Investigating flood-resilient sanitation solutions for the northern division, Kabale Municipality, Uganda

Shirish Singh & Charles Besham Mushabe IHE Delft Institute for Water Education

Global South Academic Conclave on WASH and Climate linkages 2nd - 4th February 2024, Ahmedabad

BILL& MELINDA GATES foundation

Introduction

- Impacts of climate change on sanitation (i) extreme heat; (ii) water scarcity and drought; (iii) Increased precipitation, flooding and extreme weather events and (iv) rising sea levels;
- South western Uganda, Kabale Municipality, Northern Division;
- Population ~ 53,200 (2020);
- Onsite sanitation (65% traditional pit latrines unlined; 30% ventilated improved pit latrines; 3% urine diverting dry toilets and 2% septic tanks);
- Impacted by flooding and the mostly affected are low lying areas along the Kiruruma river banks;

Problem/challenge

- A typical house in upper Bugongi area (gentle sloping land) – semi permanent structure built with local materials; traditional pit latrine (unlined) at lower elevation;
- A family of 6 (2 adults; 4 children);
- HH income ~ UGX 800,000 (USD 216) per month;
- About 0.2 m high flood is experienced 2-3 times annually;
- One night after torrential rain, the house was submerged and latrine collapsed; faeces oozing into flood waters;
- Six months to construct a new house and pit latrine on the elevated area (toilet is 1 m away from kitchen and 0.5 m from the house) – unpleasant odour; planning for septic tank;
- UGX 600,000 (USD 162) spent to construct the new toilet;

Objectives

- Main Objective
 - To investigate and develop
 appropriate flood-resilient sanitation
 solutions for peri-urban areas in
 Uganda
- Specific Objectives
 - To assess the prevalence of flooding and its consequences on sanitation systems;
 - To develop adaptive solutions for onsite sanitation systems to flooding;

BILL& MELINDA GATES foundation

Methodology

- Data collection
 - Secondary data Literature reviews;
 - Primary data (i) Random household survey (sample size 94
 calculated based on 95% confidence level and 10% margin of error)
 and (ii) Purposive sampling 8 Key Informant Interviews (KIIs) with
 relevant stakeholders and 4 Focus Group Discussions (FGDs);
 - Observations typology of sanitation systems; impact of flooding;
- Analysis
 - Quantitative data analysed using excel and presented as tables; charts; graphs;
 - Qualitative data descriptive and thematic analysis;
- Multi Criteria Analysis (MCA) contextual criteria/indications developed in consultation with relevant stakeholders;

Findings – prevalence of flooding

- ~1,656 mm rainfall mostly during MAM and SON months (150-250 mm/month);
- Significant flooding Kiruruma river banks (150-200 m from the banks) 2-3 incidences per year (65% HHs);
- Up to a height of 1.5 m for a duration of 1.5 to 2 weeks;

Findings – consequences and impact

- 69% partial failure of OSS (infrastructure undermined but usable);
- 26% complete failure (infrastructure completely destroyed and unusable);
- 80% lacked access to sanitation (lack of funds to repair/reconstruct);
- Major expenses for OSSs is repair and maintenance (87%) followed by 15% for acquiring substitute sanitation systems (plastic containers);

- Increased mosquito bleeding 71%;
- Contamination of water sources and outbreak of waterborne diseases 57%;
- Psychological distress, anxiety, and other mental health issues 43% (inadequate access to sanitation; insufficient funds to repair or build sanitation facility);
- Disruption of sanitation services 33%;

GATES foundation

Solutions

72% - construction of elevated pit latrines

55% - establishment of diversion channels

35% - construction of step latrine

1% - constructing elevated ecosan latrine

Adaptive solutions

- Criteria/aspects
 - Technical aspects 5 sub-criteria (0.45);
 - Social acceptance 2 sub-criteria (0.25);
 - Stakeholder participation 2 sub-criteria (0.2);
 - Cost of technology 3 sub-criteria (0.1);

Criteria Aspects and Indicators		Rating indicators for the alternative technologies			
Aspects	Indicators	Elevated Pit Latrine	Sand Enveloped Raised Pit Latrine	Elevated Ecosan toilet	Step Latrine
Technical	Percentage of local materials and resources used for the technology	4	4	4	5
	Size of land occupied in square meters	3	3	3	1
	The system's ability to resist and sustain a floodwater height of 0.5m to 1.2m	4	3	5	5
	Level of difficulty or simplicity in the implementation of the technology	2	1	5	3
	Local capacity to manage, operate, and maintain the technology	3	3	4	3
Social Acceptance	Percentage of residents involved	5	5	5	5
	Percentage of community members able to use the technology	5	5	3	5
Stakeholder Participation	Percentage of local population involved in the decision- making	2	2	2	2
	Percentage of people trained and sensitized in flood and sanitation issues	2	2	2	2
Cost of technology	Investment Cost affordability and accessibility	4	4	5	4
	Percentage of the initial Capex to be spent after half of the lifespan	3	3	5	3
	Percentage of annual Household income spent on routine maintenance	3	3	5	3

Global South Academic Conclave on WASH and Climate Linkages

FP

9

Conclusion and recommendations

- Flooding is experienced 2-3 times annually and intensified by inadequate drainage system and poor maintenance;
- Flooding poses a twofold challenge for OSSs –

(i) Technical – system failure or malfunction and compromising hygiene and environmental safety;
 (ii) Social – increased public health risks; displacement; economic pressure;

- Elevated ecosan is the most appropriate on-site sanitation technology followed by step latrines;
- Kabale Municipal Council (KMC) should provide clear design and implementation/monitoring mechanism along with public awareness and stakeholder engagement for effective implementation of the aforementioned solution;
- To minimise the impact of flood, KMC should prioritize development, implementation and maintenance of a comprehensive drainage system;
- National Environment Management Authority should reinstate buffer zones along River Kiruruma to restore the natural drainage system;

Thank You

CWAS CENTER FOR WARER AND SANTTATION CRDF CEPT UNIVERSITY BILL& MELINDA GATES foundation

Global South Academic Conclave on WASH and Climate Linkages