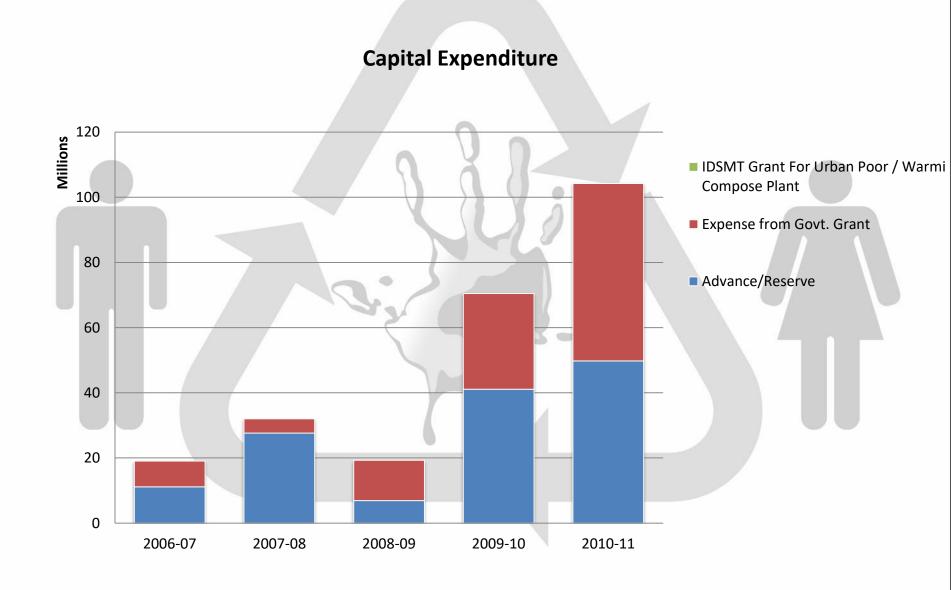

FINANCE- Dwarka Municipality

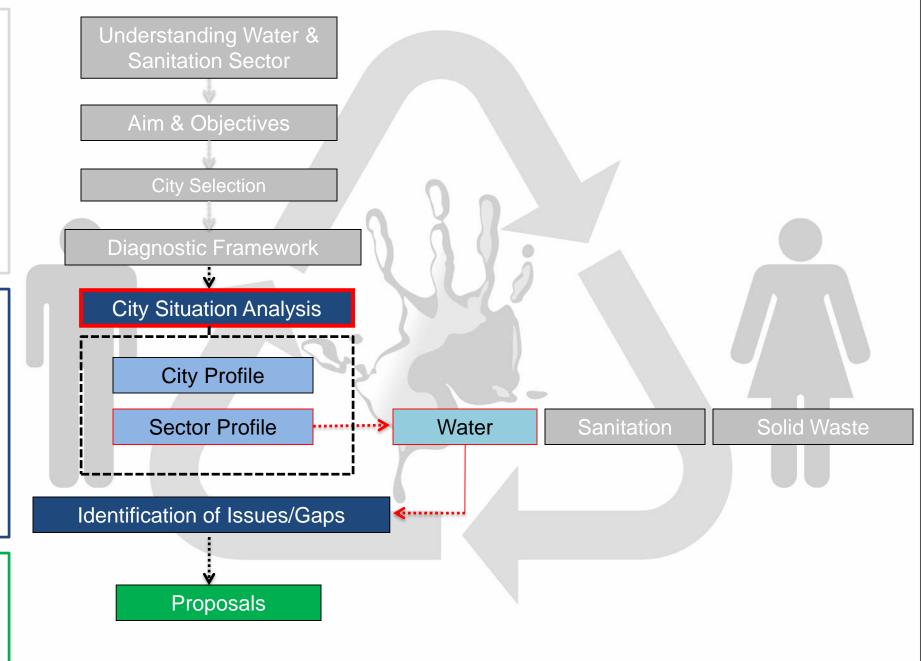
FINANCE- Dwarka Municipality

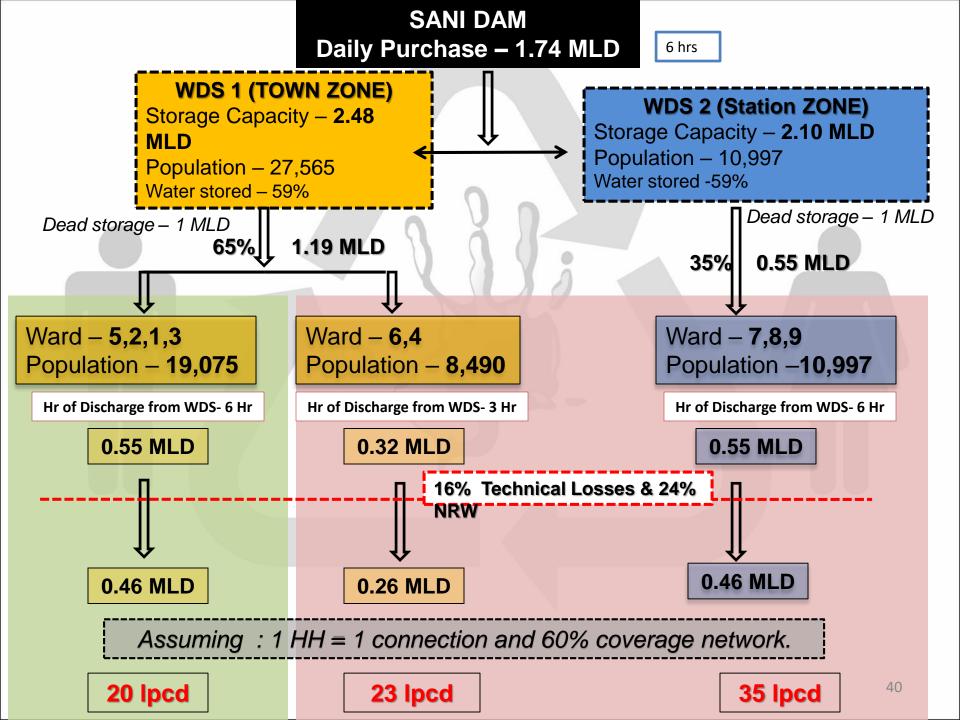
FINANCE- Dwarka Municipality

2009-10

2010-11


Ordinary Management


2007-08


2008-09

2006-07

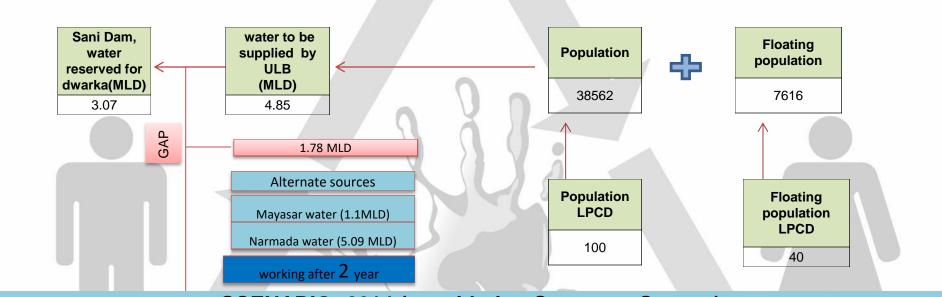
FINANCE- Dwarka Municipality

SANI DAM Daily Purchase - 1.74 MLD

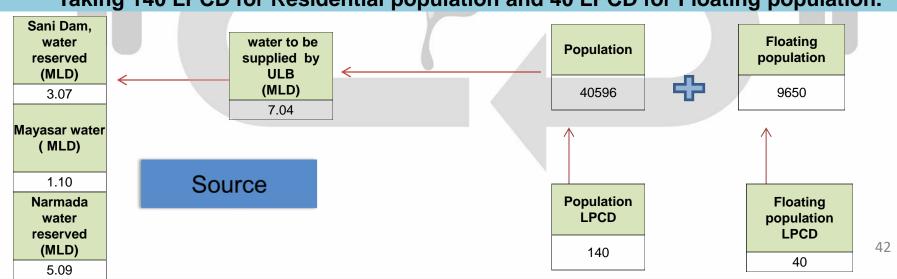
Key Highlights (To be consider in Proposal):

Storage (% water to be stored)

WDS-1 59%


WDS-2 58.50%

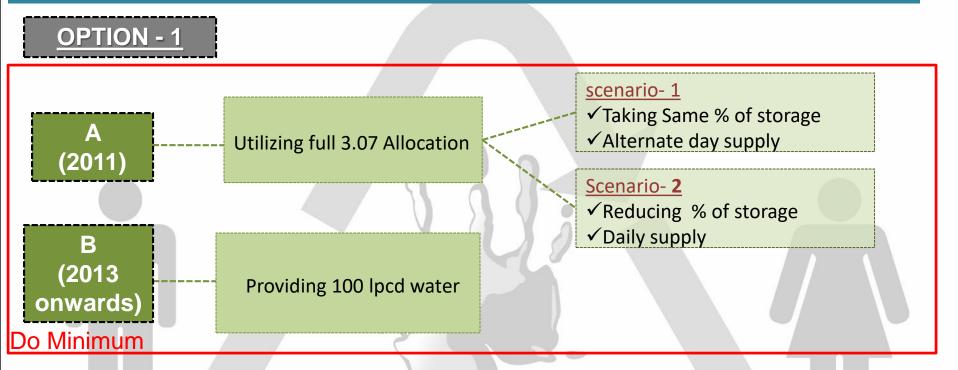
Supply Alternate day


Flow rate Constant velocity

DWARKA_WATER PROFILE

Taking 100 LPCD for Existing population and 40 LPCD for Floating population

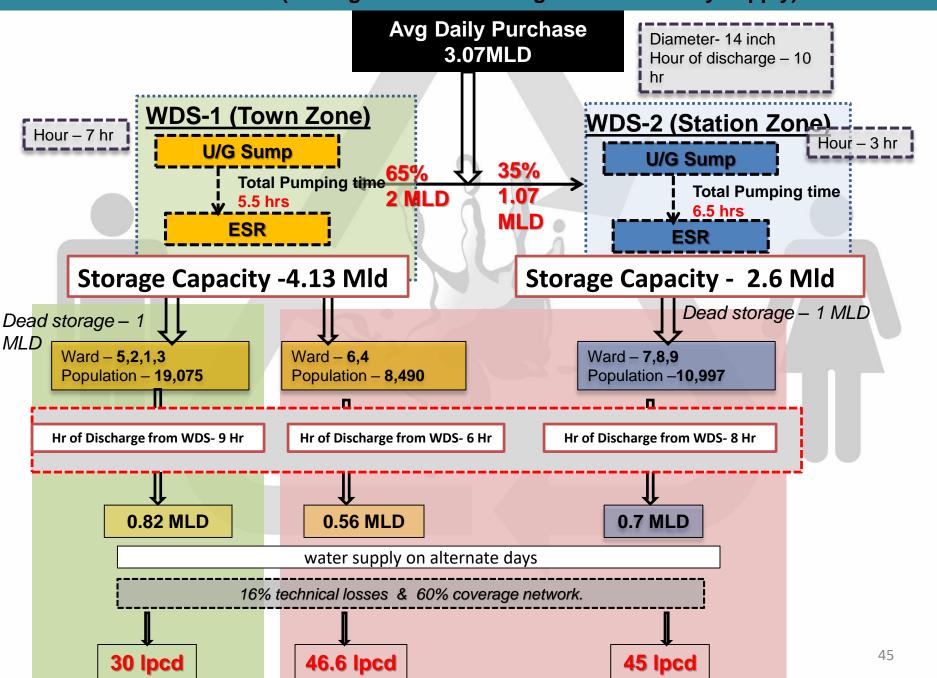
SCENARIO- 2014 (considering Sewerage System) Taking 140 LPCD for Residential population and 40 LPCD for Floating population.

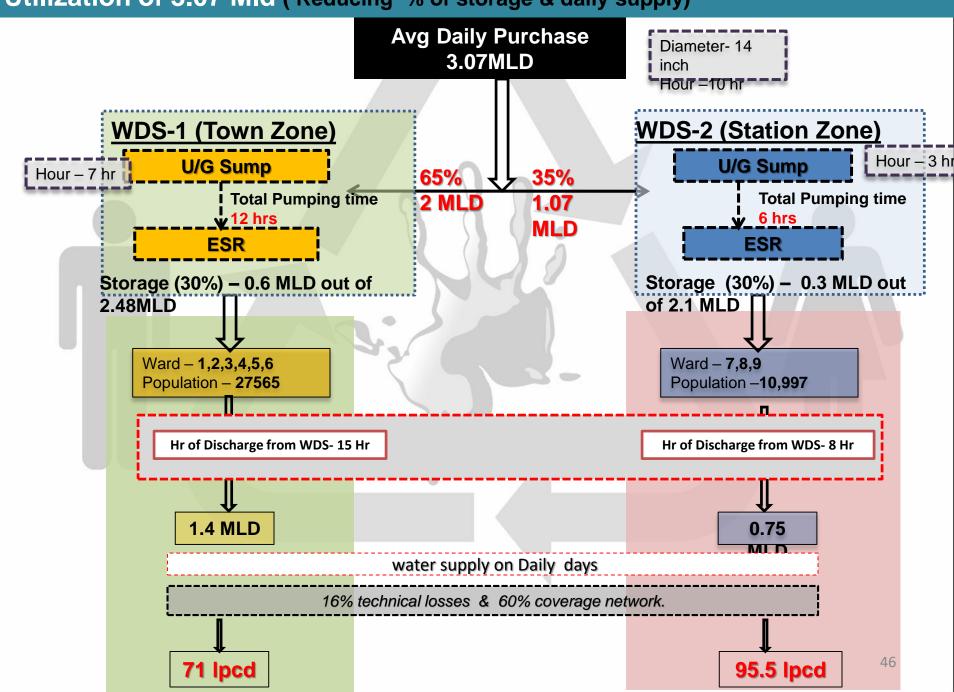


DWARKA_WATER PROFILE

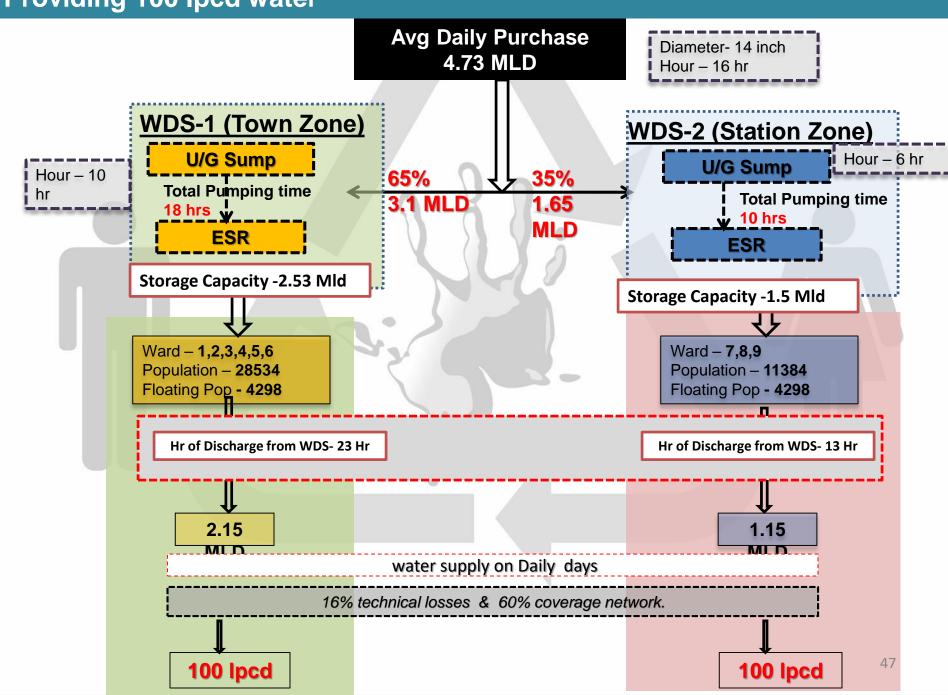
Summary: Proposals for source

SOURCE	YEAR	Ongoing Projects	Cost
Sani Dam	Existing	Pumping station & transmission main(Express line, 21 Km, 400 dia) from Gorinja to Dwarka	13.5 crore
Mayasar Talav (for 6 months)	2 years (2013)	Intake structure, sump and pumping station	41.5 lakh
Narmada water (If shortage of water from local sources)	2 years (2013)	Pipe line from surendranagar (shorter path) to kalyanpur	


OPTION'S – For Increasing Water Supply


OPTION - 2 (After 2014) (considering 140 lpcd)

Modification & Addition of Distribution Network

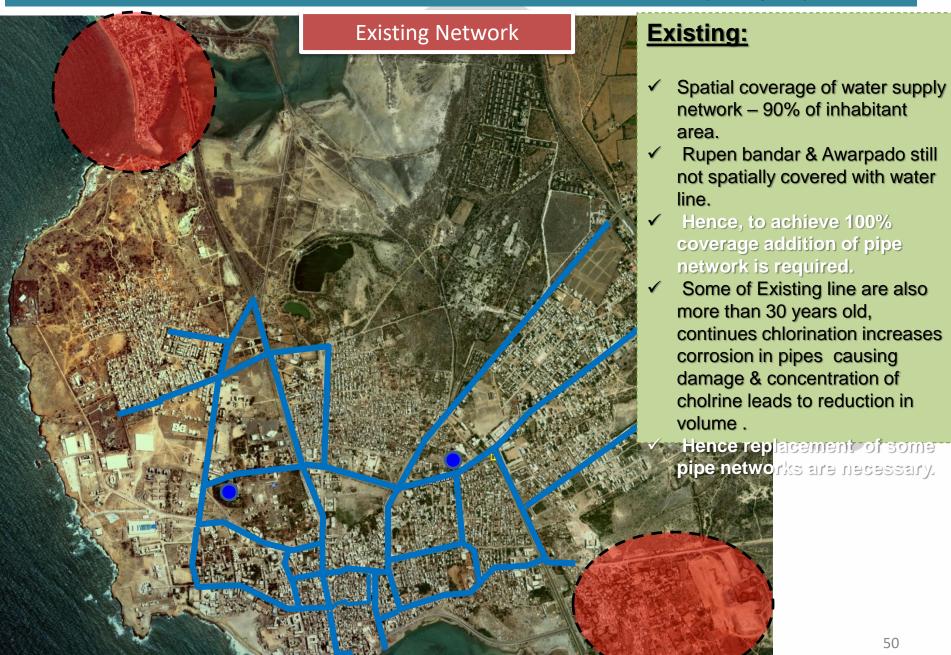

Utilization of 3.07 MId (Taking Same % of storage & alternate day supply)

Utilization of 3.07 MId (Reducing % of storage & daily supply)

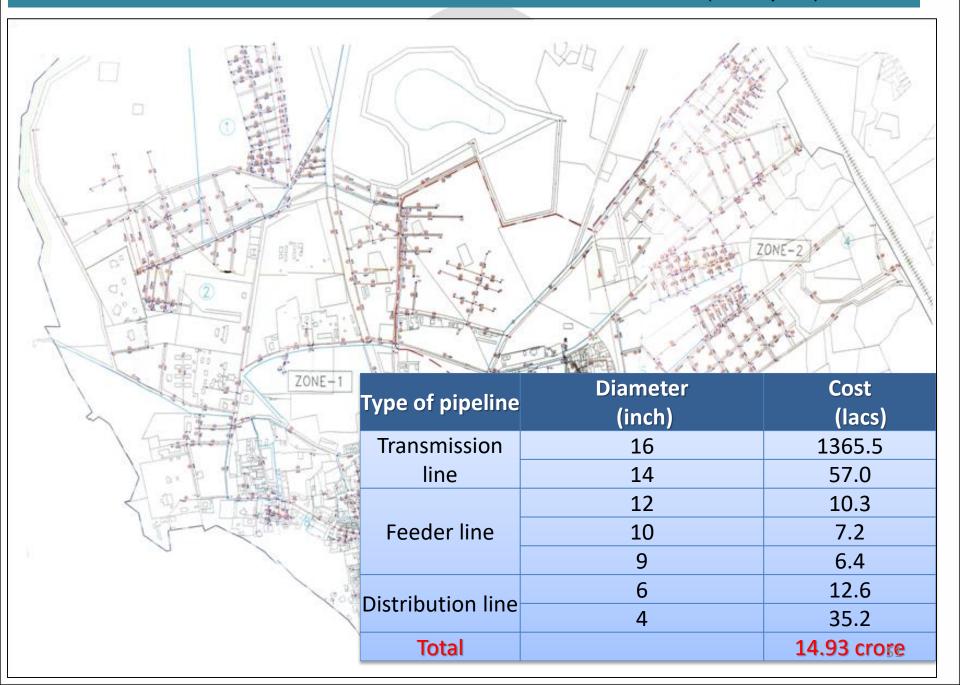
Providing 100 lpcd water

SUMMARY: Do Minimum Option

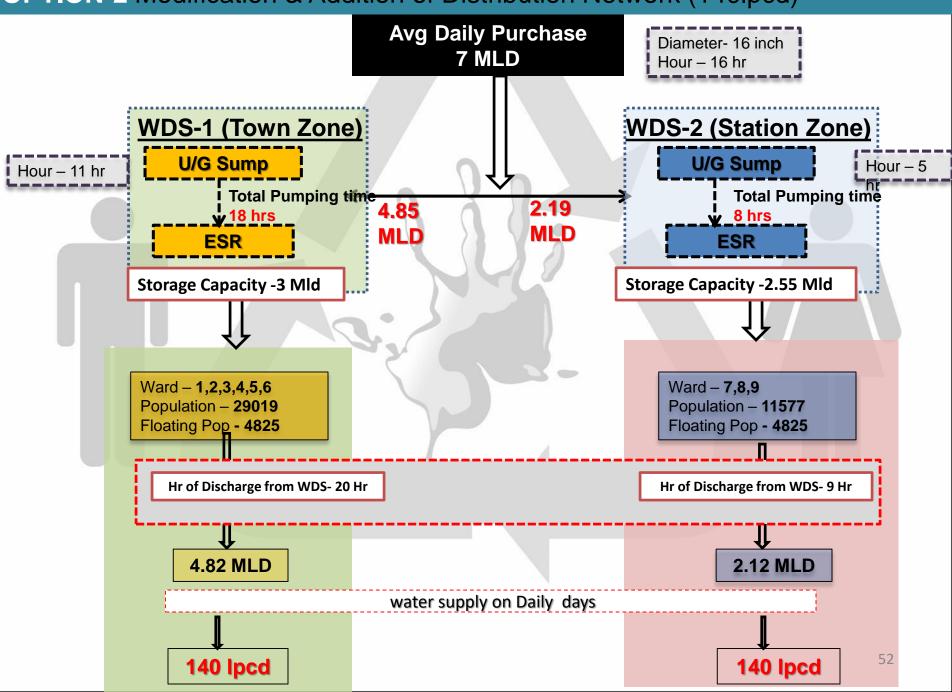
	ОРТ	ΓΙΟΝ-1	Year	Lpcd	Advantages	Disadvantages	Capital Cost	O&M cost
Α	Utilization of 3.07 MLD of sani water	Same % storage Alternate Supply	2011	40	✓Increase in Ipcd ✓ Sufficient water in case of failure	✓ More storage capacity required (Need of sump of 1.65ML at WDS-1 & 0.5 ML at WDS-2) ✓ Water still supplied on alternate days	31 lacs	52 lacs
		Decrease in % storage Daily supply	2011	84	✓ Increase in Ipcd✓ No extrastorage required	✓ More hour of pumping will increase O& M cost	-	53.5 lacs
В	B Providing 100 Lpcd water		2013	100	 ✓ Provision of 100 Ipcd water . ✓ Supplying daily. ✓ Equitable distribution 	✓ More storage capacity required ✓ More time to discharge water (Need of New ESR of 36 mt at WDS-1) ✓ More hours of pumping. (Need of more pumping machinary 30hp)	42 lacs	74 lacs


OPTION'S – For Increasing Water Supply

OPTION - 2 (After 2014) (considering 140 lpcd)

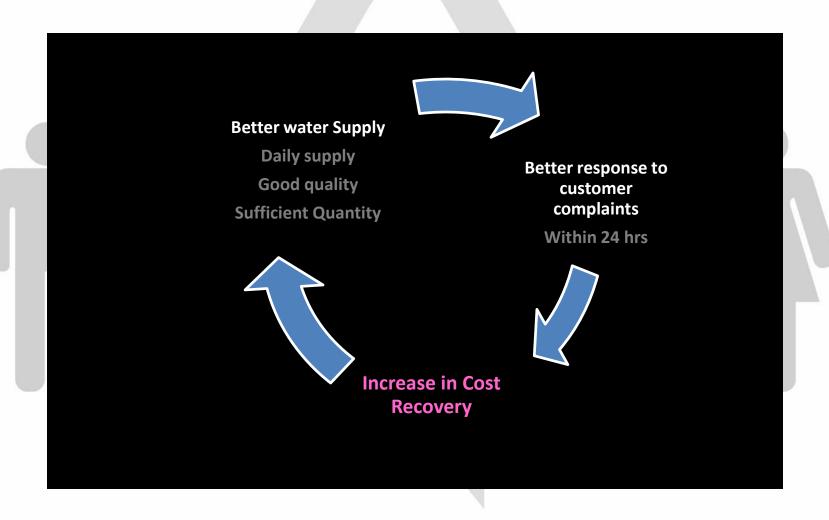

Modification & Addition of Distribution Network

- ✓ Additional Intake flow through 16inch pipe from Gorinja and 14 inch pipe from Mayasar talav
- ✓ Replacement of old pipe in distribution network.
- ✓ Using 30 HP of 2 pump with 1 stand by at both WDS.
- ✓ Increasing pressure by proposing ESR of height 36 mtr. at WDS-1

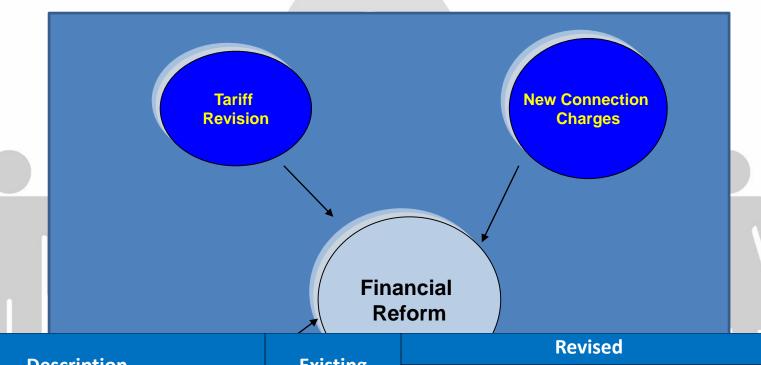

OPTION-2 Modification & Addition of Distribution Network (140lpcd)

OPTION-2 Modification & Addition of Distribution Network (140 lpcd)

OPTION-2 Modification & Addition of Distribution Network (140lpcd)


SUMMARY: OPTION -2

OPTION-2	Year	Lpcd	Advantages	Disadvantages	Capital Projects	Capital Cost	O&M cost
Modification & addition of Distribution Network Providing 140 Lpcd	2014	140	✓ Providing Sufficient water supply for conventional sewerage system to work. ✓ Saving Energy cost by using more efficient pumps. ✓ Diverting people from other coping mechanisms of bore well to better quality water supply by ULB. ✓ Catering to Tourism demand.	✓ Need to replace old pipe line incurring large capital cost. ✓ Operation cost will increase	✓ 16 inch pipe from gorinja to dwarka (already under proposal – express line) ✓ 2 sets of 30 hp pump at both WDS ✓ Storage capacity of 0.97 Mld ✓ Modification & addition of distribution network (under proposal, Saheri vikash varsh, 2005)	1365 lacs 12 lacs 16.5 lacs 128.87 lacs Total - 15.22 crores	133 lacs


SERVICE ASSESSMENT FOR WATER SUPPLY _ INDICATORS

		Existing	Proposed
COVERAGE	Coverage of water supply connections (%)	60%	100%
	Spatial coverage of water supply network (%)	90%	100%
QUANTITY	Per capita supply of water (Lpcd)	26 lpcd	100 lpcd & 140
	Spatial variations in per	0.25	lpcd 0
	capita supply of water (Ratio)	0.75 hrs	1.5 hrs
	Continuity of water supply (hrs)		Daily
	Continuity of water supply (Days)	Alternat e	
QUALITY	Quality of water supplied (ULB)	100%	100%

Journey towards better water supply & Self-sustainability

FINANCIAL REFORMS:

Description		Fuiction	Revisea		
		Existing	100 lpcd (2013)	140 lpcd (2014)	
4 Tariff Davidier	Residential	360 Rs/year	720 Rs/year	720 Rs/year	
1. Tariff Revision	Commercial	960 Rs/year	3840 Rs/year	3840 Rs/year	
2. Introducing water Tax	Each property	-	200 Rs/year	200 Rs/year	
2 Navy Companies Chauses	Residential	500 Rs	500 Rs	500 Rs	
3. New Connection Charges	Commercial	2000 Rs	3500 Rs	3500 Rs	
4. Energy Cost Saving	% cost saving	Efficiency- 60%	11% (Efficiency- 80%)	11 % (Efficiency- 80%)	
Cost Recovery		28%	100%	56%	

56

FINANCIAL REFORMS:

Descripti	Description		Revised		
Description		Existing	100 lpcd (2013)	140 lpcd (2014)	
4 Tariff Davidson	Residential	360 Rs/year	720 Rs/year	720 Rs/year	
1. Tariff Revision	Commercial	960 Rs/year	3840 Rs/year	3840 Rs/year	
2. Introducing water Tax	Each property	-	200 Rs/year	200 Rs/year	
	Residential	500 Rs	500 Rs	500 Rs	
3. New Connection Charges	Commercial	2000 Rs	3500 Rs	3500 Rs	
4. Energy Cost Saving	% cost saving	Efficiency- 60%	11% (Efficiency- 80%)	11 % (Efficiency- 80%)	
Cost Recovery		28%	100%	56%	

Customer Redressal:

Meaning: Redressal of grievances pertaining to water and underground drainage, billing dispute etc., are heard and redressed

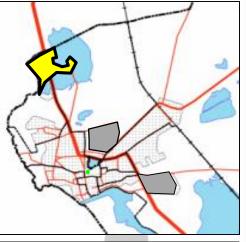
Options:

- Customer care centre can be opened especially to register & redressed customer complaints.
 - Any information sought by the general public is furnished in accordance with the Right to Information Act;
- Complaints can be registered through Phone, SMS also.
- Citizens Charter- It elucidates all information including procedure that the customer requires and details the maximum response time.

All complaints to be redressed within 24 hrs

SLUMS _ Location **RUPEN BANDAR** Population: 1892 Area: 10 hectares **NARSANG TEKRI** Population: 1822 Area: 23 hectares **AAWAR PADO** Population: 970 Area: **54** hectares Legend Ward_Boundary Municipal_Limit - NH - SH - Major_Roads --- Railways 59 Developed_Area Kilometers

COMPARISON


WATER PROFILE					
	NARSANG TEKRI	AAWAR PADO	RUPEN BANDAR		
Drinking Water Sources	Standposts	Water Tanks + Buy	Water tanks + Buy		
Washing/ Cleaning Sources	Bores/Wells + Talav	Tanks / Buy	Talav		
LPCD supply (drinking only)	2.3 litres	1.4 litres	2.26 litres		
Per capita water requirement /day	40 lpcd (ULB water+ Bore water+ Purchase + Rain)				
No. of Standposts/Tanks	Standposts 36 (45)	3 Tanks (3000L, 3000L, 5000L)	2 Tanks (10000L, 20,000L)		
Avg. money spent on water/HH/day	Wat	er from Bore Wells – Rs Water Purchase– Rs 12			
	SANITATION	PROFILE			
	NARSANG TEKRI	AAWAR PADO	RUPEN BANDAR		
Public toilets	2 blocks (1 men – 6 urinals) (1 women – 6 seats)	1 (Pay and Use) CLOSED	2 Blocks (Pay & Use) (1 Bathing – 4 + 4) (1 Toilet – 4 + 4 + 4U)		
No. of Individual Toilets (%)	50 %	25 %	15%		
Open defecation dependency	50 %	75 %	85%		
Avg. distance travelled for OD	0.5 km	0.5 km	250 m ⁶⁰		

RUPEN BANDAR

Average Family income: Rs. 2500/month

Average money spent on water: Rs. 360/month

AREA - 10 hectares

WARD NO. - 1

POPULATION - 1892

(Source: ULB 2011)

No. of HH - 380

(HH Size - 6)

DENSITY - **189.2** p/hec.

OCCUPATIONs- Fishing,

Daily wages labor

(construction/civil works

etc.), etc.

61

Water Sources

Sanitation

Options for Proposal

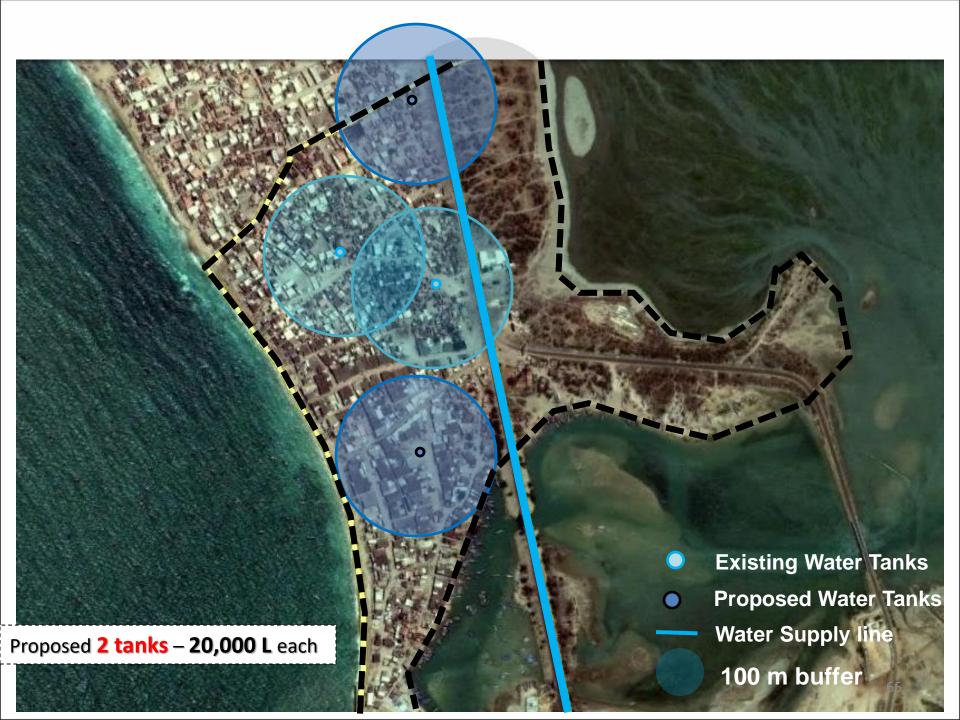
WATER

1. Increase no. of trips

Increase no. of trips per week with current infrastructure				
No. of trips per week Total Supply Per capita supply				
2	30,000	4.5		
3	Litres	6.8		

Current cost per month: Rs. 6000/month

(Taking Rs. 300/trip)


Estimated Increase in Cost: Rs. 18000/month

2. Two water tanks of 40,000 ltr & 3 trips

Add 2 tanks (20000 L each) + Increase no. of trips per week					
Added Capacity	(Litres)	40000			
Total Water Tank Capacity	(Litres)	70,000			
No. of days	(Days)	7			
Per Capita Supply	(lpcd)	5.3			
No. of trips per week	Time taken to refill (days)	Per capita supply			
3	2.3	15.9			

Construction Cost of Tanks : Rs. 2, 00,000

Estimated Trip Cost: Rs. 43,200 /month

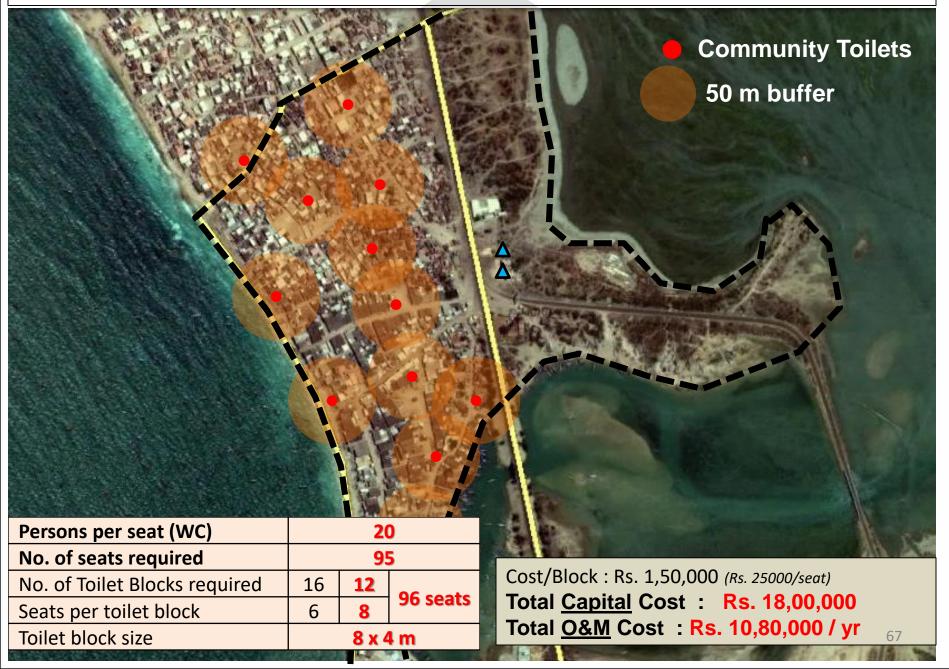
3. Standposts (extension of line upto Rupen Bandar)

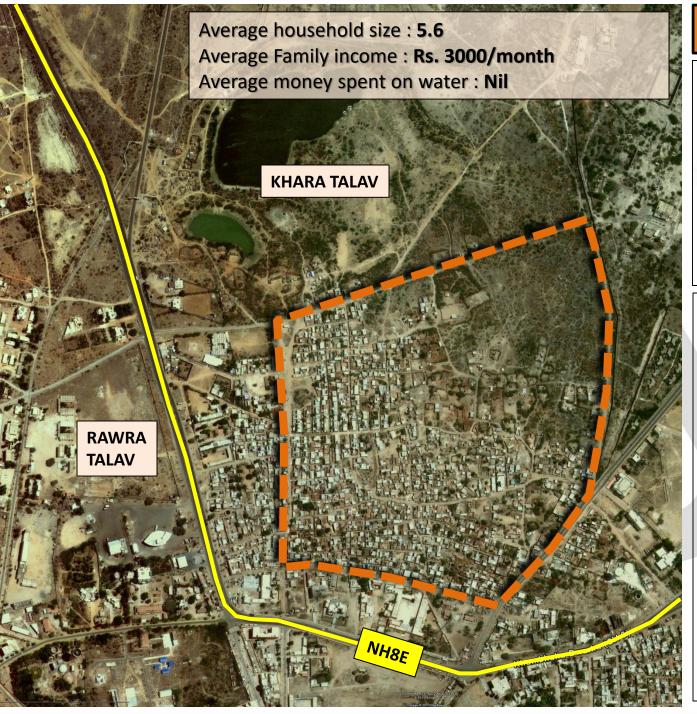
No. of HH per tap	3		
No. of taps per Standpost	4	6	8
No. of standposts required	26	18	13

		Total	No. of	
	Mins	Liters	people/tap	LPCD
(Alternate	45	112.5	18	6.3
days)	90	225	18	12.5
	45	112.5	18	12.5
Daily	90	225	18	25.0

Estimated Capital Cost: Rs. 6,50,000

4. Individual Connections


	Mins	Total Liters	LPCD
Alternate	45	112.5	9.3
days	90	225	18.75
	45	112.5	18.75
Daily	90	225	37.5
Total Itrs to be supplied/day		70,950	


Cost for extending TRUNK LINE till Rupen Bandar (2 km stretch): Rs. 8,00,000

Cost /connection (including internal supply network) : Rs. 47,30,000

Total estimated Capital Cost: Rs. 55,30,000

Proposed Toilet blocks

NARSANG TEKRI

<u>WARD NO.</u> - 2

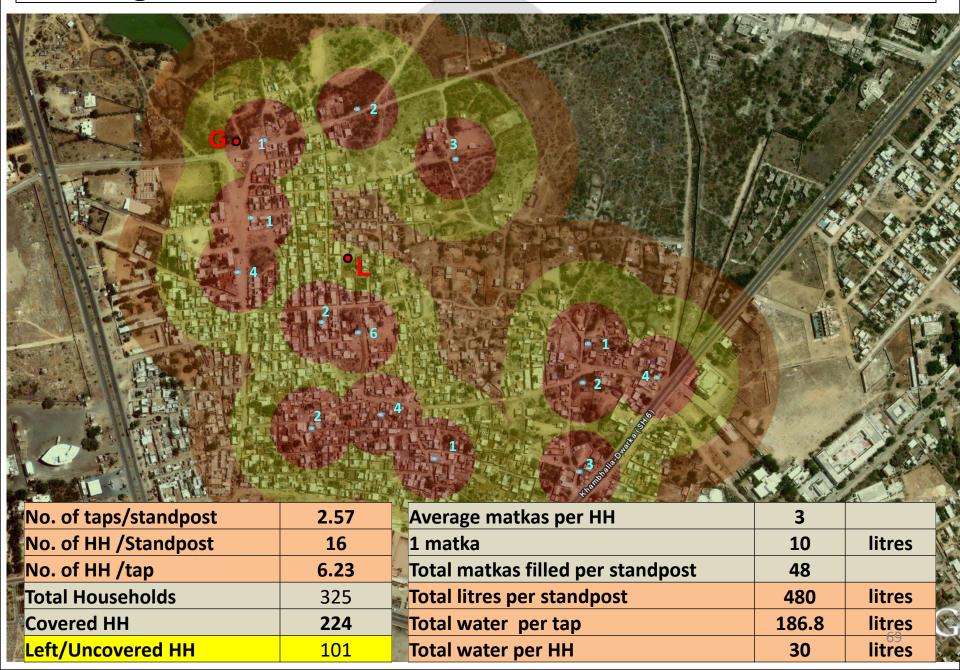
AREA - 23 hec.

POPULATION -1822 (2011)

No. of HH - **304**

Gross DENSITY -

79.2 p/hec.


OCCUPATION -

Daily wages labor

(construction/civil works, street salesmen), fishermen, beggars,

etc.) 68

Existing Facilities

Options for Proposal

WATER

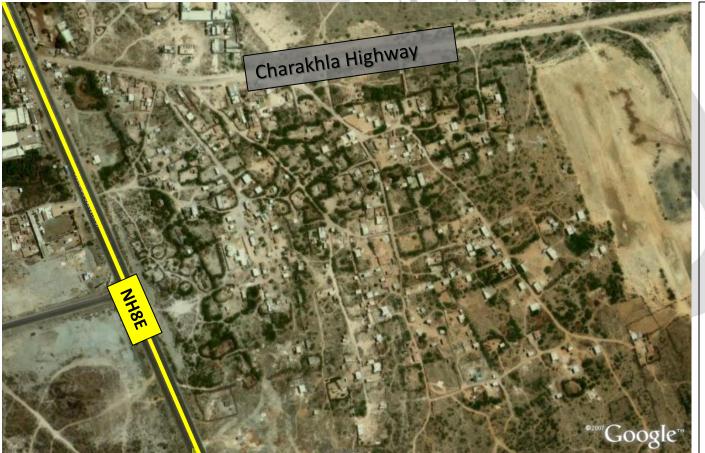
Individual Connections

Population		1822	
No. Of HH's		303	
	Mins	Total Liters	LPCD
Alternate	45	112.5	9.3
days	90	225	18.75
Daily	45	112.5	18.75
	90	225	37.5
Total Ltrs to be supplied/day	68,325		

Cost /connection (including internal supply network) : Rs. 45,50,000

Total estimated Capital Cost: Rs. 45,50,000

AAWAR PADO


Average household size: 6.25

Average Family income: Rs. 2500/month

Average money spent on water: Rs. 340/month

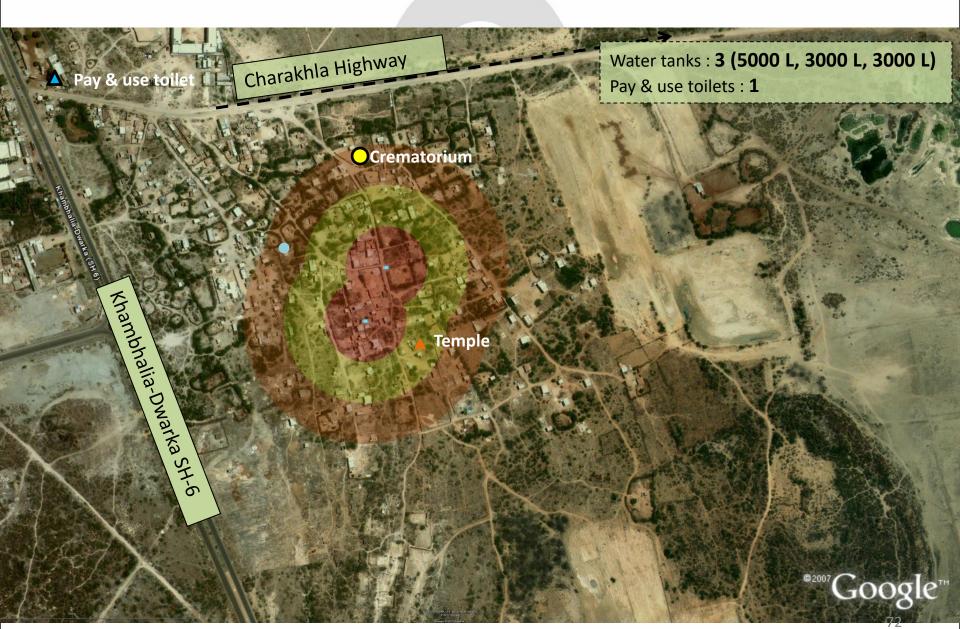
Average money spent on Electricity: Rs. 500/month

AREA - 54 hec

WARD NO. - 9

POPULATION - 970

(Source :ULB)


No. of HHs - 162

DENSITY - **17.96** p/hec.

OCCUPATIONS-

Daily wages labor (construction/civil works etc.), drivers etc.

Existing Facilities

Options for Proposal

WATER

1. Increase no. of trips

Total trip Cost: Rs. 7,200/mnth

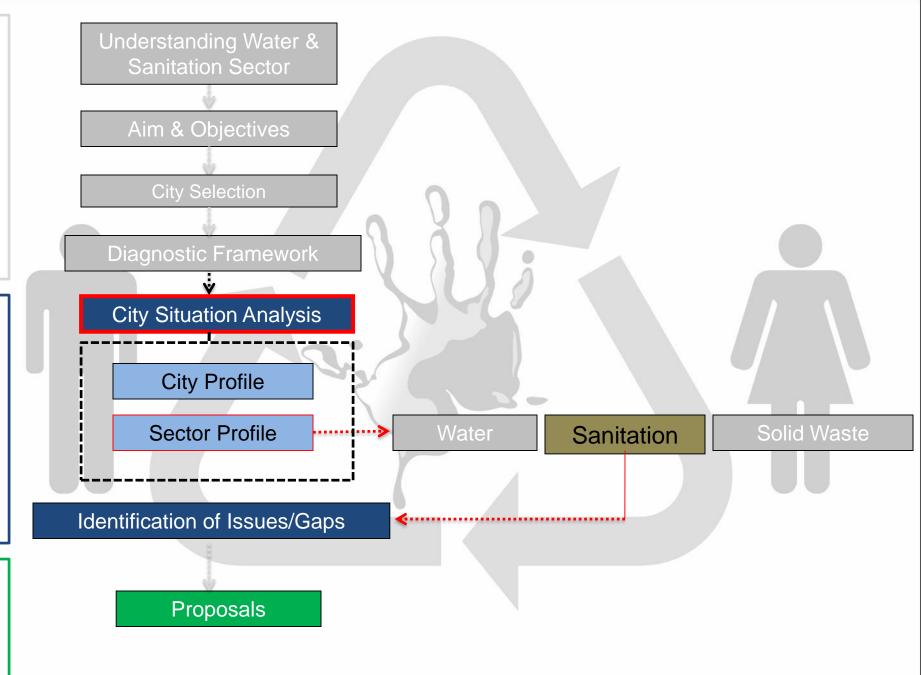
Increase no. of trips per week with current infrastructure			
No. of trips per week	Per capita supply		
2	3.24		
3	4.86		

2. Two water tanks of 40,000 ltr & 3 trips

Total Tank Cost: Rs. 2,00,000
Total trip Cost: Rs. 7,200/mnth

Add 3 tanks (20000 L each) + Increase no. of trips per week				
Added Capacity (Litres)	40,000			
Total Water Tank Capacity (Litres)	51,000			
No. of days (Days)	7			
Per Capita Supply (Ipcd)	7.5			
No. of trips per week	Per capita supply			
3	22.5 lpcd			

SANITATION


Group Toilets

Persons per seat (WC)	15			
No. of seats required	65			
No. of Toilet Blocks required	16	11		
Seats per toilet block	4	4 6 66 seats		
Toilet block size	8 x 4 m			

Cost/Block: Rs. 1,50,000 (Rs. 25000/seat)

Total Capital Cost: Rs. 16,50,000

Total <u>O&M</u> Cost : Rs. 9,90,000 / yr₇₃

CAPTURE STORAGE TRANSPORTATION TREATMENT DISPOSAL

Finance

Issues

Existing and Ongoing proposals

ISSUES IN SANITATION

CAPTURE

- •Low Coverage of toilets -70%
 - •HH don't have space for toilets.
 - •HH other than EWS HH

STORAGE

TRANSPORTATION

TREATMENT DISPOSAL

- •Inappropriate
- construction & design
- of soak pits.
 - •Contamination of ground water.
- •Non- mechanized system adopted for desludge.
 - •Lack of desludging machine.
- No treatment of sludge before disposal
- Run off of disposed sludge into the sea.

FAECAL SLUDGE MANAGEMENT(FSM)

Institutional

• inappropriate redressal system for fecal sludge management.

Finance

- No financial support for construction of individual toilets other than EWS HH.
- Low cost recovery in fecal sludge management.

CAPTURE

STORAGE

TRANSPORTATION

TREATMENT & DISPOSAL, Reuse

Non-Residential
Restaurants
Schools
Public places
Public toilets
Shops

•Total no. of HH = 7700

	2011	2012	2013	2014	2015	2016	2017
Number of HH without toilets	1644			1044	544	44	0
No. of toilets will be constructed under NGSP		60	00	500	500	44	0
other No. of HH without toilets with lack of space	220	220	220	220	220	220	220

immediate recommendations	Long term recommendations
•Identification of the location of HH with out	
individual toilets due to lack of space.	Monitoring of OD sites
	 Including the details of toilets with septic tanks in Development control regulations.
•IEC campaigns for OD Free cities	•IEC campaigns for OD Free cities
	•Water quality monitoring protocol 78

CAPTURE STORAGE TRANSPORTATION TREATMENT DISPOSAL

Proposal for "Non-Residential Area":

Non - Residential Area

- Capacity Increase and Cost Estimation: (Issue Oriented)

- Designing of Typical Model for pay & use toilet: (Area, Num of Units)

- Spatial Location

Non-Residential

SECTORS

Hotels

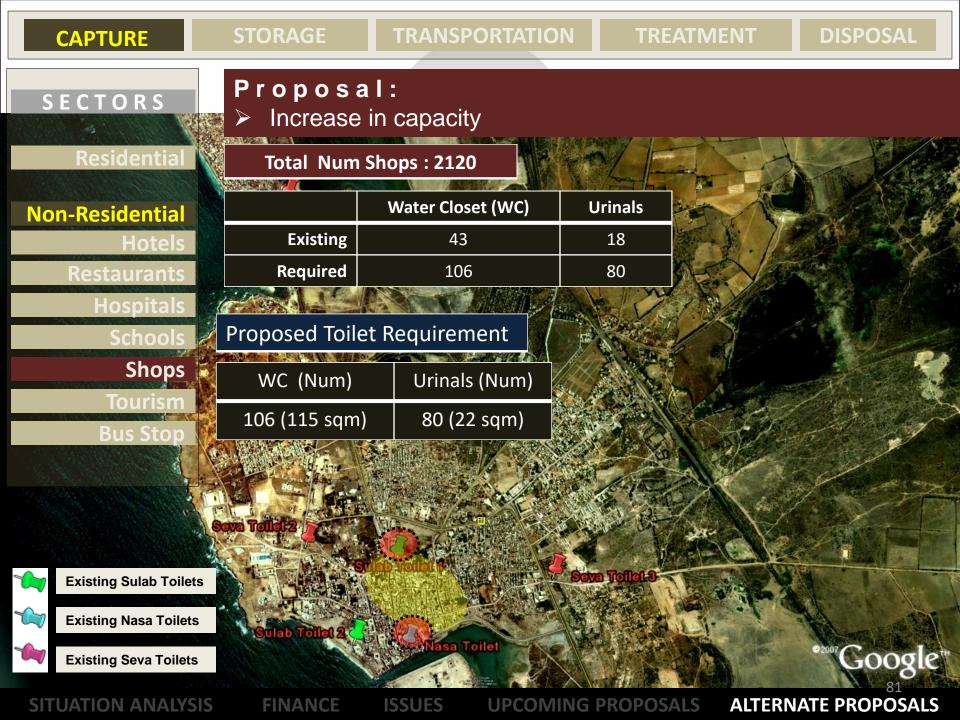
Restaurants

Residential

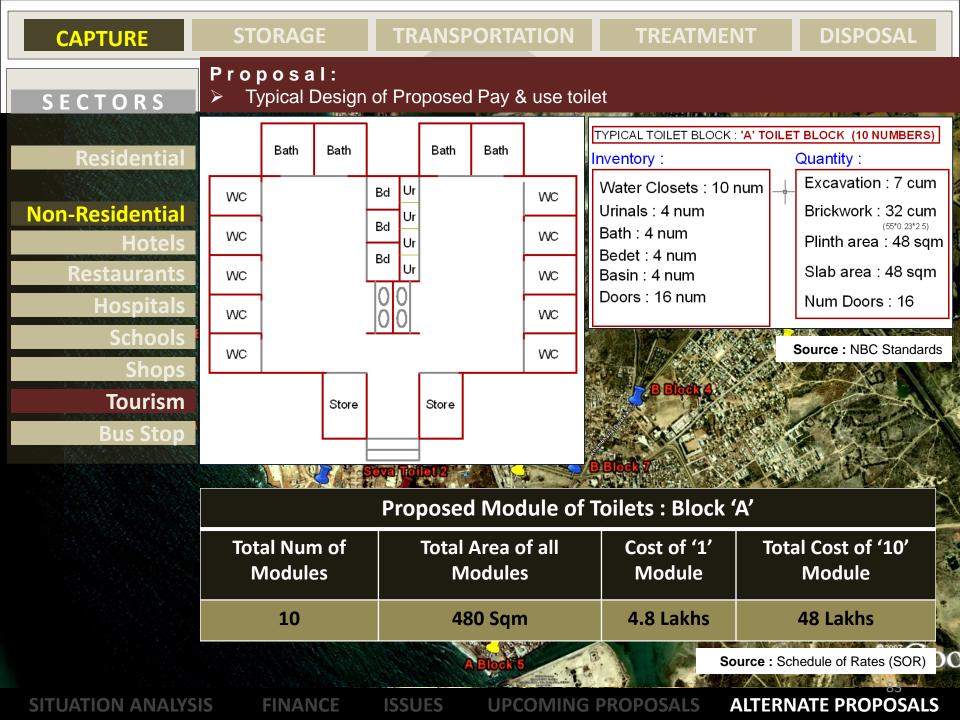
Hospitals

Schools

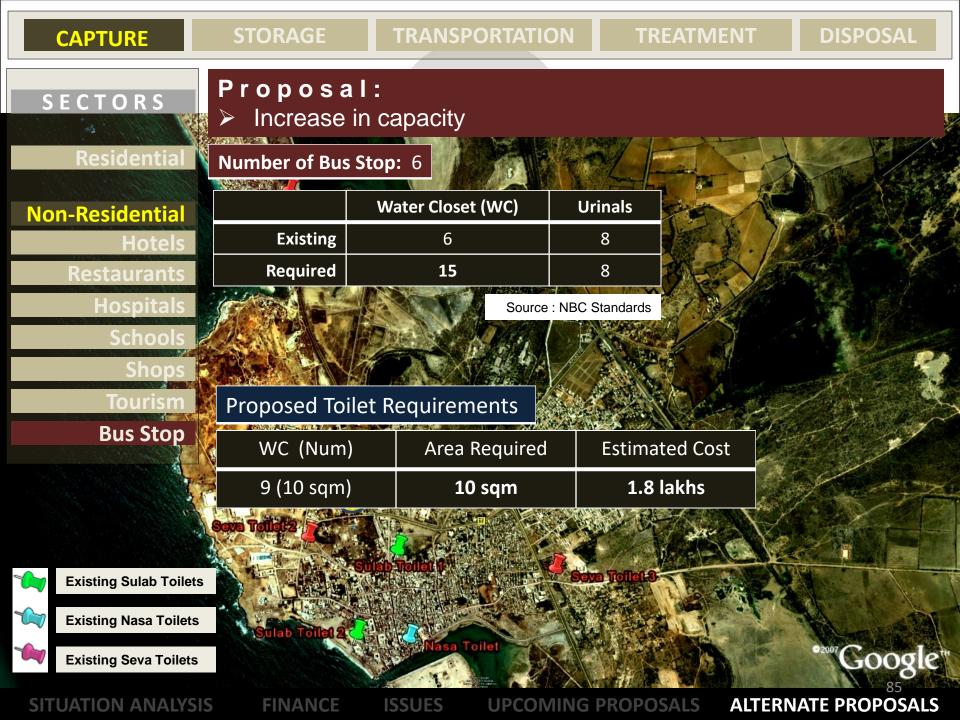
Shops

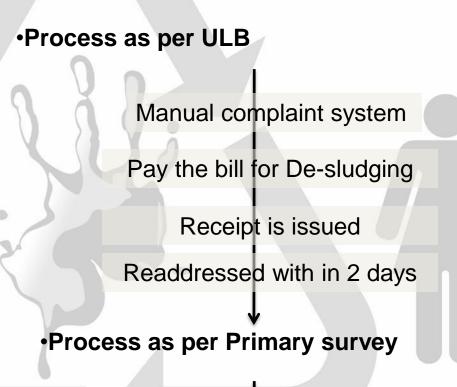

Tourism

Bus Stop



SITUATION ANALYSIS


DISPOSAL STORAGE TRANSPORTATION TREATMENT CAPTURE Proposal: SECTORS Amendment in 'Development Control Regulation' of Dwarka City <u>Residentia</u> **Non-Residential** Hotels Proposed Toilet Requirement Restaurants Water Closet (WC) **Urinals Hospitals** For Restaurants **Schools Existing** 0 0 1 for 50 persons 1 for 20 Required Tourism **For Schools** Water Closet (WC) **Urinals** 1 for 40 students 1 for 20 students Male **Total Num of Schools: 18** 1 for 25 students **Female** Source: NBC Standards **Existing Sulab Toilets Existing Nasa Toilets Existing Seva Toilets ALTERNATE PROPOSALS** SITUATION ANALYSIS **FINANCE ISSUES**


STORAGE DISPOSAL TRANSPORTATION TREATMENT CAPTURE Proposal: Typical Design of Proposed Pay & use toilet SECTORS TYPICAL TOILET BLOCK : 'B' TOILET BLOCK (8 NUMBERS) Ur Residential WC WC Inventory: Quantity: Ur Excavation: 5.5 cum Water Closets: 10 num WC WC **Non-Residential** Ur Urinals: 4 num Brickwork: 25 cum Bedet: 4 num Plinth area: 30 sqm WC WC Basin: 4 num Restaurants Slab area: 30 sqm Doors: 16 num Doors: 12 num WC WC Hospita Source: NBC Standards WC WC **Tourism** Store Store Bus Stor Proposed Module of Toilets: Block 'A' **Total Num of Total Area of all** Cost of '1' Total Cost of '10' **Modules Modules** Module Module 240 Sqm 4.4 Lakhs 35 Lakhs Source: Schedule of Rates (SOR) **UPCOMING PROPOSALS** SITUATION ANALYSIS **FINANCE ISSUES ALTERNATE PROPOSALS**

STORAGE Complaint readressal system Inefficient readrasal and monitoring system.

TRANSPORTATION

TREATMENT & DISPOSAL, Reuse

Complaint to the sweeper

Readdressed with in 3-4 days

CAPTURE	STORAGE	TRANSPORTATION	TREATMENT & DISPOSAL, Reuse

Immediate recommendations	Long term recommendations
 Setting up of a readressal system, through phone, in personal and include sweepers in the readdressed system. 	 Improving the efficiency of the readressal system i.e readressal in 24 hours.
 Awareness of the availability of the services through Local channel Giving the redrassal system contact number in local new papers 	

IDENTIFICATION OF APPROPRIATE NETWORK

OPTION 1: CONVENTIONAL SEWERAGE SYSTEM

System is appropriate when water supply is 140 lpcd or more and when Centralized Treatment Facility

No storage: Liquid + Solid component transported

- Blackwater, GreyWater and Storm water can be handled at the same time
- High Capital Costs

(Large depth of excavation, High structural strength)

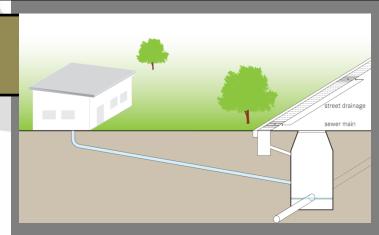
 High Operational Costs and maintenance requires welltrained staff

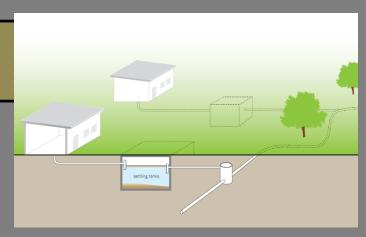
OPTION 2: SMALL BORE SEWERAGE SYSTEM

System is most appropriate for areas that already have septic tank, but where soil can not absorb the effluent.

Solid Component: Interceptor Chamber (Single Chamber Septic tank) Liquid Component: PVC, HDDP pipes

- The system uses less water, since solids do not need to be transported (90 to 120 lpcd).
- Small diameter of pipes


(the sewage flow rates in do not have to be self-cleansing rates)


Low capital costs

(50 to 80% lower costs as compared to conventional sewer network)

Fewer effluent treatment required

(Since solids are captured by Interceptor Tanks)

Network Components and Design

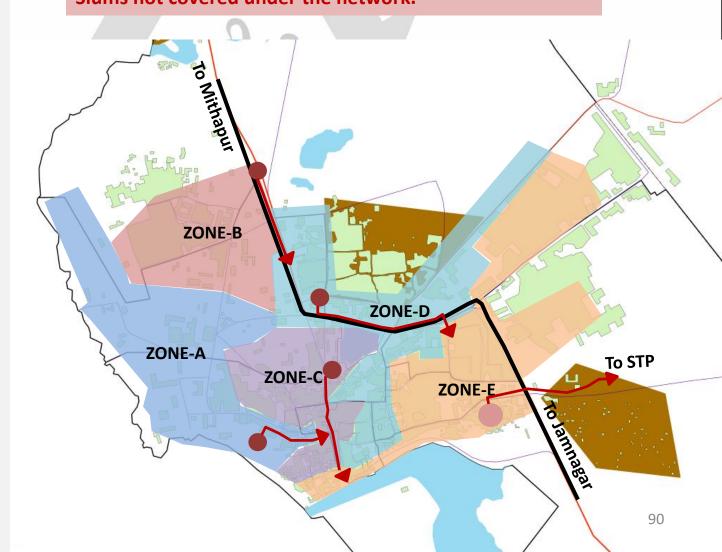
Project prepared under UIDSSMT

NETWORK DESIGN PERIOD – 30 years (2011-

2041)

Population considered 2041: 70450*

- Dwarka population- 58290
- Floating population- 12160


* Projected population by Incremental Increase method

- INSPECTION CHAMBER
- GRAVITY FLOW BASED SECONDARY SEWERS
 - Combined Length 21 kms
- SEWAGE PUMPING STATIONS (SPS)
 - 4 Auxiliary SPS
 - 1 Terminal SPS
- RISING MAIN UPTO DWARKA STP
 - DI Pipeline of 450 mm dia
- SEWAGE TREATMENT PLANT
 - Waste Stabilization Ponds wit Maturation Ponds
 - •9 MLD Capacity

Network Components and Design

Spatial Coverage

Sewerage network covers 73% of inhabited 5.2 sq.km Slums not covered under the network.

Adopted from GUDM, Final DPR on Underground Sewerage System for Dwarka (March 2011)

Network Components and Design

Spatial Coverage

Capital Cost

Capacity Building

	DESCRIPTION	AMOUNT (Rs in lakh)
1.	Gravity Collection System (sewerage system 21 kms long with min depth 0.4m)	1025.30
2.	Sewage Pumping Stations in five Zones (Four auxiliary SPS and one terminal SPS)	236.48
3.	Pumping Mains from SPS to TSPS/STP (DI K-9 Pipes)	224.82
4.	Sewage Treatment Plant (9 MLD capacity STP at Charakala road)	328.22
	Total Base Cost	1814.82
	Total Cost for Approval	2051.46

FOR OVERALL SEWERAGE

SYSTEM

Engineer - 2 MH Cleaning - 12

Accountant - 1 Clerks - 2

Labour - 6

SEWAGE TREATMENT PLANT

Operators - 6 Lab Tech - 1

Labour - 6

5 SEWAGE PUMPING STATION

SPS- A to E (each employing)

Operators - 3 Watchmen - 1

Total Staff Required: 61

Adopted from GUDM, Final DPR on Underground Sewerage System for Dwarka (March 2011)

Network Components and Design

Spatial Coverage

Capital Cost

Capacity Building

Financial Sustainability

Challenges and Disadvantages

SOURCES FOR FINANCE

	INSTITUTE	%age	AMOUNT (Rs in Lakhs)
1.	Central	80	1641.17
2.	State	10	205.15
3.	ULB	10	205.15
	Total		2051.46

O & M OF NETWORK

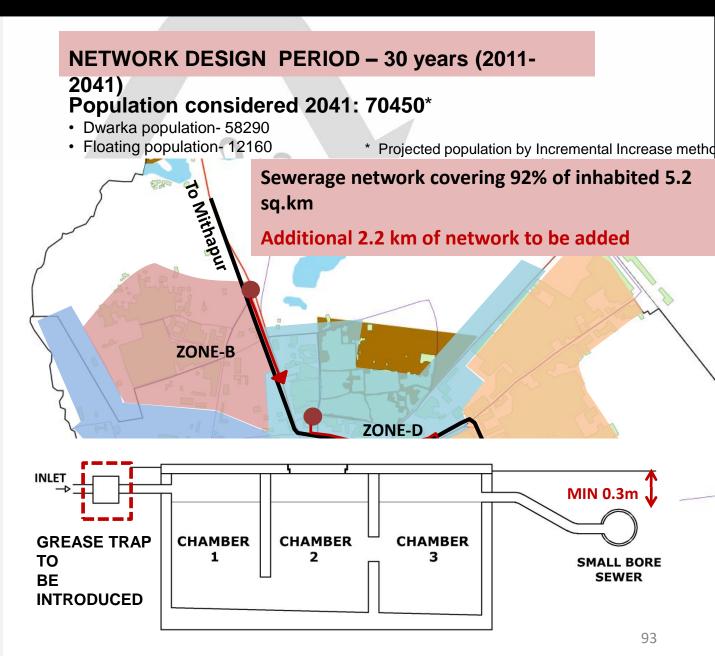
	Base Year	Energy Charges	Cost of Manpower	Maintenanc e & Misc	Total (lakhs)
	2011	46.26	39.78	5.05	91.09
	2026	75.19	49.72	6.32	131.23
	2041	123.28	62.15	7.90	193.34

PROPOSED TARRIF

- (1) House Connections- Rs 1200 per connection per year(pcpy)
- (2) Commercial Connections- a. Shop Rs 3000 pcpy
 - **b.** Cinema Hall Rs 10000 pcpy
 - **c**. Hotels Rs 20,000 pcpy
 - **d.** Restaurant Rs 10000 pcpy

Adopted from GUDM, Final DPR on Underground Sewerage System for Dwarka (March 2011)

92


SMALL BORE SEWERAGE SYSTEM

Network Components and Design

Spatial Coverage

DESIGN CRITERIAS ADOPTED FROM

- -The Design of Small Bore Sewer System by Richard J. Otis and D. Duncan Mara, Technology Advisory Group (TAG)
- Compendium of Sanitation Systems and Technologies by EAWAG Aquatic Research, 2005

Network Components and Design

Spatial Coverage

Capital Cost

Capacity Building

DESIGN CF	ITERIAS	ADOPTED	EB OM

-The Design of Small Bore Sewer System by Richard J. Otis and D. Duncan Mara, Technology Advisory Group (TAG)
- Compendium of Sanitation Systems

- Compendium of Sanitation Systems and Technologies

by EAWAG Aquatic Research, 2005

	DESCRIPTION	AMOUNT (Rs in lakh)
1.	Gravity Collection System (sewerage system 23.4 kms long with min depth 0.3m)	163.09
2.	Sewage Pumping Stations in five Zones (Four auxiliary SPS and one terminal SPS)	169.77
3.	Pumping Mains from SPS to TSPS/STP (DI K-9 Pipes)	224.82
	Total Base Cost	592.69

FOR OVERALL SEWERAGE SYSTEM

Engineer - 2
MH Cleaning - 10
Accountant - 1
Clerks - 2
Labour - 6

5 SEWAGE PUMPING STATION

SPS- A to E (each employing)

Operators - 3 Watchmen - 1

Total Staff Required: 41

Network Components and Design

Spatial Coverage

Capital Cost

Capacity Building

Financial Sustainability

Challenges and Disadvantages

- Effluent and sludge (from septic tanks) require secondary treatment and/or appropriate discharge
- Requires rigorous monitoring for new connections to be added to the network
 - introduction of grease trap
 - monitoring of direct connection into the network (bypassing the septic tank)
 - outlet levels of septic tanks to be checked
- Acceptance by the community
- Operation and Maintenance requires well-trained staff
- Maintenance of Grease trap to be done by Household

COMPARING FSM, UNDERGROUND SEWERAGE SYSTEM & SMALL BORE SEWER

		EXPENDITURE				REVENUE		
	COSTS (in lakhs)		Household	Hotels	Restaurants	Schools	Hospitals	Annual Revenues to ULB (in Lakhs)
FSM	Capital: 1.27 _{per annum}	O & M (cost/est)	900	18860	10750	 6960	7830	2.97
(existing)	O & M : 11.76		0					
Sewerage Network	Capital: 1814.82	O & M* (cost/est)	1200	20000	10000	 10000	20000	112.24
	O & M: 91.01	(6036) 636)	1250			1000	I I	112.24
Small Bore Network	Capital : 592.69	0 & M	720+140	12000+ 150	6000	6000+ 300	12000+ 180	67.25
	O & M: 51.38	(cost/est)	I 860	12150	6000	6300	12180	67.35

FSM to Conventional Sewers: High Cost of capital as well as O & M for ULB

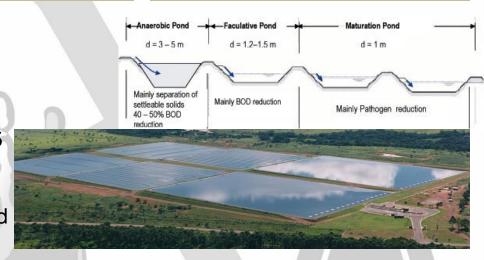
High user charges for Households, Schools and Hospitals

FSM to Small Bore Sewers: Moderate Cost of capital as well as O & M for ULB

Lower user charges for all stakeholders as compared to

Sewerage or FSM

CAPTURE


STORAGE

TRANSPORTATION

TREATMENT & DISPOSAL, Reuse

Option – 1 , Oxidation ponds

- Theory: Bacteria and Algae symbiosis
- •Area required = 4 hec with 2m depth
- Detention period in India is generally 10 to 15 days in India.
- •Oxidations doesn't have on site foul smell and is usually located 300m from Colonies or towns.

	present de-watering frequency		Smal bore		Conventional swerage
	26 LPCD 140 LPCD		26 LPCD	140 LPCD	140 LPCD
Land required	0.004784	0.0483	2.3023	12.397	12.397
Totla capital cost	19136	193201	9209245	49588243	49588243
O& M cost (60 thousand /MLD)	124.8	1260	60060	323400	323400

Advantages:

- •No skilled workers are required.
- •Negligible for O &M cost.
- •BOD removal is very high

Disadvantages:

- •It creates mosquito nuisance if not maintained well.
- ullet Might nor be financially viable for high waste waster produced. $_{97}$

CAPTURE

STORAGE

TRANSPORTATION

TREATMENT & DISPOSAL, Reuse

Option – 3, Facultative aerated lagoon

- •Similar to Oxidation ponds.
- •Need land requirement less than Oxidation pond.

					Conventional
	present de-watering frequency		Small bore		sewerage
	26 LPCD	140 LPCD	26 LPCD	140 LPCD	140 LPCD
Land required (0.3 ha/MLD)	0.000624	0.0063	0.3003	1.617	1.617
Totla capital cost	5616	56700	2702700	14553000	14553000
O& M cost (60 thousand /MLD)Rs.	124.8	1260	60060	323400	323400

Advantages:

- •No skilled workers are required.
- •Negligible for O &M cost.
- •BOD removal is very high

Disadvantages:

- •It creates mosquito nuisance if not maintained well.
- •Might nor be financially viable for high waste waster produced. $_{98}$

CAPTURE

STORAGE

TRANSPORTATION

TREATMENT & DISPOSAL, Reuse

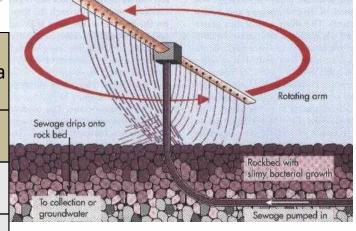
Option – 2, **Trikling filter**

•Packing material used: rock, gravel, sand, plastic synthetic material.

Effluent Quality:

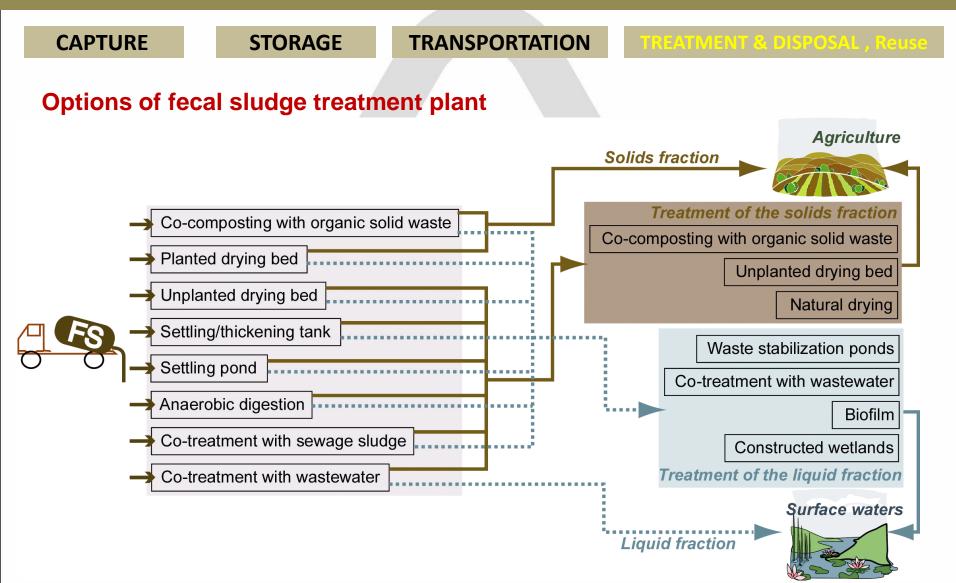
BOD: 10-20 mg/L.

Suspended solids (SS):20-50 mg/L.


The effluent obtained is colourless.

Disadvantages:

•Low power requirements.
•Might nor be financially viable for high waste waster produced.

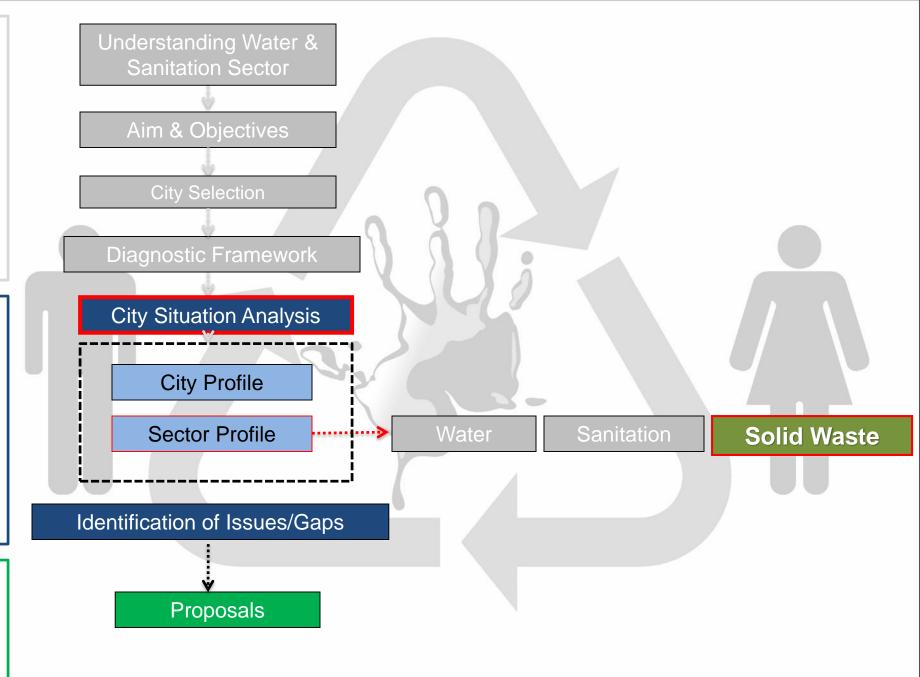

	present de-				
	watering				Conventiona
	frequency		Small bore		l swerage
		140	26	140	
	26 LPCD	LPCD	LPCD	LPCD	140 LPCD
Land required (0.65		0.0136	0.6506		
ha/MLD)	0.001352	5	5	3.5035	3.5035
			26026	140140	
Totla capital cost	5408	54600	15	81	14014081
O& M cost (3 lakh			30030	161700	
/MLD)Rs.	624	6300	0	0	1617000

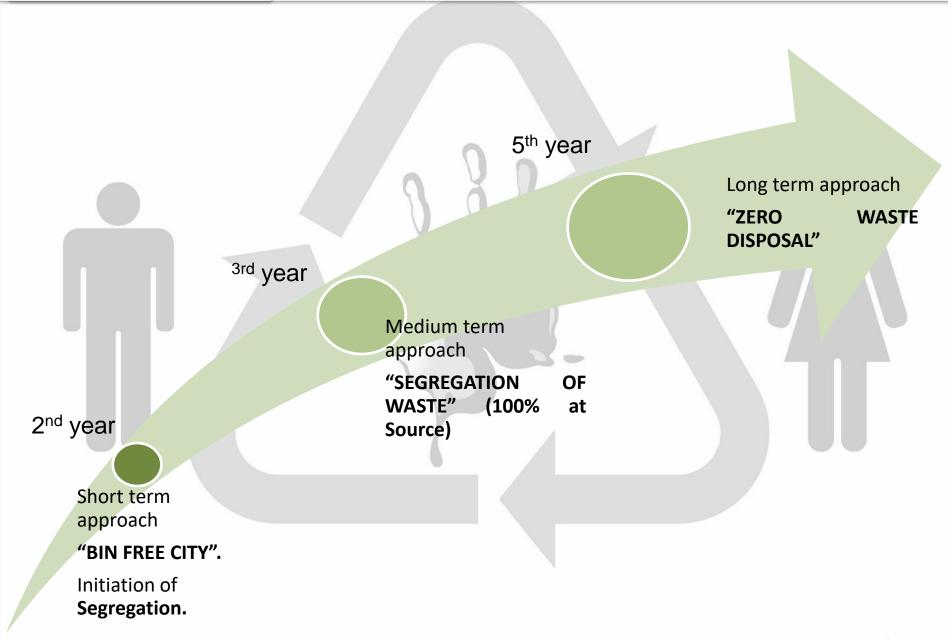
99

CAPTURE	STORAGE	TRANSPORTATI	ON TREATMENT	& DISPOSAL , Reuse				
	BOD(mg/l)							
		Inland surface water	Land for irrigation	Marine costal area				
Oxidation ponds	30-50							
Facultative aerated		30	100	100				
lagoon	30-51	30	100	100				
Trikling filter	10 to 20							
		SS						
		Inland surface water	Land for irrigation	Marine costal area				
Oxidation ponds	75-125							
Facultative aerated		100	200	100				
lagoon	75-126	100	200	100				
Trikling filter	20-50							
Physical characteristics								
		Inland surface water	Land for irrigation	Marine costal area				
	The colour of water							
	is greenish.							
Oxidation ponds	Ü	All efforts should be	All efforts should be	All efforts should be				
	The colour of water	made to remove	made to remove	made to remove				
Facultative aerated	is greenish.	colour and unpleasant	colour and unpleasant	· ·				
lagoon	10 8. 00	odour as far as	odour as far as	odour as far as				
	The effluent	practicable	practicable	practicable				
Trikling filter	obtained is colorless			100				
				100				

A detailed study of each option should be carried out.

CAPTURE

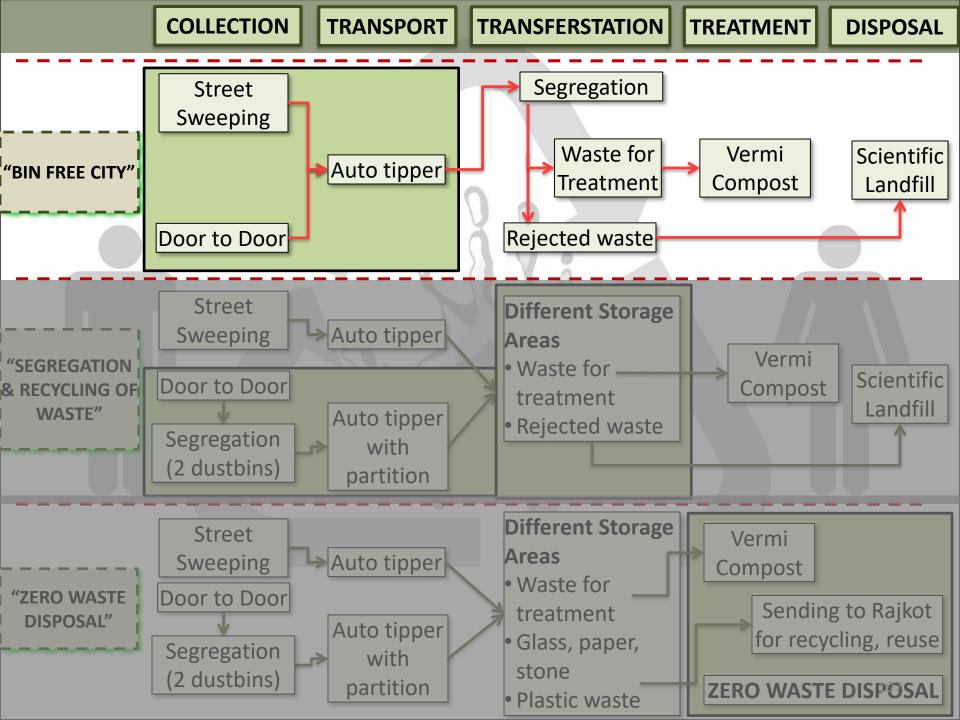

STORAGE

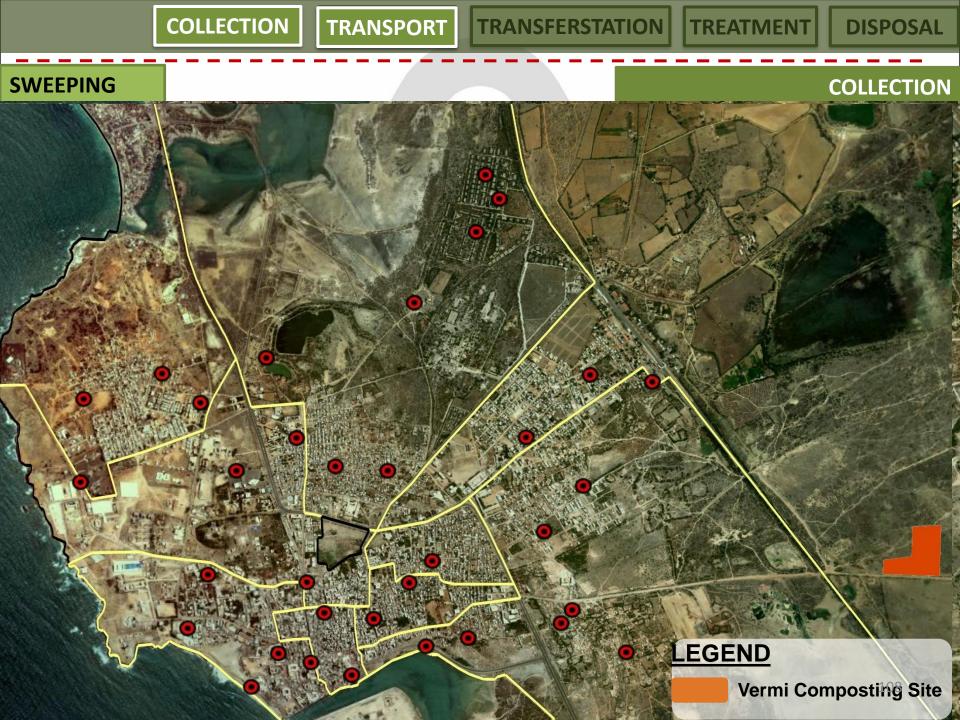

TRANSPORTATION

Producing Effluent of Recyclable Quality

- •None of the technological options discussed earlier produce water of recyclable quality (i.e.,BOD < 5 mg/L, SS < 5 mg/L).
- For recycling purpose, tertiary treatment of the biologically treated effluent through
 - Sedimentation and rapid sand filtration (RSF)/
 - Dual media filtration (DMF) is required.
- •Alternatively, advanced processes like Membrane Bioreactor (MBR) and SBR process may produce recyclable effluent.

TREATMENT & DISPOSAL, Reuse


MEDIUM TERM GOAL


LONG TERM GOAL

IEC CAMPAIGN

FINANCIAL DETAILS

COLLECTION TRANSPORT TRANSFER STATION TREATMENT DISPOSAL

SEGREGATION

SEGREGATION

- Compostable waste
- Non compostable waste

Destination	Vehicle Trip (Inflow)- auto tipper	Waste brought at transfer station		
Street Sweeping	17	6 tonnes		
Door to Door Collection	61	10 tonnes		

Vehicle Trip (Outflow) - tractor	Waste send out	Destination	
2	3 tonnes	Vermi composting plant	
8	13 tonnes	Scientific landfill	

STAFF REQUIRED

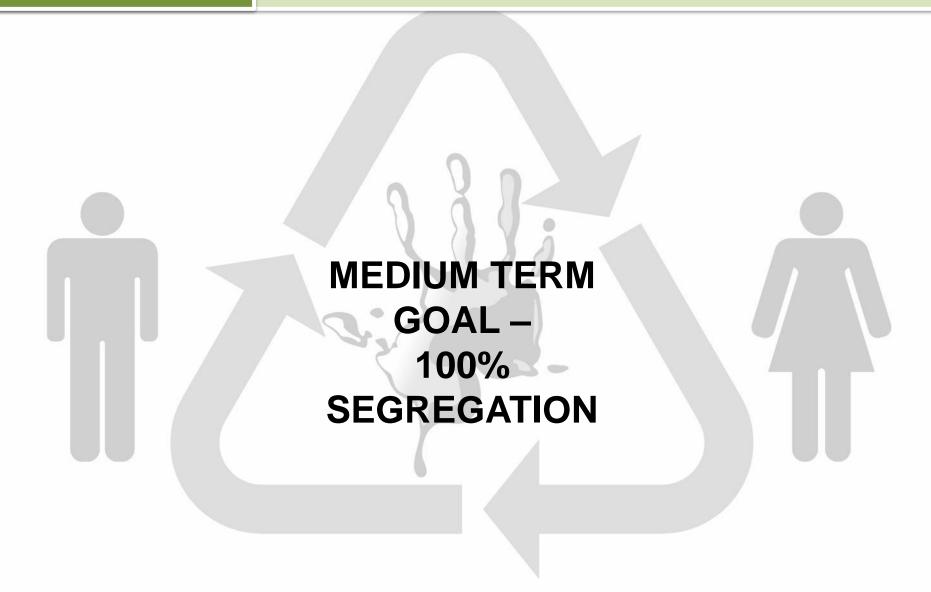
- 4 workers for segregation
- 4 workers for loading the vehicles

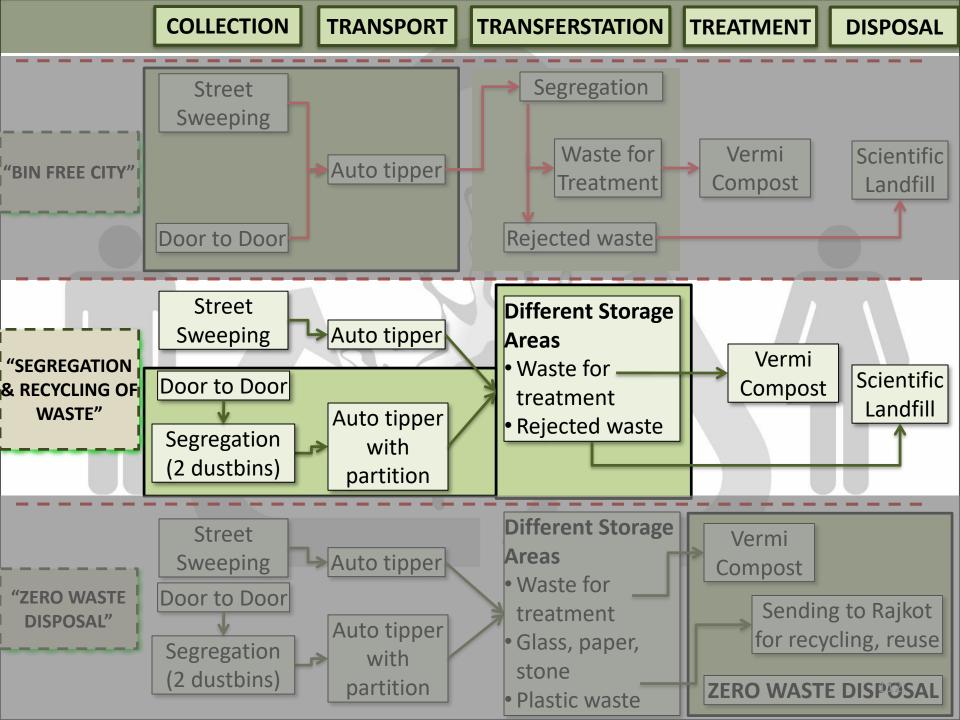
EQUIPMENTS

- Weigh bridge
- Screening belts

TREATMENT

- Treatment of waste will be carried out using existing Vermi composting plant.
- Plastic waste and other waste will be sold to other treatment facilitator for reuse, recycling


DISPOSAL


Rejected waste will be dispose in scientific landfill site, 15 km away from dwarka

SR. NO.	TASKS	OWNER SHIP OF ASSETS		O & M	
		ULB	PSP	ULB	PSP
1.	Collection				
1	Street Sweeping		✓		✓
Ш	D to D Collection				
a.	Residential (HHs)		✓		✓
b.	Commercial Commercial	Contract of 5 years	s, to delivery SWM		✓
Dwarka	Municipality	Door to Door Co	rvices. (Operation & Maintenance for cor to Door Collection and Street veeping. All the Staff and Vehicle PSP		PSP
4.	Treatment	will flave to Flocule)			
5.	Disposal*	✓		✓	

Note:

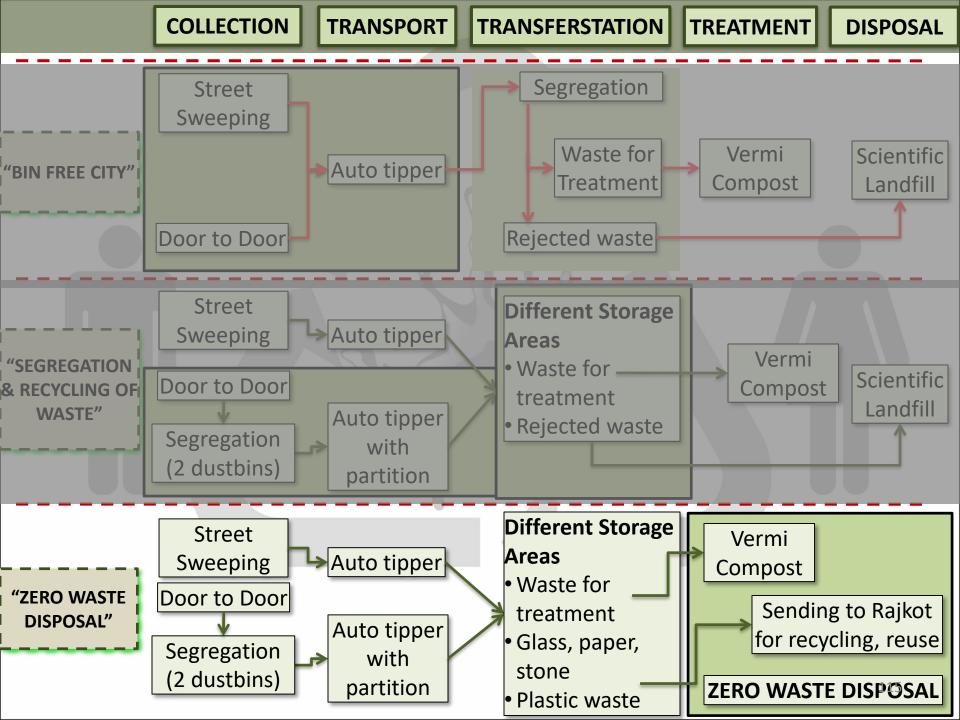
- Common Landfill site, at Vasai.
- Existing ULB staff of 90 temporary sweepers needs to be deployed by PSP.
- Single Private contractor to carry out street sweeping and Door to door collection in all of dwarka.

100% SEGREGATION AT SOURCE

ADDITIONAL INTERVENTION

Provide dustbins (for dry and wet waste)

Provision of partition in vehicles


COST

ULB HH's 50% 50% 70% 30% 0%

No additional cost.
Should be included in contract

- Capacity building of the existing staff about the segregation at source.
- IEC campaigning about the advantages of segregation and awareness how community can participate.

IMPLEMENTATION

Segregation of each type of waste and separate storage

PAPER & CARD BOARD	PLASTIC AND PLASTIC BOTTLE	RAGS	METALS	GLASS	SAND /EARTH	STONES	COMPOSTABLE MATTER
Reuse, recycle	Recycle	Reuse, recycle	Recycle	Recycle	Reuse	Reuse	Treated (Vermi
For making decorative items, building decoration		For needy	Within city, for construction activity				composting)
Selling the segregated waste to Rajkot based recycling plant for making green coal, eco bricks and plastic pallets.							

IEC Campaign Broadly focusing on awareness of Stake Holder to Achieve Following Vision

"BIN FREE CITY"

"SEGREGATION & RECYCLING OF WASTE"

"ZERO WASTE DISPOSAL"

• Identification of Target Groups:

Waste generators

Waste collectors

Sanitary Supervisors

For Tourist Awareness: Advertisement on publicity boards at Strategic locations.

- Capacity Building Program Implementation:
 - Training and orientation programmes will be plan for all staff and department of solid waste Management.
- Public awareness campaigns based on a public IEC strategy.
 - Encourage Practicing Reduce, Reuse, and Recycle.
 - •workshops, exhibitions, lectures, street play.
- Things to be discussed during public awareness and motivation campaigns
 - •Littering and indiscriminate dumping of refuse on open spaces, footpaths, lanes, streets, and into drainage channels or water bodies.

SHORT TERM

Transfer station

Long term

MEDIUM TERM

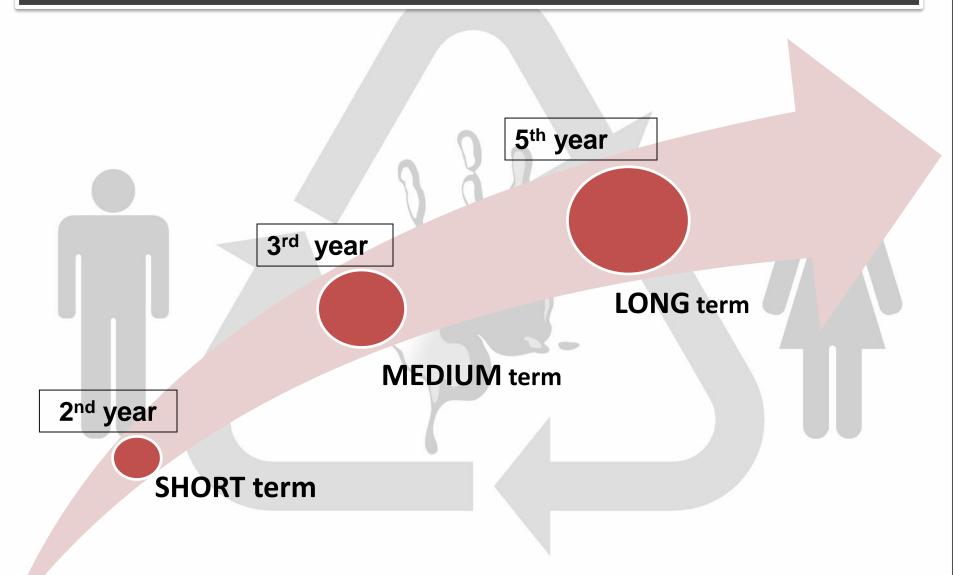
Purchase of dustbins

Vehicles

2.

3.

4.


SR. NO.	DESCRIPTION		CAPITAL INVESTM (PER TER		O & M EXPEN (PER/A			AL COST R TERM)
1.	SHORT TERM (Bin free city)		15,506	5,087			2	2,886,345
2.	MEDIUM TERM (Segregation)		4,627	7,200	14,796,258		1	2,007,458
3.	LONG TERM (Zero waste disposal)		0				7	7,380,258
SR. NO.	TASKS	C	CAPITAL INVESTMEN		JT	0 &	ME	XPENSES

		(PER TERM)	(PER/ANNUM)	
1.	SHORT TERM (Bin free city)	15,506,087		22,886,345
2.	MEDIUM TERM (Segregation)	4,627,200	14,796,258	12,007,458
3.	LONG TERM (Zero waste disposal)	0		7,380,258
		3		
SR. NO.	TASKS	CAPITAL INVESTME	NT O 8	M EXPENSES

		ULB	PSP	ULB	PSP	
SR. NO.	TASKS	CAPITAL IN	VESTMENT	O & M	EXPENSES	
	(Zero waste disposal)				7,380,258	
3.	LONG TERM	0				
2.	(Segregation)	4,627,200		1,796,258	12,007,458	

	1.	SHORT TERM			
		(Bin free city)	15,506,087		22,886,345
	2.	MEDIUM TERM (Segregation)	4,627,200	14,796,258	12,007,458
	3.	LONG TERM	0		
		(Zero waste disposal)			7,380,258
9	SR. NO.	TASKS	CAPITAL INVESTMEN	NT 0 &	M EXPENSES

SUMMARY_PROPOSALS

WATER

SANITATION

SOLID WASTE MANAGEMENT

Ongoing Proposal:

- ✓ Express line (21 Km, 400 dia) from Gorinja to Dwarka.
- √ Mayasar Talav Project
- ✓ Narmade Water :Shorter route .
- ✓ Modification & addition of distribution network

New Proposals:

- **✓ DO MINIMUM**
- √ Full Utilisation of Existing source
- ✓ Provision of 100 lpcd supply with alternate sources.
- ✓ Provision of 140 lpcd with alternate sourc es
- ✓ Revision in water tariff
- ✓ Introducing water tax .
- ✓ Increase in new connection charges.

Residential:

- ✓ Identification of the location of HH with out individual toilets due to lack of space.
- ✓ Refurbishment of existing unusable community toilets.
- ✓ IEC campaigns for OD Free cities.

Non-Residential:

- ✓ Amendment of 'DCR' of Dwarka.
- ✓ Provision of 'Pay & Use Toilet' for Tourist, Shop owners & Bus Stop .

"BIN FREE CITY".
Initiation of Segregation.

"SEGREGATION OF WASTE" (100% at Source)

"ZERO WASTE DISPOSAL"

PROPOSALS	FINANCIAL I	FINANCIAL IMPLICATIONS		
SHORT TERM	CAPITAL COS	T O&M COST		
Utilization of 3.07 MLD of Sani water.	31.00	53.00		
SANITATION: Residential:				
IEC campaigns for OD Free cities				
2. Refurbishment of existing unusable community toilets.				
Non-Residential:				
1. Amendment of 'DCR' of Dwarka.	85.00	18.00		
2. Provision of 'Pay & Use Toilet' for Tourist,				
Shop owners & Bus Stop .				
Institutional:				

155.06

147.96

1. Setting up of a readressal system.

"BIN FREE CITY".

Initiation of Segregation.

			S	-	
	_			Λ	_
				Δ	
				$\overline{}$	

FINANCIAL IMPLICATIONS

MEDIUM TO LONG TERM	CAPITAL COST (in lakhs)	O&M COST (lakh per annum)
 Provision of 100 lpcd water supply Addition & Modification of Distribution network 	41.00 128.57	74.00
3. Provision of 140 lpcd	1393.00	133.00
 Conventional Sewerage Small bores 	1723.24	91.01
3. Oxidation Pond Or , Facultative aerated lagoon Or , Trickling filter.	592.69	51.38
	328.22	
"SEGREGATION OF WASTE" (100% at	46.27	147.96
Source)		
"ZERO WASTE DISPOSAL"		147.96

Team Members:

Bhavin Gajjar IP0210

Manish Dutta Pandey IP0610

Chittal Pandya IP0710

Prabhat Ranjan Mahato IP0810

Garvit Rathod IP1010

Raunak Nagpure IP1110

Seema Singh IP1210

Harsh Shah IP1310

Kalgi Shah IP1410

Sumskrutha T. Kutti IP1610

Umesh Ninama IP1710

Upasana Yadav IP1810

THANK YOU!!!

Under Guidance of:

Dr. Meera Mehta

Prof. H M Shivanand Swamy

Prof. Mona Iyer

Awareness and Information Campaigns

- Public awareness campaigns based on a public IEC strategy.
 - RRR-slogan reduce, reuse, and recycle.
 - Advertisement on publicity boards, on local radio channels, and in local newspapers.
 - workshops, exhibitions, lectures, street play.
- Things to be discussed during public awareness and motivation campaigns are as follows:
 - Consumption patterns and a sustainable development,
 - The natural source of products,
 - Recycling and reuse,
 - Littering and indiscriminate dumping of refuse on open spaces,
 footpaths, lanes, streets, and into drainage channels or water bodies,
 - Environmental degradation and its effects on human health.

PROPOS	AL FOR SWM			
	Technical	Institutional	Financial	IEC Provision
Street Sweeping	• Permanent area allocation	•Reliever 's to cope up staff irregularities	Cost for buying equipments	Awareness toPeople not tolitterTraining to staff
Collection	 D to D collection Placement of dustbin on tourist circuits Segregation at source* 	•Contract out to PSP or strength the staff capacity •monitoring	 Cost for contracting work or expenses for new staff and equipments 	awareness amongst citizensTraining to staff
Transport	•Routes and trip planning	•Contract out to PSP or strength the staff capacity	•Cost for contracting work or expenses for new vehicles	
Treatment	 Segregation of the waste and 	•Contract out to PSP or strength the	-	Training to staffAwareness

Training to staff

125

staff capacity

Monitoring

reuse of waste

on site (no

Proper disposal

littering around)

Disposal

Organic waste converter

- Organic waste converter is generate compost from organics waste.
- Composting is a natural process and when held in an oxygen rich environment it prevents odor and emission of green house gases.
- The weight and volume of the waste is reduced by around 60% through these machines.
- The labor requirement in these machines is very less.

Organic waste converter for Dwarka ULB

Making Stand alone system for Hotels and Restaurants

Waste Generation Break up	Tonnes.
Residential	13.28
Hotel and restaurants	3.00
Street sweeping	1.72

Organic waste (tonnes/day)	1
Hotel and restaurants covered	67 no.
Area require , Sq.m	5.72
Require Waste Converter	3 no.
Cost of Converter 15.5 lack	46.5
each.	lack

Advantages:

- Prevent worms, bugs, or trash odours and emission of GG.
- Compost is Good for gardening.

WASTE TREATMENT & DISPOSAL

Waste Plastic to Fuel

- Plastic to Fuel System uses a process called catalytic pyrolysis which efficiently convert plastics to crude oil.
- System provides an integrated plastic waste processing system that offers an alternative to landfill disposal, incineration and recycling.
- Polymers from plastic waste are converted to oil, vapor, water and solids.
- 1 kg. of plastic waste yields up to .78 kg. of final product.
- A single Polymer Energy Unit generates up to 300 liters of finished product per hour.
- Volume Produced 720 liters/ton of waste plastic processed

Advantages:

- Environmentally responsible waste management solution
- Cost-effective
- Modular design, easily scalable plant capacity
- Self-cleaning unit minimizes offline maintenance
- Solution for nuisance and difficult to recycle plastic waste.

Waste Plastic to Fuel Pilot Project, Pune.

- •The project will seek to convert 9000 kg of plastic a month into 5400 litres of fuel.
- •Trials have been successful in the disintegration of all kinds of plastic waste, including bottles, small micron bags, food wrappers, cable covers and even old tyres.
- The project will be implemented of 300 kg plant could yield 180 litres of fuel a day. in all the 14 wards.
- •The yield is claimed to be 50 to 55% of the plastic disintegrated.

Product Use:

- •The poly fuel generated from this process can be used in gensets to produce electricity.
- •This can also be used to light up local parks, street lights.

Disposal option	engineerred	Sanitory Landfill	Composting	Incineration		Waste Plastic to Fuel Plant	Organic waste converter
Volume reduction	No	Yes	Yes	Yes	Yes	Yes	Yes
Expencive	No	Yes	Yes	Yes	No	Yes	Yes
Long term-maintenance	Yes	Yes	No	No	No	Yes	Yes
By-product recovery	No	No	Yes	No	Yes	Yes	Yes
Adaptability	Yes	Yes	No	No	Yes	Yes	Yes
Adverse environmental effect	Yes	Yes	No	Yes	No	No	No

- Above Highlighted System Can adopted for Integrated Solid waste Management of Dwarka.
- •Waste Plastic to Fuel plant and Organic converter system is Expensive but it give good solution to keep city clean.
- •Vermi Composting is more adaptive for Dwarka because it easy to maintain and it is exist in Dwarka city.