

Local to Global WASH Climate nexus

Global South Academic Conclave CEPT University, 2 Feb 2024

Aromar Revi Director, IIHS & Co-Chair UNSDSN

Context & Sources of Evidence

The Global Polycrisis of the early Anthropocene

We live in an era of interconnected global polycrises:

- Poverty
- Inequality
- Climate & Water
- Biodiversity
- Debt
- Intergovernmental fragmentation

GDP/cap (PPP): \$12,703

World SDG Dashboard (2023)

HDI: 0.73

Gross World Output: ~\$ 100 trillion Growth: ~2.5% per year Lo Capital Assets : ~\$ 550 trillion Growth: ~2 % per year

Losses: ~ 1% per year

Biocapacity: - 1 gHa/cap

Sources: SDR,2023; World Bank, 2022; UN, 2021; GFN, 2022

Population: 8 billion

IPCC AR6 Summary for Urban Policymakers (2022)

THE SUMMARY FOR URBAN POLICYMAKERS OF THE IPCC'S SIXTH ASSESSMENT REPORT VOLUME I

WHAT THE LATEST PHYSICAL SCIENCE OF CLIMATE CHANGE MEANS FOR CITIES AND URBAN AREAS THE SUMMARY FOR URBAN POLICYMAKERS OF THE IPCC'S SIXTH ASSESSMENT REPORT VOLUME II

WHAT THE LATEST SCIENCE ON IMPACTS, ADAPTATION AND VULNERABILITY MEANS FOR CITIES AND URBAN AREAS THE SUMMARY FOR URBAN POLICYMAKERS OF THE IPCC'S SIXTH ASSESSMENT REPORT VOLUME III

WHAT THE LATEST SCIENCE ON CLIMATE CHANGE MITIGATION MEANS FOR CITIES AND URBAN AREAS

AR6 Summary for Urban Policymakers at CoP27

GCEW World Water Crisis, PBL Bending the Trend, Lancet Pathfinder **Commission** (2023)

The What, Why and How of the World Water Crisis:

Global Commission on the Economics of Water Phase 1 Review and Findings

THE GEOGRAPHY OF FUTURE WATER CHALLENGES

BENDING THE TREND

The Lancet Commissions

Q to O

ave PhD's MRC Unit T

Pathways to a healthy net-zero future: report of the Lancet Pathfinder Commission

Samh Whitmee Rosemany Green Kristine Belesova, Sveen Hassan, Saledad Cuevas, Peningh Murage, Roberto Picetti, Romain Clerce-Roques Kris Murray, Jane Falconer, Blanca Ant on, Tamzin Reynolds, Hugh Sharma Waddington, Robert C Hughes, Joseph Spadaro, Aimée Aquilar Jaber Yamina Saheb. Diarmid Campbell-Lendrum. Maria Cartés-Puch. Kristie Ebi. Rachel Huxley. Mariana Mazzucato. Tolu Oni. Nicole de Paula. Gong Peng, Aromar Revi, Johan Rockström, Leena Srivastava, Larraine Whitmarsh, Robert Zougmaré, Joy Phumaphi, Helen Clark, Andy Haine:

Executive summar

to limit future global temperature increases to 60 YLL per 100 000 population per year. In the electricity 1-5°C above pre-industrial levels, but current progress is generation sector, we estimated a median reduction of inadequate to achieve the goals of the Paris Climate 11 YLL per 100 000 population per year, with some Agreement and to reduce future risks from climate evidence for larger benefits in India (a reduction of change. Many actions to mitigate greenhouse gas 149 YLL per 100 000 population per year for the single emissions can also deliver near-term health co-benefits, reported study). Actions to decarbonise electricity for example from reduced air pollution, consumption of generation generally had the greatest carbon mitigation healthy diets, and increased physical activity. High- intensity of actions in a single sector (a median estimated quality evidence on the type and magnitude of co-benefits reduction of 171 kilotonnes of CO,eq per that can be realised and improved knowledge of how to 100000 population per year). Multisectoral actions might ogress towards net-zero greenhouse gas emissions were highly variable, depending on the country context. by 2050. The Lancet Pathfinder Commission was Although global modelling studies show potential large established to collate and assess the evidence on the near-benefits to health from reductions in ambient air term health effects of greenhouse gas mitigation. including both modelling studies and evaluated within systematic reviews which tend to feature smallimplemented actions. The Commission's aim is to assess scale actions with limited benefits. the potential and achieved magnitude of the benefits for We searched peer reviewed and grev literature to health and climate of different mitigation actions and, further identify examples of implemented actions that where possible, the factors facilitating or impeding had measured and reported both emission reductions Hygiene & Tropical Meeded implementation

An umbrella review of relevant systematic reviews was on the realities of implementing mitigation actions in conducted across multiple peer-reviewed literature different geographical locations and socioeconomic databases, identifying 6902 records, of which 317 full settings, and at a variety of spatial scales. The search (H Sharma Waddingtor texts were screened. From the full text screening, included relevant articles from the Pathfinder umbrella Spataro Environment 26 reviews presented quantitative estimates of both review and from a recent systematic mapping exercise. changes in greenhouse gas emissions and health which used machine learning to classify peer-reviewed outcomes. 200 mitigation actions were identified across research papers on dimate and health. In addition, pre- for Economic Co-ope all sectors, of which 178 (89%) presented modelled estimates of the effects of climate mitigation actions on the Carbon Disclosure Project) were screened, alongside greenhouse gas emissions and health across different studies submitted in response to a call for evidence of the studies submi sectors and scales. We converted mitigation actions to published in The Lanot. Further targeted searches were Programme WHO Gener CO, equivalents (CO,eq) to allow the inclusion of other carried out for actions with a focus on the enhancement greenhouse gases alongside CO2. We quantified health of natural or modified ecosystems to deliver climate and outcomes in terms of health co-impact intensity (an biodiversity benefits (ie, nature-based solutions). A list of Solutions Network, New York increase or decrease in years of life lost [YLL] per all evaluated actions submitted through the call for NY, USA (M Conte-Puth MS 100000 population per year) and climate benefits as evidence is given in the appendix (pp 7-9). carbon mitigation intensity (kilotonnes of COzeq per 100000 population per year).

reductions in air pollution, consumption of healthy the environment and human health if taken up at scale, sustainable diets, and the promotion of active travel and including building retrofitting in Australia, deployment public transport. Clean cookstoves had the greatest of incentives and policies for the adoption of renewable estimated median health co-benefit (a reduction of energy in the USA, and the provision of health-care 1279 YLL per 100000 population per year based on services to communities in Indonesia to incentivise the data from India), followed by dietary changes preservation and restoration of forests. There is an

(306 YLL per 100 000 population per year). Actions in the Published Online Deep, rapid cuts in greenhouse gas emissions are needed transportation sector resulted in a median reduction of November 20, 2023 https://doi.org/10.1016 Centre on Climate (SWhitmee PhD S Cuevas PhD, PM urage PhD R Clerco-Roques MS R C Hughes MPH Archive & Open Research promote the implementation of such actions can support achieve very high mitigation intensity, but their effects Service (Factorer MA) and London School of Hygiene pollution, these are not currently reflected in the data

and health co.impacts. These examples provide evidence. Bankt, The Gamble (Prof K Murray PhD)- Londo nternational Developm Centre London UK Philadelphia PA USA (I Soadaro PhD): Organita existing databases from C40 Cities and CDP (formerly Development, Parts, France Po, Paris, France (Y Saheb Phil (D Campbell-Lendrum PhD Center for Health and th

Examples of implemented actions with exemplary Rosling Center, University stakeholder engagement and inclusion were identified. Major benefits to health are delivered through These actions have the potential for significant wins for (PorKENPAD) C40 CHE New York, NY USA Innovation and Public Purpo London UI

www.thelancet.com Published online November 20, 2023 https://doi.org/10.1016/50140-6736(23)02466-2

The WSS-Climate nexus

Scoping the Solution space: Water is the common thread linking all the SDGs

Fresh water is a very precious resource

Projected progress on SDG6: Access to clean water or sanitation (2030)

Annual Global impact of water-related disasters and diseases (1980-2021)

Source: CRED

Water- and climate-related risks in Cities and regions (2020-70)

Key Pathways & connections between climate mitigation and health

Mitigation across sectors and pathways to Health outcomes

Climate Action: as if only temperature extremes matter

We are headed for a 1.5°C Overshoot: Temperature change (2020-2070)

Changes in Global & Urban Surface Air Temperature (1958-2018)

Source: Change in the annual mean surface air temperature over the period 1958-2018 based on the local linear trend retrieved from CRU TS (°C per 68 years). This map has been amended from IPCC 2021, Climate Change 2021: The Physical Science Basis, Chapter 10: Linking Global to Regional Climate Change; United Nations, Department of Economic and Social Affairs, Population Division (2018); World Urbanization Prospects: The 2018 Revision, Online Edition.

Cities and regions as Climate hotspots (2010-2050)

Concentrated in regions & large cities in the global South: Projected mean annual temperatures of over 29 °C (2020)

Concentrated in regions & large cities in the global South: Projected mean annual temperatures of over 29 °C (2070)

Urban Heat Island (UHI) will make things worse

Source: Zhou et al., 2013; Schlünzen and Bohnenstengel, 2016; Huang et al., 2019

Climate Resilient Development: mapping the Solution space

Every system & place are connected in an urban world with over 4 billion urban residents. The global economy & human societies are strongly coupled with the climate system and ecosystems. A change in one system impacts the others.

The Climate system, Ecosystems and Human Systems are tightly coupled

Heat & cold

Rain & drought

Snow & ice

Wind

Every region will experience concurrent and multiple changes in climatic impact-drivers in a warming world. In many places, these cause compound and cascading events.

Climate Resilient Development (CRD) brings together Sustainable Development for All, with Climate adaptation, Mitigation and Biodiversity conservation. System Transitions are key to address systemic risks to coupled human, natural and climate systems.

These include five simultaneous transitions in:

- Energy systems
- Industrial systems
- Land, coastal, ocean and freshwater ecosystems
- Urban and Infrastructure systems
- Societal choices and transitions

Together, these transitions advance CRD i.e. sustainable development along with adaptation and mitigation and biodiversity conservation.

Climate Mitigation

Multiple feasible Mitigation Options across the System Transitions that are clearly mapped to the SDGs and hence to Climate Resilient Development.

We need to make choices on the deployment of mitigation and adaptation options that can accelerate System Transitions for CRD

÷	Synergies 7	Synergies and trade-offs	Overall Equibility				
-	Trade-offs	Blanks represent no assessment	Overall Peasibility	High	Medium	Low	

Mitigation Response Options

	Solar Energy
	Wind energy
gy	Geothermal
ē	Energy storage for low-carbon grids
n	Demand side mitigation
	System integration
	Urban land use and spatial planning
	Electrification of the urban energy
_	District heating and cooling networks
	Urban green and blue infrastructure
5	Waste prevention, minimization and
	management
	Integrating sectors, strategies and
	innovations
Guiping	Change in construction methods and circular economy Envelope improvement Heating, ventilation and air conditioning (HVAC) Efficient Appliances Change in construction materials Demand Side management (active management operation, digitalization
	management operation, digitalization and flexible comfort requirements)
	Renewable energy production
	Demand reduction and mode shift
5	Demand reduction and mode shift Biofuels for land transport, aviation

Electric vehicles for land transport

Climate Adaptation

Multiple feasible adaptation options across the System Transitions to respond to a range of Representative Key Risks (RKRs).

The question is which of these 'solutions' should be deployed, where and when in aid of which goals?

Cities hold the key to Climate Resilient Development. Cities and urban areas have a central role to play in the Systems Transitions and future transformations needed to adapt and mitigate to the climate crisis.

Image credits: JP Holecka / Unsplash

The Global Water crisis of the Anthropocene

Too little Water: Global Drought Risk (1900-2010)

Too little Water: Annual Drought Affected People (1996-2015)

Too much Water: Flood events (1996-2015)

Too much Water: Cities as flood-risk hotspots

Too Dirty & Polluted water: Annual deaths (1980-2015)

Loss of Terrestrial & Freshwater biodiversity in a warming world (1.5°C to 4°C)

The coming together of the Global Water & Climate crises

We are headed for a 1.5°C Overshoot: Precipitation change (2020-2070)

Climate change will only make extreme weather events worse

The Global Water cycle is out of balance The Blue-Green water planetary boundary has been breached

Source: Grafton, Krishnaswamy and Revi, 2023

Projected Global Land use & Population distribution (2070)

Projected Global Land use distribution (2070)

Projected Global Population distribution (2070)

Water quality constraints: Desalination capacity (m. m³/day)(2019)

Changes in Urban Nitrogen release (2020-70)

Aquatic Biodiversity changes (2015-70)

Climate Resilient Development: mapping the WSS solution space

Strategies to address the various colours and hues of water (2015-70)

-- --

groundwater recharge

water table maintained

ipariar

vater treatment wetland

fren

infiltration

Source: IPCC 2022, WGII

Water-related Climate adaptation Options (2015-70)

														Medium Low	•
	A per (daptatio	n options arming L	evel		E	ffective	ness		Residual impact					
	1.5°C	2°C	3°C	4°C	Co-benefit	Large	Moderate	Small	Negligible	Negligible	Small	Moderate	Large	Mal- adaptation	
Global	Water and soil moisture conservation On farm irrigation and water management Multiple agricultural adaptation options Improved cultivars and agronomic practices										-				
	Changes	in cropping											0000		
	On fa M Improv	arm irrigation Iultiple agric ed cultivars Flood Flood	n and water ultural adap and agronoi d risk reduct nergy relate	management tation options mic practices ion measures d adaptations							-			-	
	Changes	in cropping / Water and s	pattern and Agro-forestr	crop systems y and forestry conservation							-		-		000.
	On fa M Improv	arm irrigation Iultiple agric ed cultivars Flood	n and water ultural adap and agronor d risk reduct	management tation options mic practices ion measures					•		-			-	
	Changes On fa	in cropping Water and s arm irrigation	pattern and Agro-forestr oil moisture n and water	crop systems y and forestry conservation management								-			
	M Improv Changes	Iultiple agric ed cultivars Flood in cropping	ultural adap and agrono d risk reduct pattern and Agro-forestr	tation options mic practices ion measures crop systems y and forestry								-			

CONNUCLICE

Source: IPCC 2022, WGII

The safe and just delivery of human well-being & ecosystem health by 2050 is fundamental to our future.

This must be met within global water limits.

Transformational change, from the local to the global.

Water SDGs + Climate Action + Biodiversity conservation

How can we implement Transformational WSS change?

Governance & Regulation + Finance + Institutional Capacity + Technology & Innovation

Scaling Inclusive Sanitation in Tamil Nadu, India

Spatial Coverage of FSM in Tamil Nadu: ~16 million people

Source: TNUSSP Analysis, 2022

Impact at the State Level: Population served: ~16 million

Scaling and Sustaining FSM

- Significant **investment** in treatment infrastructure.
- Quality Assured Implementation: 51 FSTPs (1.5 MLD capacity) Co-treatment at 59 STPs (1,200 MLD capacity)

Strengthened Institutional FSM capacity

Enabling Inclusive FSM

Challenges

- Sustaining operations & maintenance
- Regulating non-standard on-site systems
- Regulating de-sludging operations including occupational health, safety of workers
- Securing land for setting up treatment facilities

State Investment Plan (SIP): Phase-wise Scale-up

- 1. Expand existing FSTP treatment capacity through **Co-treatment**
- 2. Create new Fecal Sludge Treatment Plants (FSTPs) across the state
- 3. Scale access to treatment through the **Cluster Approach** across the urban-rural continuum

Details	Phase I	Phase II	Phase III	Phase IV	Phase V	Urban- Rural	Grand Total
	00 110	amont		New Forr 5			
No. of treatment facilities	65	28	56	103	250	-	502
Total ULBs covered	102	40	121	136	250	-	649
Cumulative population coverage	40%	60%	75%	81%	100%	-	26,577,880
Village Panchayats	1,199	533	1,338	2,053	4,221	3,181	12,525

Crowding-in Public investment: ~ INR 500 crores (USD ~60 m)

Impact of TNUSSP-CWIS

ACCESS	CONTAINMENT	COLLECTION & CONVEYANCE	TREATMENT & REUSE						
Improving safe sanitation for urban poor	Improving Onsite Sanitation Systems (OSS) for Large Generators and Individual Household	Light-touch regulation of private desludging operators Monitoring of disposal	Improved treatment capacity, covering ~15 million urban population through cluster approach						
Enabling Community	Toilets (IHHT)	wontoning of disposal	Demonstrating reuse methods Treatment technologies adapted to specific requirements						
and Public Toilet (CTPT) management	Enabling periodic desludging for CTPT	Improved services for urban poor in select locations trialed							
Institutional strengthening and improved governance across the State, Strengthened eco-system & capacity of stakeholders, Behavior Change Communication									

TNUSSP: Climate resilience & Emission-reduction questions

Health-benefits

Water efficiency: keep water-carriage running

- Data on water efficiency & quality
- Recycling and reusing water: financial viability for industrial and agriculture use?
- Solids \rightarrow regenerative agriculture or biochar

Emission reduction: net-zero WSS services?

- Decarbonisation of infrastructure: embodied energy & Carbon
- Decarbonisation of Operations
- The business case for emission reduction?

Infrastructure Resilience

- Prepare for extreme drought and benchmark with desalination
- Prepare for flooding & storm surge planning intervention & critical infrastructure resilience
- Prepare for planned withdrawal & relocation

IIHS Campus, Kengeri: Surface Water Flows

IIHS Campus, Kengeri: integrating four major Water systems

Conjoint Water Use

•

•

- Surface water ponds
- Shallow groundwater
- Deep groundwater
- Treated tecycled wastewater

IIHS Campus, Kengeri: Factor 2+ water efficiency

Phase-wise area, population and water demand for the Campus

Base case and design case water consumption for different end-uses

Water demand across uses

- Fresh water - Flush water - HVAC

IIHS Campus: Climate resilience & Emission-reduction

- Net-zero energy and commercial viability with conjunctive use
- Net-zero water (up to what densities, dual piping, storage & grid connectivity)
- Regenerative agriculture & biodiversity restoration
- Near closed-loop recycling & reuse
- Biological \rightarrow Technolgical treatment system
- Operation & Control systems
- Standards, measurement of water quantity & quality
- Lifestyle & behaviour change

A few WASH-Climate Resilience & GHG Emission-reduction questions

- WASH has to be embedded in the local water cycle and the larger Water, Climate, Nutrition security & Biodiversity agenda = transform 'Planning' & 'Development'
- Severe gaps in the WASH-Climate evidence chain & narrative
 - Health impacts, 'cost-benefit' and (multi-dimensional) viability
 - Mitigation: small fraction of C0₂ + CH₄ emissions. No discussion on embodied C & Scope 3. No discussion on Carbon storage. No surprise that finance is negligible
 - Adaptation:
 - Loss & Damage: conversation hasn't even started
 - Vulnerability reduction:
 - Culture: gender and caste-dynamics

• Operationalising Climate Resilience in WASH systems

- Drought-resilience: the septage vs. sewerage debate
- Flood- & SLR-resilience:
- Storm-resilience: coastal area
- Nature based Solutions: Blue-Green-Grey-Digital infrastructure and services
- Urban-Rural linkages: Regenerative Agriculture & Biodiversity restoration & conservation
 - Recycling and reuse of blue water \rightarrow green water
 - N and P discharge and nutrient recycling \rightarrow regenerative agriculture